CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

| Download
Views: 29
Visibility: Unlisted (only visible to those who know the link)
Image: ubuntu2204
Kernel: SageMath 10.2

Theorem 1:

Let H(x,y)H(x, y) be an analytic function near the origin whose power series expansion at (0,0)(0, 0) has non-negative coefficients. Define V={(x,y):H(x,y)=0}\mathcal{V} = \{(x, y) : H(x, y) = 0\}. Assume that there is a single smooth strictly minimal critical point of V\mathcal{V} at (p,q)(p, q) within the domain of analyticity of HH where pp and qq are real and positive. Let λ=r+O(1)s\lambda = \frac{r + O(1)}{s} as r,sr,s \to \infty with rr and ss integers. Define the following quantities: χ1=Hy(p,q)Hx(p,q)=pλq,χ2=12Hx(χ12Hxx2χ1Hxy+Hyy)(x,y)=(p,q),M=2χ2pχ12p21λq2.\begin{align*} \chi_1 &= \frac{H_y(p,q)}{H_x(p,q)} = \frac{p}{\lambda q}, \\ \chi_2 &= \left.\frac{1}{2H_x}\left(\chi_1^2H_{xx} - 2\chi_1H_{xy} + H_{yy}\right)\right|_{(x,y)=(p,q)}, \\ M &= -\frac{2\chi_2}{p} - \frac{\chi_1^2}{p^2} - \frac{1}{\lambda q^2}. \end{align*} Assume that Hx(p,q)H_x(p,q) and MM are nonzero. Fix αR\alpha \in \mathbb{R} where α∉Z0\alpha \not \in \mathbb{Z}_{\leq 0} and βZ0\beta \in \mathbb{Z}_{\geq 0}. Then, the following expression holds as r,sr,s \to \infty: [xrys]H(x,y)αlogβ(H(x,y))(1)β(pHx(p,q))αrα1Γ(α)2πq2Mrprqslogβr[1+j1Ejlogjr],\begin{align*} [x^ry^s]H(x,y)^{-\alpha}\log^\beta(H(x,y)) \sim (-1)^\beta\frac{(-pH_x(p,q))^{-\alpha}r^{\alpha-1}}{\Gamma(\alpha)\sqrt{-2\pi q^2Mr}}p^{-r}q^{-s}\log^\beta r\left[1+\sum_{j\geq1}\frac{\mathcal{E}_j}{\log^jr}\right], \end{align*} where Ej=k=0j(βj)(jk)logk(1pHx(p,q))Γ(α)djkdtjk1Γ(t)t=α\mathcal{E}_j = \sum_{k=0}^j\binom{\beta}{j}\binom{j}{k}\log^k\left(\frac{-1}{pH_x(p,q)}\right)\Gamma(\alpha)\left.\frac{d^{j-k}}{dt^{j-k}}\frac{1}{\Gamma(t)}\right|_{t=\alpha}.

In the case that α=0\alpha = 0 and βZ>0\beta \in \mathbb{Z}_{>0}, the asymptotic formula of theorem 1 becomes [xrys]logβH(x,y)βr3/2prqs2πq2Mlogβ1r.[x^ry^s]\log^\beta H(x,y) \sim -\frac{\beta r^{-3/2}p^{-r}q^{-s}}{\sqrt{-2\pi q^2M}}\log^{\beta-1}r. In particular, for β=1\beta = 1 we have [xrys]logH(x,y)r3/2prqs2πq2M.[x^ry^s]\log H(x,y) \sim -\frac{r^{-3/2}p^{-r}q^{-s}}{\sqrt{-2\pi q^2M}}.

var('x,y,z,u,v,t,ell,m,n,p,r'); # Declare variables

Example 1: (Cyclical Interlaced Permutations)

C(x,y)=log(11xy)=m+n11n+m(n+mn)xnymC(x,y) = \log\left(\frac{1}{1-x-y}\right) = \sum_{m+n \geq 1} \frac{1}{n+m}\binom{n+m}{n}x^ny^m
C = log(1/(1-x-y)); HC = 1-x-y; HCx = -1; HCy = -1 HCxx = 0; HCxy = 0; HCyy = 0;

Identify smooth minimal critical point in the direction (1,)(1,\ell):

# Check for non smooth critical points solve([HC==0, HCx==0, HCy==0],x,y)
[]
# Check for minimal smooth critical points solve([HC==0, ell*x*HCx-y*HCy==0], x, y)
[[x == (1/(ell + 1)), y == ell/(ell + 1)]]
# The minimal smooth critical point is (P_C,Q_C), where P_C = 1/(1+ell); Q_C = ell/(1+ell);

Compute asymptotics in direction (1,)(1,\ell):

# From Theorem 2, we have chi1 = 1; chi2 = 0; M = -(1+ell)^3/ell;
# The asymptotics estimates of [x^n y^ln]C(x,y) are then given by EstC = 1/sqrt(2*pi*ell*(ell+1))*n^(-3/2)*ell^(-n*ell)*(1+ell)^((1+ell)*n);

Test results:

In the direction (1,4)(1,4), the coefficients of C(x,y)C(x,y) are given by [xny4n]C(x,y)=15n(5nn)[x^ny^{4n}]C(x,y) = \frac{1}{5n}\binom{5n}{n}

# Actual value ActC = 1/(5*n)*binomial(5*n,n); N(ActC.subs(n=500))
1.61024605591596e538
# Asymptotic estimate of Theorem 2 N(EstC.subs(ell=4,n=500))
1.61052787359801e538
# Comparing values N(ActC.subs(n=500)/EstC.subs(ell=4,n=500))
0.999825015333995

Example 2: (Necklaces)

N(x,y)=k1φ(k)klog(1xk1xkykx2k),N(x,y) = \sum_{k\geq 1}\frac{\varphi(k)}{k}\log\left(\frac{1-x^k}{1-x^k-y^kx^{2k}}\right),

where φ\varphi is Eulers totient function.

Checking for non-smooth critical points:

For each k1k\geq1, let Hk=1xkykx2kH_k=1-x^k-y^kx^{2k}. Then (Hk)x=kxk12kykx2k1(H_k)_x = -kx^{k-1}-2ky^kx^{2k-1}, and (Hk)y=kyk1x2k(H_k)_y = -ky^{k-1}x^{2k}. We can write Hk=1+xk(Hk)xyk(Hk)y,H_k = 1+\frac{x}{k}(H_k)_x-\frac{y}{k}(H_k)_y, which implies the system [Hk=0,(Hk)x=0,(Hk)y=0][H_k=0, (H_k)_x=0, (H_k)_y=0] has no solution. So there are no non-smooth critical points.

Asymptotics are determined by the first term:

We consider the direction (,1)(\ell,1), with >2\ell>2. For each k1k\geq1, the kthk^{\text{th}} term of NN contributes smooth critical points given by solutions to the system [Hk=0,x(Hk)xy(Hk)y=0].[H_k=0,x(H_k)_x-\ell y(H_k)_y=0]. It is easy to show that solutions to this system satisfy xk=21,yk=1(2)2.x^k=\frac{\ell-2}{\ell-1}, y^k=\frac{\ell-1}{(\ell-2)^2}. For any such solution, the exponential growth is xy1=[(xk)(yk)1]1/k=[(1)1(2)2]1/k,x^{-\ell}y^{-1} = \left[(x^k)^{-\ell}(y^k)^{-1}\right]^{1/k} = \left[\frac{(\ell-1)^{\ell-1}}{(\ell-2)^{\ell-2}}\right]^{1/k}, which is maximized by k=1k=1. So the minimal smooth critical point is (p,q)=(21,1(2)2))(p,q) = \left(\frac{\ell-2}{\ell-1},\frac{\ell-1}{(\ell-2)^2)}\right). That is, the asymptotics are determined by the first term of NN.

To further justify that we only need to consider the first term of N(x,y)N(x,y), note that [xrkysk]Nk(x,y)=φ(k)k[xrys]N1(x,y),[x^{rk}y^{sk}]N_k(x,y) = \frac{\varphi(k)}{k}[x^ry^s]N_1(x,y), where Nk(x,y)=φ(k)klog(1xk1xkykx2k).N_k(x,y) = \frac{\varphi(k)}{k}\log\left(\frac{1-x^k}{1-x^k-y^kx^{2k}}\right).

# Computing the asymptotics in the direction (ell,1) using the first term of $N$ N1 = log((1-x)/(1-x-y*x^2)); H = 1-x-y*x^2; Hx = diff(H,x); Hy = diff(H,y); Hxx = diff(Hx,x); Hxy = diff(Hx,y); Hyy = diff(Hy,y); # Smooth critical point P = (ell-2)/(ell-1); Q = (ell-1)/(ell-2)^2; # For the values of Theorem 2, we have Chi_1 = (ell-2)^3/(ell*(ell-1)^2); Chi_2 = -(2*ell-1)*(ell-2)^5/(ell^3*(ell-1)^3); M = -(ell-2)^5/(ell^3*(ell-1)); # Using these values, the estimate of Theorem 2 gives EstN1 = (ell*n)^(-3/2)*P^(-ell*n)*Q^(-n)/sqrt(-2*pi*Q^2*M)
# As a test, we look in the direction (3,1) at the coefficient of x^225*y^75 N = sum(euler_phi(k)/k*log((1-x^k)/(1-x^k-y^k*x^(2*k))) for k in range(1,75)) # Only the first 75 terms of N(x,y) can contribute to [x^225y^75]N(x,y), so we omit the rest. T = N.taylor((x,0),(y,0),300)
# For this coefficient, we obtain: ActVal = T.list()[225].list()[75] EstVal = EstN1.subs(ell=3,n=75) print("The true value: ", float(ActVal)) print("The approximation: ", float(EstVal)) print("The ratio: ", float(EstVal/ActVal))
The true value: 6.18840464911392e+41 The approximation: 6.1987271801224774e+41 The ratio: 1.0016680439618693

Example 3: (Logarithm of Narayana Numbers)

The Narayana number an,sa_{n, s} counts Dyck paths of length nn with ss peaks, and an,s=[znts]N(z,t)a_{n, s} = [z^nt^s]N(z, t) with N defined by

N(z,t)=1+ztz(1+ztz)24z2z.N(z, t) = \frac{1 + z - tz - \sqrt{(1 + z - tz)^2 - 4z}}{2z}.

Here, we look for coefficients of logrN(z,t)\log^r N(z, t).

N = (1 + z - t*z - sqrt((1 + z - t*z)^2 - 4*z))/(2*z) # We check that the singularity at z = 0 is always removable: N.limit(z=0)
1
# Therefore, the singularities are defined by the zero set of the function underneath the square root. H = (1 + z - t*z)^2 - 4*z # We initialize derivatives: Hz = H.diff(z) Ht = H.diff(t) Hzz = Hz.diff(z) Htt = Ht.diff(t) Hzt = Hz.diff(t)
# First, we check when N(z, t) = 0, which could create singularities within the logarithm: solve((1 + z - t*z)^2 == ((1 + z - t*z)^2 - 4*z), [z, t])
[[z == 0, t == r1]]
# This solution can be thrown out because we already saw the limit as z tends to zero is 1. # Now, we solve for critical points in the [z, t] = [ell, 1] direction: solve([H, 1*z*Hz - ell*t*Ht], [z, t])
[[z == (ell^2 - 2*ell + 1)/ell^2, t == (1/(ell^2 - 2*ell + 1))], [z == 1, t == 0]]
# By definition, critical points have non-zero coordinates, which leaves us with the single critical point p = ((ell^2 - 2*ell + 1)/ell^2).factor() q = (1/(ell^2 - 2*ell + 1)).factor() print('p = ', p) print('q = ', q)
p = (ell - 1)^2/ell^2 q = (ell - 1)^(-2)
# Following the series expansion in Example 4 of our abstract, we have the following approximation: Approx = r/(2*pi)*(ln(ell/(ell-1)))^(r-1)*1/n^2*(ell-1)^(-2*n*(ell-1)-1)*ell^(2*ell*n-1) # We'll check for r = 3, ell = 2, and the coefficient z^80 t^40. TestF = ln(N)^3 # print(TestF) TestSeries = TestF.taylor([z, t], 0, 121) trueCoeff = TestSeries.coefficient(z^(80)).coefficient(t^(40)) approxCoeff = Approx.subs({r:3, ell:2, n:40}) print("The true value: ", float(trueCoeff)) print("The approximation: ", float(approxCoeff)) print("The ratio: ", float(approxCoeff/trueCoeff))
The true value: 9.594835943046605e+43 The approximation: 1.0477113202334314e+44 The ratio: 1.0919533449581384
# We also check for r = 1, ell = 3, and the coefficient z^90 t^30. TestF = ln(N) # print(TestF) TestSeries = TestF.taylor([z, t], 0, 121) trueCoeff = TestSeries.coefficient(z^(90)).coefficient(t^(30)) approxCoeff = Approx.subs({r:1, ell:3, n:30}) print("The true value: ", float(trueCoeff)) print("The approximation: ", float(approxCoeff)) print("The ratio: ", float(approxCoeff/trueCoeff))
The true value: 1.678177782844727e+45 The approximation: 1.6890898091302997e+45 The ratio: 1.0065023064880978

Example 4: (An Artificial Example)

F(x,y)=11xylog(11xy)F(x,y) = \frac{1}{\sqrt{1-x-y}}\log\left(\frac{1}{1-x-y}\right)
F = (1-x-y)^(-1/2)*log(1/(1-x-y)); H = 1-x-y; Hx = -1; Hy = -1; Hxx = 0; Hxy = 0; Hyy = 0;

Identify smooth critical point in direction (1,)(1,\ell)

From example 1, the smooth minimal point in the direction (1,)(1,\ell) is (PA,QA)=(11+,1+)(P_A,Q_A) = (\frac{1}{1+\ell},\frac{\ell}{1+\ell}). So we again have

chi1 = 1; chi2 = 0; M = -(1+ell)^3/ell;

Compute asymptotics in the direction (1,)(1,\ell)

# The enumeration formula of Theorem 2, taken up to j=1, gives Est = (1/(n*pi*sqrt(2*ell)))*((1+ell)^((1+ell)*n)/(ell^(ell*n)))*(log(n)+euler_gamma+2*log(2)+log(1+ell))

Test results:

T_F = F.taylor((x,0),(y,0),100)
# With ell=1 N(Est.subs(n=50,ell=1))/N((T_F.list()[50]).list()[50])
1.00375635630651
# With ell=2 N(Est.subs(n=33,ell=2))/N((T_F.list()[33]).list()[66])
1.00421688271818
# With ell=4 N(Est.subs(n=20,ell=4))/N((T_F.list()[20]).list()[80])
1.00563985529602

Example 5: (Cyclic Partitions of an nn-set) [Gao and Richmond 1992]

F(z,x)=log11x(ez1)F(z,x) = \log\frac{1}{1-x(e^z-1)}

From Gao and Richmond's "Central and local limit theorems applied to asymptotic enumeration IV: multivariate generating functions"

https://www.sciencedirect.com/science/article/pii/037704279290247U

[znxk]F(z,x)=an,k/n![z^nx^k]F(z, x) = a_{n, k}/n!, with an,ka_{n, k} equal to the number of cyclic partitions of a set of size n with k blocks. In other words, the blocks of the partition are arranged in a cyclical order.

# When searching for critical points in the direction [z, x] = [1-p, p], we first verify there are no non-smooth points: H = 1 - x*(exp(z) - 1) Hx = H.diff(x) Hz = H.diff(z) print(solve([H, Hx, Hz], [x, z])) # (This check is trivial by hand.)
[ ]
# Then, have the following smooth critical point equations: print(H, "= 0") print((1-p)*x*Hx, " = ", p*z*Hz)
-x*(e^z - 1) + 1 = 0 (p - 1)*x*(e^z - 1) = -p*x*z*e^z

We can rewrite the second equation as follows:

1ppe1pp=(z1pp)e(z1pp)-\frac{1-p}{p} e^{-\frac{1-p}{p}} = \left(z - \frac{1-p}{p}\right)e^{\left(z - \frac{1-p}{p}\right)}

Then, by definition of the Lambert W function Wk(x)W_k(x),

z=1pp+Wk(p1pep1p)z = \frac{1-p}{p} + W_k\left(\frac{p-1}{p} e^{\frac{p-1}{p}}\right)

The Lambert W function is real exactly when k = -1 or 0. Additionally, we trivially have

1pp+W1(p1pep1p)=0\frac{1-p}{p} + W_{-1}\left(\frac{p-1}{p}e^{\frac{p-1}{p}}\right) = 0

and can verify by sight that z = 0 is a solution for all values of p. The solution of interest is thus when k = 0, which yields the positive z critical point coordinate

v=1pp+W0(p1pep1p)v = \frac{1-p}{p} + W_{0}\left(\frac{p-1}{p}e^{\frac{p-1}{p}}\right)

from which we also have the positive x critical point coordinate

w=1ev1w = \frac{1}{e^v - 1}

The form of the GF makes it clear this is a positive minimal critical point, and hence it contributes to the asymptotics.

# We check the accuracy of this estimate for a specific direction. For the combinatorially relevant range, p < 1/2. We choose p = 1/8. Then, v = N(((1-p)/p + lambert_w((p-1)/p*exp((p-1)/p))).subs(p=1/8)) w = N(1/(exp(v) - 1)) print("The critical point is approximately (", v, ", ", w, ")")
The critical point is approximately ( 6.99357568672816 , 0.000918602094210073 )
# Now, substituting into the theorem yields: Hzz = Hz.diff(z) Hzx = Hz.diff(x) Hxx = Hx.diff(x) lam = ((1-p)/p).subs(p=1/8) chi1 = (Hx/Hz).subs(z=v, x=w) chi2 = (1/(2*Hz)*(chi1^2*Hzz - 2*chi1*Hzx + Hxx)).subs(p=1/8, z=v, x=w) M = (-2*chi2/v - chi1^2/v^2 - 1/(lam*w^2)) var('s') Approx = factorial(lam*s)*((lam*s)^(-3/2)*v^(-(lam*s))*w^(-s))/sqrt(-2*pi*w^2*M)
# This approximation for s = 10, corresponding to a_{70, 10} (since the ratio lambda = (1-p)/p = 7): approx70 = N(Approx.subs(s=10)) # The exact value: F = log(1/(1 - x*(exp(z)-1))) Fseries = F.taylor([x, z], 0, 81) true70 = N(factorial(70)*Fseries.coefficient(z^70).coefficient(x^10)) print("The true value: ", true70) print("The approximation: ", approx70) print("The ratio: ", approx70/true70)
The true value: 9.93741615566349e68 The approximation: 9.95271893468655e68 The ratio: 1.00153991528415
# This approximation for s = 50, corresponding to a_{105, 15}: approx70 = N(Approx.subs(s=15)) # The exact value: F = log(1/(1 - x*(exp(z)-1))) Fseries = F.taylor([x, z], 0, 121) true70 = N(factorial(105)*Fseries.coefficient(z^105).coefficient(x^15)) print("The true value: ", true70) print("The approximation: ", approx70) print("The ratio: ", approx70/true70)
The true value: 2.03622855313551e122 The approximation: 2.03832272703266e122 The ratio: 1.00102845719059