Proof of Lemma 7 in the paper "On a simple quartic family of Thue equations over imaginary quadratic number fields" by Benjamin Earp-Lynch, Eva G. Goedhart, Ingrid Vukusic and Daniel P. Wisniewski.
unlisted
ubuntu2004Kernel: SageMath 9.7
Proof of Lemma 7
In [53]:
Out[53]:
type: 3
B(1/t) = -1435829041889280*t^-29 - 650285662207656*t^-28 + 99710350131200*t^-27 + 44259233299736*t^-26 - 6979724509184*t^-25 - 3031747059460*t^-24 + 493132709888*t^-23 + 209232806328*t^-22 - 35223764992*t^-21 - 14567881052*t^-20 + 2549088256*t^-19 + 1025056044*t^-18 - 187432960*t^-17 - 73061274*t^-16 + 14057472*t^-15 + 5291656*t^-14 - 1081344*t^-13 - 391220*t^-12 + 86016*t^-11 + 29724*t^-10 - 7168*t^-9 - 2346*t^-8 + 640*t^-7 + 196*t^-6 - 64*t^-5 - 18*t^-4 + 8*t^-3 + 2*t^-2 - 2*t^-1 + 1
*** Step 2 ***
c = 10.14
new lower bound for y = 986.2
*** Step 3 ***
c = 42.48
new lower bound for y = 23540.
*** Step 4 ***
c = 868.0
new lower bound for y = 115200.
*** Step 5 ***
c = 4921.
new lower bound for y = 2.032e6
*** Step 6 ***
c = 8503.
new lower bound for y = 1.176e8
*** Step 7 ***
c = 376200.
new lower bound for y = 2.658e8
*** Step 8 ***
c = 6.549e6
new lower bound for y = 1.527e9
*** Step 9 ***
c = 1.195e7
new lower bound for y = 8.370e10
*** Step 10 ***
c = 1.629e8
new lower bound for y = 6.138e11
*** Step 11 ***
c = 9.547e8
new lower bound for y = 1.047e13
In [56]:
Out[56]:
$k$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ & $10$ & $11$ \\ \hline
$c$ & $10.14$ & $42.48$ & $868.0$ & $4921.$ & $8503.$ & $376200.$ & $6.549 \times 10^{6}$ & $1.195 \times 10^{7}$ & $1.629 \times 10^{8}$ & $9.547 \times 10^{8}$ \\
$|y| \geq \ldots$ & $986.2$ & $23540.$ & $115200.$ & $2.032 \times 10^{6}$ & $1.176 \times 10^{8}$ & $2.658 \times 10^{8}$ & $1.527 \times 10^{9}$ & $8.370 \times 10^{10}$ & $6.138 \times 10^{11}$ & $1.047 \times 10^{13} $
In [0]: