Proof of Lemma 3 in the paper "On a simple quartic family of Thue equations over imaginary quadratic number fields" by Benjamin Earp-Lynch, Eva G. Goedhart, Ingrid Vukusic and Daniel P. Wisniewski.
unlisted
ubuntu2004Kernel: SageMath 9.7
Proof of Lemma 3
In [21]:
Out[21]:
rational x:
x = 1
checking rational y's ...
d= 0 , t = 1 , [x, y] = [1, 2]
now non-rational y's:
dlist = [1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 55, 59, 67, 71, 79, 83, 87, 91, 95, 103, 107, 111, 115, 119, 123, 127, 131, 139, 143, 151, 155, 159, 163, 167, 179, 183, 187]
d= 1 , t = -4*s , [x, y] = [1, s - 1]
d= 1 , t = -4*s , [x, y] = [1, s + 1]
d= 1 , t = -4*s , [x, y] = [1, 2*s]
d= 2 , t = -3*s , [x, y] = [1, s]
d= 3 , t = -2*s , [x, y] = [1, 1/2*s - 1/2]
d= 3 , t = -5/2*s - 1/2 , [x, y] = [1, 1/2*s - 1/2]
d= 3 , t = -5/2*s + 1/2 , [x, y] = [1, 1/2*s - 1/2]
d= 3 , t = -5/2*s - 1/2 , [x, y] = [1, 1/2*s + 1/2]
d= 3 , t = -5/2*s + 1/2 , [x, y] = [1, 1/2*s + 1/2]
d= 3 , t = -2*s , [x, y] = [1, 1/2*s + 1/2]
x = 2
checking rational y's ...
d= 0 , t = 4 , [x, y] = [2, 3]
now non-rational y's:
dlist = [1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 118, 119, 122, 123, 127, 129, 130, 131, 133, 134, 137, 138, 139, 141, 142, 143, 145, 146, 149, 151, 154, 155, 157, 158, 159, 161, 163, 165, 166, 167, 170, 173, 174, 177, 178, 179, 181, 182, 183, 185, 186, 187, 190, 191, 193, 194, 195, 197, 199, 201, 202, 203, 205, 206, 209, 210, 211, 213, 214, 215, 217, 218, 219, 221, 222, 223, 226, 227, 229, 230, 231, 233, 235, 237, 238, 239, 241, 246, 247, 249, 251, 253, 254, 255, 257, 258, 259, 262, 263, 265, 266, 267, 269, 271, 273, 274, 277, 278, 281, 282, 283, 285, 286, 287, 291, 295, 299, 303, 307, 311, 319, 323, 327, 331, 335, 339, 347, 355, 359, 367, 371, 379, 383, 391, 395, 399, 403, 407, 411, 415, 419, 427, 431, 435, 439, 443, 447, 451, 455, 463, 467, 471, 479, 483, 487, 491, 499, 503, 511, 515, 519, 523, 527, 535, 543, 547, 551, 555, 559, 563, 571, 579, 583, 587, 591, 595, 599, 607, 611, 615, 619, 623, 627, 631, 635, 643, 647, 651, 655, 659, 663, 667, 671, 679, 683, 687, 691, 695, 699, 703, 707, 715, 719, 723, 727, 731, 739, 743, 751, 755, 759, 763, 767, 771, 779, 787, 791, 795, 799, 803, 807, 811, 815, 823, 827, 831, 835, 839, 843, 851, 859, 863, 871, 879, 883, 887, 895, 899, 903, 907, 911, 915, 919, 923, 935, 939, 943, 947, 951, 955, 959, 967, 971, 979, 983, 987, 991, 995, 1003, 1007, 1011, 1015, 1019, 1023, 1027, 1031, 1039, 1043, 1047, 1051, 1055, 1059, 1063, 1067, 1079, 1087, 1091, 1095, 1099, 1103, 1111, 1115, 1119, 1123, 1131, 1135, 1139, 1147, 1151, 1155]
d= 1 , t = -4*s , [x, y] = [2, 2*s - 1]
d= 1 , t = -4*s , [x, y] = [2, 2*s + 1]
d= 1 , t = -4*s , [x, y] = [2, 3*s]
d= 17 , t = -s , [x, y] = [2, s]
-----------------------------
non-rational x:
dlist = [1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 35]
d = 1
d= 1 , t = 4*s , [x, y] = [s - 2, 2*s + 2]
d= 1 , t = 4*s , [x, y] = [s - 2, 3*s + 1]
d= 1 , t = 4*s , [x, y] = [s - 1, s + 2]
d= 1 , t = 4*s , [x, y] = [s - 1, 2*s + 1]
d= 1 , t = 4*s , [x, y] = [s, 2]
d= 1 , t = -4*s , [x, y] = [s, s - 1]
d= 1 , t = 4*s , [x, y] = [s, s + 1]
d= 1 , t = 1 , [x, y] = [s, 2*s]
d= 1 , t = -4*s , [x, y] = [s + 1, s - 2]
d= 1 , t = -4*s , [x, y] = [s + 1, 2*s - 1]
d= 1 , t = -4*s , [x, y] = [s + 2, 2*s - 2]
d= 1 , t = -4*s , [x, y] = [s + 2, 3*s - 1]
d= 1 , t = 4*s , [x, y] = [2*s - 2, 2*s + 3]
d= 1 , t = 4*s , [x, y] = [2*s - 2, 3*s + 2]
d= 1 , t = 4*s , [x, y] = [2*s - 1, s + 3]
d= 1 , t = 4*s , [x, y] = [2*s - 1, 2*s + 2]
d= 1 , t = 4*s , [x, y] = [2*s, 3]
d= 1 , t = -4*s , [x, y] = [2*s, s - 2]
d= 1 , t = 4*s , [x, y] = [2*s, s + 2]
d= 1 , t = 4 , [x, y] = [2*s, 3*s]
d= 1 , t = -4*s , [x, y] = [2*s + 1, s - 3]
d= 1 , t = -4*s , [x, y] = [2*s + 1, 2*s - 2]
d= 1 , t = -4*s , [x, y] = [2*s + 2, 2*s - 3]
d= 1 , t = -4*s , [x, y] = [2*s + 2, 3*s - 2]
d= 1 , t = 4*s , [x, y] = [3*s, 4]
d= 1 , t = -4*s , [x, y] = [3*s, s - 3]
d= 1 , t = 4*s , [x, y] = [3*s, s + 3]
d = 2
d = 3
d= 3 , t = 2*s , [x, y] = [1/2*s - 1/2, 1]
d= 3 , t = 5/2*s + 1/2 , [x, y] = [1/2*s - 1/2, 1]
d= 3 , t = 5/2*s - 1/2 , [x, y] = [1/2*s - 1/2, 1]
d= 3 , t = 5/2*s - 1/2 , [x, y] = [1/2*s - 1/2, 1/2*s + 1/2]
d= 3 , t = 2*s , [x, y] = [1/2*s - 1/2, 1/2*s + 1/2]
d= 3 , t = 5/2*s + 1/2 , [x, y] = [1/2*s - 1/2, 1/2*s + 1/2]
d= 3 , t = 1 , [x, y] = [1/2*s - 1/2, s - 1]
d= 3 , t = 5/2*s + 1/2 , [x, y] = [1/2*s + 1/2, 1]
d= 3 , t = 5/2*s - 1/2 , [x, y] = [1/2*s + 1/2, 1]
d= 3 , t = 2*s , [x, y] = [1/2*s + 1/2, 1]
d= 3 , t = -5/2*s + 1/2 , [x, y] = [1/2*s + 1/2, 1/2*s - 1/2]
d= 3 , t = -2*s , [x, y] = [1/2*s + 1/2, 1/2*s - 1/2]
d= 3 , t = -5/2*s - 1/2 , [x, y] = [1/2*s + 1/2, 1/2*s - 1/2]
d= 3 , t = 1 , [x, y] = [1/2*s + 1/2, s + 1]
d= 3 , t = 4 , [x, y] = [s - 1, 3/2*s - 3/2]
d= 3 , t = 4 , [x, y] = [s + 1, 3/2*s + 3/2]
d = 5
d = 6
d = 7
d = 11
d = 15
d = 19
d = 23
d = 31
d = 35
time: 6.366098642349243
In [0]: