CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download

Asymptotic analysis of weighted walks in A2. Supplement to AofA submission.

Project: AofA-A2Walks
Views: 19
Visibility: Unlisted (only visible to those who know the link)
Image: ubuntu2204
Kernel: SageMath 10.2

Companion code for Asymptotics of weighted reflectable walks in A2A_2 (extended abstract)

Torin Greenwood

Samuel Simon

This worksheet takes the Tandem stepset and computes the critical points and the asymptotics at each critical point.

Step 1: Expressing the walks as the diagonal of a rational generating function.

The following code block is from Steve Melczer's book, An Invitation to Analytic Combinatorics. Code available online: https://melczer.ca/files/TextbookCode/Chapter4/Example4-3-5-6-GeneratingWalkGroupsAndGFs.html

# Enter the short step sets defining quadrant models with finite group N = (0,1); SS = (0,-1); E = (1,0); W = (-1,0); NE = (1,1); NW = (-1,1); SE = (1,-1); SW = (-1,-1); # Define functions to plot a step set, generate the group, orbit sum, and diagonal expression for a walk var('x,y,t,X,Y,a,b') # Plot a step set S def plot_steps(S): pt = sum([arrow((0,0),s) for s in S]) pt.set_aspect_ratio(1) return pt # Generate the group of a walk (up to a fixed number of elements) def genGP(ST): # Get the characteristic polynomial of the model S = sum([X^i*Y^j for [i,j] in ST]) # Define the rational maps for the lattice path model Am1 = S.coefficient(Y,-1); A0 = S.coefficient(Y,0); A1 = S.coefficient(Y,1) Bm1 = S.coefficient(X,-1); B0 = S.coefficient(X,0); B1 = S.coefficient(X,1) def Ψ(SS): return [L.subs(X=SS[0],Y=SS[1]).simplify() for L in [(1/X)*Bm1/B1,Y]] def Φ(SS): return [L.subs(X=SS[0],Y=SS[1]).simplify() for L in [X,(1/Y)*Am1/A1]] # Keep applying the maps until the set stabilizes or gets larger than a fixed bound List = [ ([],[x,y]) ] N = -1 while (N != len(List)) and (len(List) < 10): N = len(List) for i in List: newI = true newP = true t2I = [k.simplify_full() for k in Ψ(i[1])] t2P = [k.simplify_full() for k in Φ(i[1])] for k in List: if k[1] == t2I: newI = false if k[1] == t2P: newP = false if not (newI or newP): break if newI: List = List + [(['Ψ'] + i[0],t2I)] if newP: List = List + [(['Φ'] + i[0],t2P)] if len(List) >= 10: break if len(List) >= 10: print("Warning: Group size is larger than test bound, and may be infinite") return List # Get orbit sum def OrbitSum(ST): K = 1-t*add([x^i*y^j for [i,j] in ST]) LST = genGP(ST) # Sum the Kernel Equation after it's acted upon by the group elements function('F')(Y) function('G')(X) function('Q')(X,Y) var('Kk') EQ = Kk*X*Y*Q(X,Y) == X*Y + F(Y) + G(X) orb_eq = add([EQ.substitute(X=k[0],Y=k[1])*(-1)^len(i) for [i,k] in LST]).simplify() # Return the right-hand side after dividing by the kernel orb_sum = (orb_eq.rhs()/(K*x*y)).factor() return orb_sum # Convert orbit sum into rational diagonal expression def RatDiag(ST): return (OrbitSum(ST).subs(x=1/x,y=1/y,t=x*y*t)/(1-x)/(1-y)).factor()
# We'll also use a weighted version: def WeightedRatDiag(ST): return (OrbitSum(ST).subs(x=a/x,y=b/y,t=x*y*t)/(1-x)/(1-y)).factor()

Computing the GF:

# Now, to compute the GF for the Tandem model: steps = [E,NW,SS] show(plot_steps(steps),figsize=2, axes=false) OrbitSum(steps) print(WeightedRatDiag(steps))
Image in a Jupyter notebook
(b^2*x - a*y^2)*(b*x^2 - a^2*y)*(a*b - x*y)/((b^2*t*x^2 + a^2*b*t*y + a*t*x*y^2 - a*b)*a^2*b^2*(x - 1)*x*(y - 1)*y)
G = (b^2*x - a*y^2)*(b*x^2 - a^2*y)*(a*b - x*y) H = ((b^2*t*x^2 + a^2*b*t*y + a*t*x*y^2 - a*b)*a^2*b^2*(x - 1)*x*(y - 1)*y)

Step 2: Finding Critical Points

We again borrow code from Steve Melczer's book to compute critical points and smooth asymptotics. The code is available online here: https://melczer.ca/files/TextbookCode/Chapter5/Example5-SmoothASM.html

# Set a parameter to help simplify some algebraic numbers maxima_calculus('algebraic: true;') # Procedure to get Hessian appearing in asymptotics # Input: H, member of the symbolic ring # r, direction vector (which can contain symbolic entries) # vars, vector of variables # CP, a dictionary mapping elements of vars # Output: The Hessian H defined in Lemma 5.5 of the textbook at the point w defined by CP def getHes(H,r,vars,CP): dd = len(vars) V = zero_vector(SR,dd) U = matrix(SR,dd) M = matrix(SR,dd-1) for j in range(dd): V[j] = r[j]/r[-1] for i in range(dd): U[i,j] = vars[i]*vars[j]*diff(H,vars[i],vars[j])/vars[-1]/diff(H,vars[-1]) for i in range(dd-1): for j in range(dd-1): M[i,j] = V[i]*V[j] + U[i,j] - V[j]*U[i,-1] - V[i]*U[j,-1] + V[i]*V[j]*U[-1,-1] if i == j: M[i,j] = M[i,j] + V[i] return M(CP) # Procedure to apply differential operator to f and set all variables to zero # Input: dop, element of a DifferentialWeylAlgebra over a polynomial ring # f, an element of the base polynomial ring of dop # Output: dop(f) evaluated when all variables are zero def eval_op(dop, f): if len(f.parent().gens()) == 1: return add([prod([factorial(k) for k in E[0][1]])*E[1]*f[E[0][1][0]] for E in dop]) else: return add([prod([factorial(k) for k in E[0][1]])*E[1]*f[(v for v in E[0][1])] for E in dop]) # Procedure to get critical points of rational function with denominator H, in direction r # Input: H, member of the symbolic ring # r, direction vector (which can contain symbolic entries) # vars, vector of variables # Output: Solutions (if found by solve) of the smooth critical point equations of H in the direction r def critpt(H,r,vars): d = len(vars) criteqs = [r[j]*vars[0]*diff(H,vars[0]) - r[0]*vars[j]*diff(H,vars[j]) for j in range(1,d)] + [H] # For reasons that remain mysterious to TG & SS, the [H] term needed to be moved to the end of the # line above to avoid missing some solutions. return solve(criteqs,vars,solution_dict=true) # Procedure to compute asymptotic contribution of a strictly minimal contributing point # Input: G, member of the symbolic ring # H, member of the symbolic ring # r, direction vector (which can contain symbolic entries) # vars, vector of variables # CP, a dictionary mapping elements of vars to coordinates of a strictly minimal contributing point # M, positive integer describing the number of terms in the asymptotic expansion to compute # g, parametrization of variable vars[-1] near CP, in terms of the remaining variables # Output: ex, pw, se such that ex*pw*(se+O(n^(M-1)) gives an asymptotic expansion of the r-diagonal of # G/H in the variables vars, to order M. # NOTE: Unlike the textbook, M here refers to the number of terms in the expansion # (not the order of the expansion, so M should be at least 1) def smoothContrib(G,H,r,vars,CP,M,g): # Preliminary definitions dd = len(vars) field = SR tvars = list(var('t%d'%i) for i in range(dd-1)) dvars = list(var('dt%d'%i) for i in range(dd-1)) # Define differential Weyl algebra and set variable names W = DifferentialWeylAlgebra(PolynomialRing(field,tvars)) WR = W.base_ring() T = PolynomialRing(field,tvars).gens() D = list(W.differentials()) # Compute Hessian matrix and differential operator Epsilon HES = getHes(H,r,vars,CP) HESinv = HES.inverse() v = matrix(W,[D[k] for k in range(dd-1)]) Epsilon = -(v * HESinv.change_ring(W) * v.transpose())[0,0] # Define quantities for calculating asymptotics tsubs = [v == v.subs(CP)*exp(I*t) for [v,t] in zip(vars,tvars)] tsubs += [vars[-1]==g.subs(tsubs)] P = (-G/g/diff(H,vars[-1])).subs(tsubs) psi = log(g.subs(tsubs)/g.subs(CP)) + I * add([r[k]*tvars[k] for k in range(dd-1)])/r[-1] v = matrix(SR,[tvars[k] for k in range(dd-1)]) psiTilde = psi - (v * HES * v.transpose())[0,0]/2 # Recursive function to convert symbolic expression to polynomial in t variables def to_poly(p,k): if k == 0: return add([a*T[k]^int(b) for [a,b] in p.coefficients(tvars[k])]) return add([to_poly(a,k-1)*T[k]^int(b) for [a,b] in p.coefficients(tvars[k])]) # Compute Taylor expansions to sufficient orders N = 2*M PsiSeries = to_poly(taylor(psiTilde,*((v,0) for v in tvars), N),dd-2) PSeries = to_poly(taylor(P,*((v,0) for v in tvars), N),dd-2) # Precompute products used for asymptotics EE = [Epsilon^k for k in range(3*M-2)] PP = [PSeries] + [0 for k in range(2*M-2)] for k in range(1,2*M-1): PP[k] = PP[k-1]*PsiSeries # Function to compute constants appearing in asymptotic expansion def Clj(l,j): return (-1)^j*SR(eval_op(EE[l+j],PP[l]))/(2^(l+j)*factorial(l)*factorial(l+j)) # Compute different parts of asymptotic expansion var('n') ex = (prod([1/v^k for (v,k) in zip(vars,r)]).subs(CP).canonicalize_radical())^n pw = (r[-1]*n)^((1-dd)/2) se = sqrt((2*pi)^(1-dd)/HES.det()) * add([add([Clj(l,j) for l in range(2*j+1)])/(r[-1]*n)^j for j in range(M)]) return ex, pw, se.canonicalize_radical() # Procedure to aid in printing an asymptotic expansion # Procedure to get critical points of rational function with denominator H, in direction r # Input: ex,pw,se as returned by smoothContrib(G,H,r,vars,CP,M,g) # Output: None (function pretty prints the asymptotic expression defined by ex,pw,se, and M) def disp_asm(ex,pw,se,M): show(ex*pw,LatexExpr("\\Bigg("), se, LatexExpr("+ O\\Bigg("), n^(-M), LatexExpr("\\Bigg)\\Bigg)"))

Computing the critical points:

# Here, we consider each stratum individually and compute critical points in the direction of the main diagonal, [1, 1, 1] # First, we pull aside the main factor of the denominator: Denom = (b^2*t*x^2 + a^2*b*t*y + a*t*x*y^2 - a*b) r = [1,1,1] vars = [x,y,t] print("Define V_0 to be the vanishing set of the main factor of H, V_1 to be the vanishing set of 1 - x, and V_2 to be the vanishing set of 1 - y.") print('-----------------------------------------------------------------------') print("Critical points for S_0: ") show(critpt(Denom,r,vars)) print('-----------------------------------------------------------------------') print("Critical points for S_{0, 1}:") show(critpt(Denom.subs(x=1),[1,1],[y,t])) print('-----------------------------------------------------------------------') print("Critical points for S_{0, 2}:") show(critpt(Denom.subs(y=1),[1,1],[x,t])) print('-----------------------------------------------------------------------') print("Critical points for S_{0, 1, 2}:") show(critpt(Denom.subs(x=1,y=1),[1],[t]))
Define V_0 to be the vanishing set of the main factor of H, V_1 to be the vanishing set of 1 - x, and V_2 to be the vanishing set of 1 - y. ----------------------------------------------------------------------- Critical points for S_0:

[{x:a,y:b,t:13ab},{x:12a(i31),y:12b(i3+1),t:i316ab},{x:12a(i3+1),y:12b(i31),t:i316ab}]\displaystyle \left[\left\{x : a, y : b, t : \frac{1}{3 \, a b}\right\}, \left\{x : \frac{1}{2} \, a {\left(i \, \sqrt{3} - 1\right)}, y : -\frac{1}{2} \, b {\left(i \, \sqrt{3} + 1\right)}, t : \frac{i \, \sqrt{3} - 1}{6 \, a b}\right\}, \left\{x : -\frac{1}{2} \, a {\left(i \, \sqrt{3} + 1\right)}, y : \frac{1}{2} \, b {\left(i \, \sqrt{3} - 1\right)}, t : \frac{-i \, \sqrt{3} - 1}{6 \, a b}\right\}\right]

----------------------------------------------------------------------- Critical points for S_{0, 1}:

[{y:ba,t:a52+2a(a34)b},{y:ba,t:a522a(a34)b}]\displaystyle \left[\left\{y : -\frac{b}{\sqrt{a}}, t : -\frac{a^{\frac{5}{2}} + 2 \, a}{{\left(a^{3} - 4\right)} b}\right\}, \left\{y : \frac{b}{\sqrt{a}}, t : \frac{a^{\frac{5}{2}} - 2 \, a}{{\left(a^{3} - 4\right)} b}\right\}\right]

----------------------------------------------------------------------- Critical points for S_{0, 2}:

[{x:ab,t:2b3b324ab3a},{x:ab,t:2b3+b324ab3a}]\displaystyle \left[\left\{x : \frac{a}{\sqrt{b}}, t : \frac{2 \, b^{3} - b^{\frac{3}{2}}}{4 \, a b^{3} - a}\right\}, \left\{x : -\frac{a}{\sqrt{b}}, t : \frac{2 \, b^{3} + b^{\frac{3}{2}}}{4 \, a b^{3} - a}\right\}\right]

----------------------------------------------------------------------- Critical points for S_{0, 1, 2}:

[{t:aba2b+b2+a}]\displaystyle \left[\left\{t : \frac{a b}{a^{2} b + b^{2} + a}\right\}\right]

Step 3: Contributions to Asymptotics

Now we compute the asymptotics for each regime. Each cell computes the asymptotics using residues and Hörmanders theorem (implemented via Steve's code from above).

Free: 1<(b)<a<b21 < \sqrt(b) < a < b^2

# Here, after taking two residues, we are left with the following: Gxy = G.subs(x=1,y=1) Hxy = (H/((1-x)*(1-y))).subs(x=1, y=1).factor() print("The GF after two residues:") show(Gxy/Hxy) print("Asymptotics in the free case:") # Expanding this as a geometric series in t gives an nth coefficient as follows: ex = (1/b + b/a + a)^n # from rearranging the t factor in Hxy and removing a factor of a*b pw = (a^2 - b)*(a*b-1)*(b^2-a)/(a^3*b^3) se = 1 disp_asm(ex, pw, se.factor(), 1)
The GF after two residues:

(a2b)(ab1)(b2a)(a2bt+b2tab+at)a2b2\displaystyle -\frac{{\left(a^{2} - b\right)} {\left(a b - 1\right)} {\left(b^{2} - a\right)}}{{\left(a^{2} b t + b^{2} t - a b + a t\right)} a^{2} b^{2}}

Asymptotics in the free case:

(a2b)(ab1)(b2a)(a+ba+1b)na3b3(1+O(1n))\displaystyle \frac{{\left(a^{2} - b\right)} {\left(a b - 1\right)} {\left(b^{2} - a\right)} {\left(a + \frac{b}{a} + \frac{1}{b}\right)}^{n}}{a^{3} b^{3}} \Bigg( 1 + O\Bigg( \frac{1}{n} \Bigg)\Bigg)

Axial: a=b2>1a = b^2 > 1

M=1 # On this boundary the factor (b^2*x - a*y^2) becomes a(x-y^2). Since the critical point is at x=1, we take a residue in x at 1, so this factor becomes a(1-y^2). Now we cancel with a factor of (1-y) in the denominator. Gxf1 = (a*((b*x^2 - a^2*y)*(a*b - x*y))*(y+1)).subs(x=1,b=sqrt(a)) Hxf1 = (H/((1-y)*(1-x))).subs(x=1,b=sqrt(a)) #I took out the factor of (1-y) and cancelled it in the numerator tsubs = ((a^(5/2) - 2*a)/((a^3 - 4)*b)).subs(b=sqrt(a)) gx = solve(Hxf1.subs(x=1,b=sqrt(a)),varsx[-1])[0].rhs() CP6 = {y: 1, t: tsubs} ex,pw,se = smoothContrib(Gxf1,Hxf1,rx,varsx,CP6,M,gx) print("Asymptotics for the axial case, when a = b^2 > 1:") disp_asm(ex,pw,se.factor(),M)
The axial case, when a = b^2 > 1:

(a2+2aa)nn((a32a32+1)a32+2πa3+O(1n))\displaystyle \frac{\left(\frac{a^{2} + 2 \, \sqrt{a}}{a}\right)^{n}}{\sqrt{n}} \Bigg( \frac{{\left(a^{3} - 2 \, a^{\frac{3}{2}} + 1\right)} \sqrt{a^{\frac{3}{2}} + 2}}{\sqrt{\pi} a^{3}} + O\Bigg( \frac{1}{n} \Bigg)\Bigg)

Axial: b=a2>1b = a^2 > 1

M=1 # On this boundary the factor (b*x^2 - a^2*y) becomes b(x^2-y). Since the critical point is at y=1, we take a residue in y at 1, so this factor becomes b(x^2-1). Now we cancel with a factor of (1-y) in the denominator. Gy = -((b^2*x - a*y^2)*(x+1)*b*(a*b - x*y)).subs(y=1,a=sqrt(b)) Hy = ((H/((1-y)*(1-x)))).subs(y=1,a=sqrt(b)) tsubs = ((2*b^3 - b^(3/2))/(4*a*b^3 - a)).subs(a=sqrt(b)) gy = solve((Hy).subs(y=1,a=sqrt(b)),varsx[-1])[0].rhs() CP5 = {x: 1, y: 1, t: tsubs} ex,pw,se = smoothContrib(Gy,Hy,ry,varsy,CP5,M,gy) print("Asymptotics for the axial case, when b = a^2 > 1:") disp_asm(ex,pw,se.factor(),M)
Asymptotics for the axial case, when b = a^2 > 1:

(2b32+1b)nn((b32b32+1)2b2+bπb4+O(1n))\displaystyle \frac{\left(\frac{2 \, b^{\frac{3}{2}} + 1}{b}\right)^{n}}{\sqrt{n}} \Bigg( \frac{{\left(b^{3} - 2 \, b^{\frac{3}{2}} + 1\right)} \sqrt{2 \, b^{2} + \sqrt{b}}}{\sqrt{\pi} b^{4}} + O\Bigg( \frac{1}{n} \Bigg)\Bigg)

Directed: a>1,b<aa > 1, b < \sqrt{a}

M=2 # Since x=1 in the relevant critical point, we can use a residue, which amounts to evaluating the function at x=1 and removing the factor of (1-x) from the denominator Gx=G.subs(x=1) Hx = (H/(1-x)).subs(x=1) varsx = [y, t] rx = [1, 1] gx = solve((Hx).subs(x=1),varsx[-1])[0].rhs() CP4 = {y: b/sqrt(a), t: (a^(5/2) - 2*a)/((a^3 - 4)*b)} ex,pw,se = smoothContrib(Gx,Hx,rx,varsx,CP4,M,gx) print("Asymptotics for the directed case, when a > 1 and b < sqrt(a):") disp_asm(ex,pw,se.factor(),M)
Asymptotics for the directed case, when a > 1 and b < sqrt(a):

(a2+2aa)nn((a92b2+2a5b+a1123a32b26a2b3a52+2b2+4ab+2a)a32+22π(b2a)2a2n+O(1n2))\displaystyle \frac{\left(\frac{a^{2} + 2 \, \sqrt{a}}{a}\right)^{n}}{\sqrt{n}} \Bigg( \frac{{\left(a^{\frac{9}{2}} b^{2} + 2 \, a^{5} b + a^{\frac{11}{2}} - 3 \, a^{\frac{3}{2}} b^{2} - 6 \, a^{2} b - 3 \, a^{\frac{5}{2}} + 2 \, b^{2} + 4 \, \sqrt{a} b + 2 \, a\right)} \sqrt{a^{\frac{3}{2}} + 2}}{2 \, \sqrt{\pi} {\left(b^{2} - a\right)}^{2} a^{2} n} + O\Bigg( \frac{1}{n^{2}} \Bigg)\Bigg)

Directed: b>1,a<bb > 1, a < \sqrt{b}

M=2 # Since y=1 in the relevant critical point we can use a residue, which amounts to evaluating the function at y=1 and removing the factor of (1-y) from the denominator Gy = G.subs(y=1) Hy = (H/(1-y)).subs(y=1) varsy=[x,t] ry = [1,1] gy = solve((Denom).subs(y=1),varsx[-1])[0].rhs() CP5 = {x: a/sqrt(b), y: 1, t: (2*b^3 - b^(3/2))/(4*a*b^3 - a)} ex,pw,se = smoothContrib(Gy,Hy,ry,varsy,CP5,M,gy) print("Asymptotics for the directed case, when b > 1 and a < sqrt(b):") disp_asm(ex,pw,se.factor(),M)
Asymptotics for the directed case, when b > 1 and a < sqrt(b):

(2b32+1b)nn((2a2b5+4ab112+2b63a2b726ab43b92+a2b+2ab+b32)2b2+b2π(a2b)2b5n+O(1n2))\displaystyle \frac{\left(\frac{2 \, b^{\frac{3}{2}} + 1}{b}\right)^{n}}{\sqrt{n}} \Bigg( \frac{{\left(2 \, a^{2} b^{5} + 4 \, a b^{\frac{11}{2}} + 2 \, b^{6} - 3 \, a^{2} b^{\frac{7}{2}} - 6 \, a b^{4} - 3 \, b^{\frac{9}{2}} + a^{2} \sqrt{b} + 2 \, a b + b^{\frac{3}{2}}\right)} \sqrt{2 \, b^{2} + \sqrt{b}}}{2 \, \sqrt{\pi} {\left(a^{2} - b\right)}^{2} b^{5} n} + O\Bigg( \frac{1}{n^{2}} \Bigg)\Bigg)

Balanced: a=1a = 1 and b=1b = 1

M=2 Gy = (G/(1-x)).subs(a=1,b=1,y=1) #plug in y=1 using residue, then cancel 1-x term Hy = (H/((1-x)*(1-y))).subs(y=1,b=1,a=1) gy = solve((Denom).subs(y=1,b=1,a=1),varsx[-1])[0].rhs() CP5 = {x: 1, t: 1/3} ex,pw,se = smoothContrib(Gy,Hy,ry,varsy,CP5,M,gy) print("Asymptotics in the balanced case:") disp_asm(ex,pw,se.factor(),M)
Asymptotics in the balanced case:

3nn(332πn+O(1n2))\displaystyle \frac{3^{n}}{\sqrt{n}} \Bigg( \frac{3 \, \sqrt{3}}{2 \, \sqrt{\pi} n} + O\Bigg( \frac{1}{n^{2}} \Bigg)\Bigg)

Reluctant: a<1a < 1 and b<1b < 1

M=4 CP1 = {x: a, y:b, t:1/3/(a*b)} CP2 = {x: -1/2*a*(I*sqrt(3) + 1), y:1/2*b*(I*sqrt(3) - 1), t:1/6*(I*sqrt(3) - 1)/(a*b)} CP3 = {x: 1/2*a*(I*sqrt(3) - 1), y:-1/2*b*(I*sqrt(3) + 1), t:1/6*(-I*sqrt(3) - 1)/(a*b)} g = solve((Denom),vars[-1])[0].rhs()
ex,pw,se = smoothContrib(G,H,r,vars,CP1,4,g) print("The asymptotics from the first critical point are:") disp_asm(ex,pw,se.factor(),M) #Lengthy runtime (~20 minutes)
The asymptotics from the first critical point are:

3nn(273(ab1)π(a1)3(b1)3n3+O(1n4))\displaystyle \frac{3^{n}}{n} \Bigg( -\frac{27 \, \sqrt{3} {\left(a b - 1\right)}}{\pi {\left(a - 1\right)}^{3} {\left(b - 1\right)}^{3} n^{3}} + O\Bigg( \frac{1}{n^{4}} \Bigg)\Bigg)

3^n 1/n -27*sqrt(3)*(a*b - 1)/(pi*(a - 1)^3*(b - 1)^3*n^3)
# Since there are three critical points on this strata, we calculate the asymptotics for each one # Due to long runtime, these blocks have been commented out. # M=4 # ex,pw,se = smoothContrib(G,H,r,vars,CP2,M,g) # print("The asymptotics from the second critical point are:") # disp_asm(ex,pw,se.factor(),M)
# M=4 # ex,pw,se = smoothContrib(G,H,r,vars,CP3,M,g) # print("The asymptotics from the third critical point are:") # disp_asm(ex,pw,se.factor(),M)