Path: blob/master/docs/source/tutorial/Introduction/PortfolioAllocation.rst
1277 views
:github_url: https://github.com/AI4Finance-LLC/FinRL-Library
Portfolio Allocation
===================================
**Our paper**:
`FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance`_.
.. _FinRL\: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance: https://arxiv.org/abs/2011.09607
Presented at NeurIPS 2020: Deep RL Workshop.
The Jupyter notebook codes are available on our Github_ and `Google Colab`_.
.. _Github: https://github.com/AI4Finance-LLC/FinRL-Library
.. _Google Colab: https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb
.. tip::
- FinRL `Single Stock Trading <https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_single_stock_trading.ipynb>`_ at Google Colab.
- FinRL `Multiple Stocks Trading <https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb>`_ at Google Colab:
Check our previous tutorials: `Single Stock Trading <https://finrl.readthedocs.io/en/latest/tutorial/SingleStockTrading.html>`_ and `Multiple Stock Trading <https://finrl.readthedocs.io/en/latest/tutorial/MultipleStockTrading.html>`_ for detailed explanation of the FinRL architecture and modules.
Overview
-------------
To begin with, we would like to explain the logic of portfolio allocation using Deep Reinforcement Learning.We use Dow 30 constituents as an example throughout this article, because those are the most popular stocks.
Let’s say that we got a million dollars at the beginning of 2019. We want to invest this $1,000,000 into stock markets, in this case is Dow Jones 30 constituents.Assume that no margin, no short sale, no treasury bill (use all the money to trade only these 30 stocks). So that the weight of each individual stock is non-negative, and the weights of all the stocks add up to one.
We hire a smart portfolio manager- Mr. Deep Reinforcement Learning. Mr. DRL will give us daily advice includes the portfolio weights or the proportions of money to invest in these 30 stocks. So every day we just need to rebalance the portfolio weights of the stocks.The basic logic is as follows.
.. image:: ../image/portfolio_allocation_1.png
Portfolio allocation is different from multiple stock trading because we are essentially rebalancing the weights at each time step, and we have to use all available money.
The traditional and the most popular way of doing portfolio allocation is mean-variance or modern portfolio theory (MPT):
.. image:: ../../image/portfolio_allocation_2.png
However, MPT performs not so well in out-of-sample data. MPT is calculated only based on stock returns, if we want to take other relevant factors into account, for example some of the technical indicators like MACD or RSI, MPT may not be able to combine these information together well.
We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance. FinRL is a DRL library designed specifically for automated stock trading with an effort for educational and demonstrative purpose.
This article is focusing on one of the use cases in our paper: Portfolio Allocation. We use one Jupyter notebook to include all the necessary steps.
Problem Definition
--------------------------
This problem is to design an automated trading solution for portfolio allocation. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.
The components of the reinforcement learning environment are:
- **Action**: portfolio weight of each stock is within [0,1]. We use softmax function to normalize the actions to sum to 1.
- **State: {Covariance Matrix, MACD, RSI, CCI, ADX}, **state space** shape is (34, 30). 34 is the number of rows, 30 is the number of columns.
- **Reward function**: r(s, a, s′) = p_t, p_t is the cumulative portfolio value.
- **Environment**: portfolio allocation for Dow 30 constituents.
Covariance matrix is a good feature because portfolio managers use it to quantify the risk (standard deviation) associated with a particular portfolio.
We also assume no transaction cost, because we are trying to make a simple portfolio allocation case as a starting point.
Load Python Packages
--------------------------
Install the unstable development version of FinRL:
.. code-block:: python
:linenos:
# Install the unstable development version in Jupyter notebook:
!pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git
Import Packages:
.. code-block:: python
:linenos:
# import packages
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
matplotlib.use('Agg')
import datetime
from finrl import config
from finrl import config_tickers
from finrl.marketdata.yahoodownloader import YahooDownloader
from finrl.preprocessing.preprocessors import FeatureEngineer
from finrl.preprocessing.data import data_split
from finrl.env.environment import EnvSetup
from finrl.env.EnvMultipleStock_train import StockEnvTrain
from finrl.env.EnvMultipleStock_trade import StockEnvTrade
from finrl.model.models import DRLAgent
from finrl.trade.backtest import BackTestStats, BaselineStats, BackTestPlot, backtest_strat, baseline_strat
from finrl.trade.backtest import backtest_strat, baseline_strat
import os
if not os.path.exists("./" + config.DATA_SAVE_DIR):
os.makedirs("./" + config.DATA_SAVE_DIR)
if not os.path.exists("./" + config.TRAINED_MODEL_DIR):
os.makedirs("./" + config.TRAINED_MODEL_DIR)
if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR):
os.makedirs("./" + config.TENSORBOARD_LOG_DIR)
if not os.path.exists("./" + config.RESULTS_DIR):
os.makedirs("./" + config.RESULTS_DIR)
Download Data
--------------------------
FinRL uses a YahooDownloader class to extract data.
.. code-block:: python
class YahooDownloader:
"""
Provides methods for retrieving daily stock data from Yahoo Finance API
Attributes
----------
start_date : str
start date of the data (modified from config.py)
end_date : str
end date of the data (modified from config.py)
ticker_list : list
a list of stock tickers (modified from config.py)
Methods
-------
fetch_data()
Fetches data from yahoo API
"""
Download and save the data in a pandas DataFrame:
.. code-block:: python
:linenos:
# Download and save the data in a pandas DataFrame:
df = YahooDownloader(start_date = '2008-01-01',
end_date = '2020-12-01',
ticker_list = config_tickers.DOW_30_TICKER).fetch_data()
Preprocess Data
--------------------------
FinRL uses a FeatureEngineer class to preprocess data.
.. code-block:: python
class FeatureEngineer:
"""
Provides methods for preprocessing the stock price data
Attributes
----------
df: DataFrame
data downloaded from Yahoo API
feature_number : int
number of features we used
use_technical_indicator : boolean
we technical indicator or not
use_turbulence : boolean
use turbulence index or not
Methods
-------
preprocess_data()
main method to do the feature engineering
"""
Perform Feature Engineering: covariance matrix + technical indicators:
.. code-block:: python
:linenos:
# Perform Feature Engineering:
df = FeatureEngineer(df.copy(),
use_technical_indicator=True,
use_turbulence=False).preprocess_data()
# add covariance matrix as states
df=df.sort_values(['date','tic'],ignore_index=True)
df.index = df.date.factorize()[0]
cov_list = []
# look back is one year
lookback=252
for i in range(lookback,len(df.index.unique())):
data_lookback = df.loc[i-lookback:i,:]
price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close')
return_lookback = price_lookback.pct_change().dropna()
covs = return_lookback.cov().values
cov_list.append(covs)
df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list})
df = df.merge(df_cov, on='date')
df = df.sort_values(['date','tic']).reset_index(drop=True)
df.head()
.. image:: ../../image/portfolio_allocation_3.png
Build Environment
--------------------------
FinRL uses a EnvSetup class to setup environment.
.. code-block:: python
class EnvSetup:
"""
Provides methods for retrieving daily stock data from
Yahoo Finance API
Attributes
----------
stock_dim: int
number of unique stocks
hmax : int
maximum number of shares to trade
initial_amount: int
start money
transaction_cost_pct : float
transaction cost percentage per trade
reward_scaling: float
scaling factor for reward, good for training
tech_indicator_list: list
a list of technical indicator names (modified from config.py)
Methods
-------
create_env_training()
create env class for training
create_env_validation()
create env class for validation
create_env_trading()
create env class for trading
"""
Initialize an environment class:
User-defined Environment: a simulation environment class.The environment for portfolio allocation:
.. code-block:: python
:linenos:
import numpy as np
import pandas as pd
from gym.utils import seeding
import gym
from gym import spaces
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
class StockPortfolioEnv(gym.Env):
"""A single stock trading environment for OpenAI gym
Attributes
----------
df: DataFrame
input data
stock_dim : int
number of unique stocks
hmax : int
maximum number of shares to trade
initial_amount : int
start money
transaction_cost_pct: float
transaction cost percentage per trade
reward_scaling: float
scaling factor for reward, good for training
state_space: int
the dimension of input features
action_space: int
equals stock dimension
tech_indicator_list: list
a list of technical indicator names
turbulence_threshold: int
a threshold to control risk aversion
day: int
an increment number to control date
Methods
-------
_sell_stock()
perform sell action based on the sign of the action
_buy_stock()
perform buy action based on the sign of the action
step()
at each step the agent will return actions, then
we will calculate the reward, and return the next observation.
reset()
reset the environment
render()
use render to return other functions
save_asset_memory()
return account value at each time step
save_action_memory()
return actions/positions at each time step
"""
metadata = {'render.modes': ['human']}
def __init__(self,
df,
stock_dim,
hmax,
initial_amount,
transaction_cost_pct,
reward_scaling,
state_space,
action_space,
tech_indicator_list,
turbulence_threshold,
lookback=252,
day = 0):
#super(StockEnv, self).__init__()
#money = 10 , scope = 1
self.day = day
self.lookback=lookback
self.df = df
self.stock_dim = stock_dim
self.hmax = hmax
self.initial_amount = initial_amount
self.transaction_cost_pct =transaction_cost_pct
self.reward_scaling = reward_scaling
self.state_space = state_space
self.action_space = action_space
self.tech_indicator_list = tech_indicator_list
# action_space normalization and shape is self.stock_dim
self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,))
# Shape = (34, 30)
# covariance matrix + technical indicators
self.observation_space = spaces.Box(low=0,
high=np.inf,
shape = (self.state_space+len(self.tech_indicator_list),
self.state_space))
# load data from a pandas dataframe
self.data = self.df.loc[self.day,:]
self.covs = self.data['cov_list'].values[0]
self.state = np.append(np.array(self.covs),
[self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0)
self.terminal = False
self.turbulence_threshold = turbulence_threshold
# initalize state: inital portfolio return + individual stock return + individual weights
self.portfolio_value = self.initial_amount
# memorize portfolio value each step
self.asset_memory = [self.initial_amount]
# memorize portfolio return each step
self.portfolio_return_memory = [0]
self.actions_memory=[[1/self.stock_dim]*self.stock_dim]
self.date_memory=[self.data.date.unique()[0]]
def step(self, actions):
# print(self.day)
self.terminal = self.day >= len(self.df.index.unique())-1
# print(actions)
if self.terminal:
df = pd.DataFrame(self.portfolio_return_memory)
df.columns = ['daily_return']
plt.plot(df.daily_return.cumsum(),'r')
plt.savefig('results/cumulative_reward.png')
plt.close()
plt.plot(self.portfolio_return_memory,'r')
plt.savefig('results/rewards.png')
plt.close()
print("=================================")
print("begin_total_asset:{}".format(self.asset_memory[0]))
print("end_total_asset:{}".format(self.portfolio_value))
df_daily_return = pd.DataFrame(self.portfolio_return_memory)
df_daily_return.columns = ['daily_return']
if df_daily_return['daily_return'].std() !=0:
sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \
df_daily_return['daily_return'].std()
print("Sharpe: ",sharpe)
print("=================================")
return self.state, self.reward, self.terminal,{}
else:
#print(actions)
# actions are the portfolio weight
# normalize to sum of 1
norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum()
weights = norm_actions
#print(weights)
self.actions_memory.append(weights)
last_day_memory = self.data
#load next state
self.day += 1
self.data = self.df.loc[self.day,:]
self.covs = self.data['cov_list'].values[0]
self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0)
# calcualte portfolio return
# individual stocks' return * weight
portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights)
# update portfolio value
new_portfolio_value = self.portfolio_value*(1+portfolio_return)
self.portfolio_value = new_portfolio_value
# save into memory
self.portfolio_return_memory.append(portfolio_return)
self.date_memory.append(self.data.date.unique()[0])
self.asset_memory.append(new_portfolio_value)
# the reward is the new portfolio value or end portfolo value
self.reward = new_portfolio_value
#self.reward = self.reward*self.reward_scaling
return self.state, self.reward, self.terminal, {}
def reset(self):
self.asset_memory = [self.initial_amount]
self.day = 0
self.data = self.df.loc[self.day,:]
# load states
self.covs = self.data['cov_list'].values[0]
self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list ], axis=0)
self.portfolio_value = self.initial_amount
#self.cost = 0
#self.trades = 0
self.terminal = False
self.portfolio_return_memory = [0]
self.actions_memory=[[1/self.stock_dim]*self.stock_dim]
self.date_memory=[self.data.date.unique()[0]]
return self.state
def render(self, mode='human'):
return self.state
def save_asset_memory(self):
date_list = self.date_memory
portfolio_return = self.portfolio_return_memory
#print(len(date_list))
#print(len(asset_list))
df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return})
return df_account_value
def save_action_memory(self):
# date and close price length must match actions length
date_list = self.date_memory
df_date = pd.DataFrame(date_list)
df_date.columns = ['date']
action_list = self.actions_memory
df_actions = pd.DataFrame(action_list)
df_actions.columns = self.data.tic.values
df_actions.index = df_date.date
#df_actions = pd.DataFrame({'date':date_list,'actions':action_list})
return df_actions
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
Implement DRL Algorithms
--------------------------
FinRL uses a DRLAgent class to implement the algorithms.
.. code-block:: python
class DRLAgent:
"""
Provides implementations for DRL algorithms
Attributes
----------
env: gym environment class
user-defined class
Methods
-------
train_PPO()
the implementation for PPO algorithm
train_A2C()
the implementation for A2C algorithm
train_DDPG()
the implementation for DDPG algorithm
train_TD3()
the implementation for TD3 algorithm
DRL_prediction()
make a prediction in a test dataset and get results
"""
**Model Training**:
We use A2C for portfolio allocation, because it is stable, cost-effective, faster and works better with large batch sizes.
Trading:Assume that we have $1,000,000 initial capital at 2019/01/01. We use the A2C model to perform portfolio allocation of the Dow 30 stocks.
.. code-block:: python
:linenos:
trade = data_split(df,'2019-01-01', '2020-12-01')
env_trade, obs_trade = env_setup.create_env_trading(data = trade,
env_class = StockPortfolioEnv)
df_daily_return, df_actions = DRLAgent.DRL_prediction(model=model_a2c,
test_data = trade,
test_env = env_trade,
test_obs = obs_trade)
.. image:: ../../image/portfolio_allocation_4.png
The output actions or the portfolio weights look like this:
.. image:: ../../image/portfolio_allocation_5.png
Backtesting Performance
--------------------------
FinRL uses a set of functions to do the backtesting with Quantopian pyfolio.
.. code-block:: python
:linenos:
from pyfolio import timeseries
DRL_strat = backtest_strat(df_daily_return)
perf_func = timeseries.perf_stats
perf_stats_all = perf_func( returns=DRL_strat,
factor_returns=DRL_strat,
positions=None, transactions=None, turnover_denom="AGB")
print("==============DRL Strategy Stats===========")
perf_stats_all
print("==============Get Index Stats===========")
baesline_perf_stats=BaselineStats('^DJI',
baseline_start = '2019-01-01',
baseline_end = '2020-12-01')
# plot
dji, dow_strat = baseline_strat('^DJI','2019-01-01','2020-12-01')
import pyfolio
%matplotlib inline
with pyfolio.plotting.plotting_context(font_scale=1.1):
pyfolio.create_full_tear_sheet(returns = DRL_strat,
benchmark_rets=dow_strat, set_context=False)
The left table is the stats for backtesting performance, the right table is the stats for Index (DJIA) performance.
**Plots**: