Path: blob/master/docs/source/tutorial/Introduction/PortfolioAllocation.rst
728 views
:github_url: https://github.com/AI4Finance-LLC/FinRL-Library Portfolio Allocation =================================== **Our paper**: `FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance`_. .. _FinRL\: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance: https://arxiv.org/abs/2011.09607 Presented at NeurIPS 2020: Deep RL Workshop. The Jupyter notebook codes are available on our Github_ and `Google Colab`_. .. _Github: https://github.com/AI4Finance-LLC/FinRL-Library .. _Google Colab: https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb .. tip:: - FinRL `Single Stock Trading <https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_single_stock_trading.ipynb>`_ at Google Colab. - FinRL `Multiple Stocks Trading <https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb>`_ at Google Colab: Check our previous tutorials: `Single Stock Trading <https://finrl.readthedocs.io/en/latest/tutorial/SingleStockTrading.html>`_ and `Multiple Stock Trading <https://finrl.readthedocs.io/en/latest/tutorial/MultipleStockTrading.html>`_ for detailed explanation of the FinRL architecture and modules. Overview ------------- To begin with, we would like to explain the logic of portfolio allocation using Deep Reinforcement Learning.We use Dow 30 constituents as an example throughout this article, because those are the most popular stocks. Let’s say that we got a million dollars at the beginning of 2019. We want to invest this $1,000,000 into stock markets, in this case is Dow Jones 30 constituents.Assume that no margin, no short sale, no treasury bill (use all the money to trade only these 30 stocks). So that the weight of each individual stock is non-negative, and the weights of all the stocks add up to one. We hire a smart portfolio manager- Mr. Deep Reinforcement Learning. Mr. DRL will give us daily advice includes the portfolio weights or the proportions of money to invest in these 30 stocks. So every day we just need to rebalance the portfolio weights of the stocks.The basic logic is as follows. .. image:: ../image/portfolio_allocation_1.png Portfolio allocation is different from multiple stock trading because we are essentially rebalancing the weights at each time step, and we have to use all available money. The traditional and the most popular way of doing portfolio allocation is mean-variance or modern portfolio theory (MPT): .. image:: ../../image/portfolio_allocation_2.png However, MPT performs not so well in out-of-sample data. MPT is calculated only based on stock returns, if we want to take other relevant factors into account, for example some of the technical indicators like MACD or RSI, MPT may not be able to combine these information together well. We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance. FinRL is a DRL library designed specifically for automated stock trading with an effort for educational and demonstrative purpose. This article is focusing on one of the use cases in our paper: Portfolio Allocation. We use one Jupyter notebook to include all the necessary steps. Problem Definition -------------------------- This problem is to design an automated trading solution for portfolio allocation. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem. The components of the reinforcement learning environment are: - **Action**: portfolio weight of each stock is within [0,1]. We use softmax function to normalize the actions to sum to 1. - **State: {Covariance Matrix, MACD, RSI, CCI, ADX}, **state space** shape is (34, 30). 34 is the number of rows, 30 is the number of columns. - **Reward function**: r(s, a, s′) = p_t, p_t is the cumulative portfolio value. - **Environment**: portfolio allocation for Dow 30 constituents. Covariance matrix is a good feature because portfolio managers use it to quantify the risk (standard deviation) associated with a particular portfolio. We also assume no transaction cost, because we are trying to make a simple portfolio allocation case as a starting point. Load Python Packages -------------------------- Install the unstable development version of FinRL: .. code-block:: python :linenos: # Install the unstable development version in Jupyter notebook: !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git Import Packages: .. code-block:: python :linenos: # import packages import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime from finrl import config from finrl import config_tickers from finrl.marketdata.yahoodownloader import YahooDownloader from finrl.preprocessing.preprocessors import FeatureEngineer from finrl.preprocessing.data import data_split from finrl.env.environment import EnvSetup from finrl.env.EnvMultipleStock_train import StockEnvTrain from finrl.env.EnvMultipleStock_trade import StockEnvTrade from finrl.model.models import DRLAgent from finrl.trade.backtest import BackTestStats, BaselineStats, BackTestPlot, backtest_strat, baseline_strat from finrl.trade.backtest import backtest_strat, baseline_strat import os if not os.path.exists("./" + config.DATA_SAVE_DIR): os.makedirs("./" + config.DATA_SAVE_DIR) if not os.path.exists("./" + config.TRAINED_MODEL_DIR): os.makedirs("./" + config.TRAINED_MODEL_DIR) if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR): os.makedirs("./" + config.TENSORBOARD_LOG_DIR) if not os.path.exists("./" + config.RESULTS_DIR): os.makedirs("./" + config.RESULTS_DIR) Download Data -------------------------- FinRL uses a YahooDownloader class to extract data. .. code-block:: python class YahooDownloader: """ Provides methods for retrieving daily stock data from Yahoo Finance API Attributes ---------- start_date : str start date of the data (modified from config.py) end_date : str end date of the data (modified from config.py) ticker_list : list a list of stock tickers (modified from config.py) Methods ------- fetch_data() Fetches data from yahoo API """ Download and save the data in a pandas DataFrame: .. code-block:: python :linenos: # Download and save the data in a pandas DataFrame: df = YahooDownloader(start_date = '2008-01-01', end_date = '2020-12-01', ticker_list = config_tickers.DOW_30_TICKER).fetch_data() Preprocess Data -------------------------- FinRL uses a FeatureEngineer class to preprocess data. .. code-block:: python class FeatureEngineer: """ Provides methods for preprocessing the stock price data Attributes ---------- df: DataFrame data downloaded from Yahoo API feature_number : int number of features we used use_technical_indicator : boolean we technical indicator or not use_turbulence : boolean use turbulence index or not Methods ------- preprocess_data() main method to do the feature engineering """ Perform Feature Engineering: covariance matrix + technical indicators: .. code-block:: python :linenos: # Perform Feature Engineering: df = FeatureEngineer(df.copy(), use_technical_indicator=True, use_turbulence=False).preprocess_data() # add covariance matrix as states df=df.sort_values(['date','tic'],ignore_index=True) df.index = df.date.factorize()[0] cov_list = [] # look back is one year lookback=252 for i in range(lookback,len(df.index.unique())): data_lookback = df.loc[i-lookback:i,:] price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close') return_lookback = price_lookback.pct_change().dropna() covs = return_lookback.cov().values cov_list.append(covs) df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list}) df = df.merge(df_cov, on='date') df = df.sort_values(['date','tic']).reset_index(drop=True) df.head() .. image:: ../../image/portfolio_allocation_3.png Build Environment -------------------------- FinRL uses a EnvSetup class to setup environment. .. code-block:: python class EnvSetup: """ Provides methods for retrieving daily stock data from Yahoo Finance API Attributes ---------- stock_dim: int number of unique stocks hmax : int maximum number of shares to trade initial_amount: int start money transaction_cost_pct : float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training tech_indicator_list: list a list of technical indicator names (modified from config.py) Methods ------- create_env_training() create env class for training create_env_validation() create env class for validation create_env_trading() create env class for trading """ Initialize an environment class: User-defined Environment: a simulation environment class.The environment for portfolio allocation: .. code-block:: python :linenos: import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt class StockPortfolioEnv(gym.Env): """A single stock trading environment for OpenAI gym Attributes ---------- df: DataFrame input data stock_dim : int number of unique stocks hmax : int maximum number of shares to trade initial_amount : int start money transaction_cost_pct: float transaction cost percentage per trade reward_scaling: float scaling factor for reward, good for training state_space: int the dimension of input features action_space: int equals stock dimension tech_indicator_list: list a list of technical indicator names turbulence_threshold: int a threshold to control risk aversion day: int an increment number to control date Methods ------- _sell_stock() perform sell action based on the sign of the action _buy_stock() perform buy action based on the sign of the action step() at each step the agent will return actions, then we will calculate the reward, and return the next observation. reset() reset the environment render() use render to return other functions save_asset_memory() return account value at each time step save_action_memory() return actions/positions at each time step """ metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, transaction_cost_pct, reward_scaling, state_space, action_space, tech_indicator_list, turbulence_threshold, lookback=252, day = 0): #super(StockEnv, self).__init__() #money = 10 , scope = 1 self.day = day self.lookback=lookback self.df = df self.stock_dim = stock_dim self.hmax = hmax self.initial_amount = initial_amount self.transaction_cost_pct =transaction_cost_pct self.reward_scaling = reward_scaling self.state_space = state_space self.action_space = action_space self.tech_indicator_list = tech_indicator_list # action_space normalization and shape is self.stock_dim self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,)) # Shape = (34, 30) # covariance matrix + technical indicators self.observation_space = spaces.Box(low=0, high=np.inf, shape = (self.state_space+len(self.tech_indicator_list), self.state_space)) # load data from a pandas dataframe self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.terminal = False self.turbulence_threshold = turbulence_threshold # initalize state: inital portfolio return + individual stock return + individual weights self.portfolio_value = self.initial_amount # memorize portfolio value each step self.asset_memory = [self.initial_amount] # memorize portfolio return each step self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] def step(self, actions): # print(self.day) self.terminal = self.day >= len(self.df.index.unique())-1 # print(actions) if self.terminal: df = pd.DataFrame(self.portfolio_return_memory) df.columns = ['daily_return'] plt.plot(df.daily_return.cumsum(),'r') plt.savefig('results/cumulative_reward.png') plt.close() plt.plot(self.portfolio_return_memory,'r') plt.savefig('results/rewards.png') plt.close() print("=================================") print("begin_total_asset:{}".format(self.asset_memory[0])) print("end_total_asset:{}".format(self.portfolio_value)) df_daily_return = pd.DataFrame(self.portfolio_return_memory) df_daily_return.columns = ['daily_return'] if df_daily_return['daily_return'].std() !=0: sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \ df_daily_return['daily_return'].std() print("Sharpe: ",sharpe) print("=================================") return self.state, self.reward, self.terminal,{} else: #print(actions) # actions are the portfolio weight # normalize to sum of 1 norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum() weights = norm_actions #print(weights) self.actions_memory.append(weights) last_day_memory = self.data #load next state self.day += 1 self.data = self.df.loc[self.day,:] self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) # calcualte portfolio return # individual stocks' return * weight portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights) # update portfolio value new_portfolio_value = self.portfolio_value*(1+portfolio_return) self.portfolio_value = new_portfolio_value # save into memory self.portfolio_return_memory.append(portfolio_return) self.date_memory.append(self.data.date.unique()[0]) self.asset_memory.append(new_portfolio_value) # the reward is the new portfolio value or end portfolo value self.reward = new_portfolio_value #self.reward = self.reward*self.reward_scaling return self.state, self.reward, self.terminal, {} def reset(self): self.asset_memory = [self.initial_amount] self.day = 0 self.data = self.df.loc[self.day,:] # load states self.covs = self.data['cov_list'].values[0] self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0) self.portfolio_value = self.initial_amount #self.cost = 0 #self.trades = 0 self.terminal = False self.portfolio_return_memory = [0] self.actions_memory=[[1/self.stock_dim]*self.stock_dim] self.date_memory=[self.data.date.unique()[0]] return self.state def render(self, mode='human'): return self.state def save_asset_memory(self): date_list = self.date_memory portfolio_return = self.portfolio_return_memory #print(len(date_list)) #print(len(asset_list)) df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return}) return df_account_value def save_action_memory(self): # date and close price length must match actions length date_list = self.date_memory df_date = pd.DataFrame(date_list) df_date.columns = ['date'] action_list = self.actions_memory df_actions = pd.DataFrame(action_list) df_actions.columns = self.data.tic.values df_actions.index = df_date.date #df_actions = pd.DataFrame({'date':date_list,'actions':action_list}) return df_actions def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] Implement DRL Algorithms -------------------------- FinRL uses a DRLAgent class to implement the algorithms. .. code-block:: python class DRLAgent: """ Provides implementations for DRL algorithms Attributes ---------- env: gym environment class user-defined class Methods ------- train_PPO() the implementation for PPO algorithm train_A2C() the implementation for A2C algorithm train_DDPG() the implementation for DDPG algorithm train_TD3() the implementation for TD3 algorithm DRL_prediction() make a prediction in a test dataset and get results """ **Model Training**: We use A2C for portfolio allocation, because it is stable, cost-effective, faster and works better with large batch sizes. Trading:Assume that we have $1,000,000 initial capital at 2019/01/01. We use the A2C model to perform portfolio allocation of the Dow 30 stocks. .. code-block:: python :linenos: trade = data_split(df,'2019-01-01', '2020-12-01') env_trade, obs_trade = env_setup.create_env_trading(data = trade, env_class = StockPortfolioEnv) df_daily_return, df_actions = DRLAgent.DRL_prediction(model=model_a2c, test_data = trade, test_env = env_trade, test_obs = obs_trade) .. image:: ../../image/portfolio_allocation_4.png The output actions or the portfolio weights look like this: .. image:: ../../image/portfolio_allocation_5.png Backtesting Performance -------------------------- FinRL uses a set of functions to do the backtesting with Quantopian pyfolio. .. code-block:: python :linenos: from pyfolio import timeseries DRL_strat = backtest_strat(df_daily_return) perf_func = timeseries.perf_stats perf_stats_all = perf_func( returns=DRL_strat, factor_returns=DRL_strat, positions=None, transactions=None, turnover_denom="AGB") print("==============DRL Strategy Stats===========") perf_stats_all print("==============Get Index Stats===========") baesline_perf_stats=BaselineStats('^DJI', baseline_start = '2019-01-01', baseline_end = '2020-12-01') # plot dji, dow_strat = baseline_strat('^DJI','2019-01-01','2020-12-01') import pyfolio %matplotlib inline with pyfolio.plotting.plotting_context(font_scale=1.1): pyfolio.create_full_tear_sheet(returns = DRL_strat, benchmark_rets=dow_strat, set_context=False) The left table is the stats for backtesting performance, the right table is the stats for Index (DJIA) performance. **Plots**: