Proof of Lemma 1 in the paper "On a simple quartic family of Thue equations over imaginary quadratic number fields" by Benjamin Earp-Lynch, Eva G. Goedhart, Ingrid Vukusic and Daniel P. Wisniewski.
unlisted
ubuntu2004Kernel: SageMath 9.7
Proof of Lemma 1
In [1]:
In [3]:
Out[3]:
[1, 2, 3, I - 2, I - 1, I, I + 1, I + 2, 2*I - 2, 2*I - 1, 2*I, 2*I + 1, 2*I + 2, 3*I, sqrt(-2) - 2, sqrt(-2) - 1, sqrt(-2), sqrt(-2) + 1, sqrt(-2) + 2, 2*sqrt(-2) - 1, 2*sqrt(-2), 2*sqrt(-2) + 1, 1/2*sqrt(-3) - 5/2, 1/2*sqrt(-3) - 3/2, 1/2*sqrt(-3) - 1/2, 1/2*sqrt(-3) + 1/2, 1/2*sqrt(-3) + 3/2, 1/2*sqrt(-3) + 5/2, sqrt(-3) - 2, sqrt(-3) - 1, sqrt(-3), sqrt(-3) + 1, sqrt(-3) + 2, 3/2*sqrt(-3) - 3/2, 3/2*sqrt(-3) - 1/2, 3/2*sqrt(-3) + 1/2, 3/2*sqrt(-3) + 3/2, sqrt(-5) - 2, sqrt(-5) - 1, sqrt(-5), sqrt(-5) + 1, sqrt(-5) + 2, sqrt(-6) - 1, sqrt(-6), sqrt(-6) + 1, 1/2*sqrt(-7) - 5/2, 1/2*sqrt(-7) - 3/2, 1/2*sqrt(-7) - 1/2, 1/2*sqrt(-7) + 1/2, 1/2*sqrt(-7) + 3/2, 1/2*sqrt(-7) + 5/2, sqrt(-7) - 1, sqrt(-7), sqrt(-7) + 1, 1/2*sqrt(-11) - 5/2, 1/2*sqrt(-11) - 3/2, 1/2*sqrt(-11) - 1/2, 1/2*sqrt(-11) + 1/2, 1/2*sqrt(-11) + 3/2, 1/2*sqrt(-11) + 5/2, 1/2*sqrt(-15) - 3/2, 1/2*sqrt(-15) - 1/2, 1/2*sqrt(-15) + 1/2, 1/2*sqrt(-15) + 3/2, 1/2*sqrt(-19) - 3/2, 1/2*sqrt(-19) - 1/2, 1/2*sqrt(-19) + 1/2, 1/2*sqrt(-19) + 3/2, 1/2*sqrt(-23) - 3/2, 1/2*sqrt(-23) - 1/2, 1/2*sqrt(-23) + 1/2, 1/2*sqrt(-23) + 3/2, 1/2*sqrt(-31) - 1/2, 1/2*sqrt(-31) + 1/2, 1/2*sqrt(-35) - 1/2, 1/2*sqrt(-35) + 1/2]
number of elements: 76
In [4]:
Out[4]:
{0, -sqrt(-7), 3, -4*I, -3/2*sqrt(-7) - 1/2, -3*I - 1, -2*sqrt(-3), -3*I + 1, -3/2*sqrt(-7) + 1/2, -3*sqrt(-2), -sqrt(-15), -5/2*sqrt(-3) - 3/2, -3, -5*I, -5/2*sqrt(-3) + 3/2}
len: 15
In [0]: