Path: blob/master/examples/Stock_NeurIPS2018_call_func_rolling_window_SB3.ipynb
726 views
Deep Reinforcement Learning for Stock Trading from Scratch: Multiple Stock Trading
Pytorch Version
Content
We train a DRL agent for stock trading. This task is modeled as a Markov Decision Process (MDP), and the objective function is maximizing (expected) cumulative return.
We specify the state-action-reward as follows:
State s: The state space represents an agent's perception of the market environment. Just like a human trader analyzing various information, here our agent passively observes many features and learns by interacting with the market environment (usually by replaying historical data).
Action a: The action space includes allowed actions that an agent can take at each state. For example, a ∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and buying. When an action operates multiple shares, a ∈{−k, ..., −1, 0, 1, ..., k}, e.g.. "Buy 10 shares of AAPL" or "Sell 10 shares of AAPL" are 10 or −10, respectively
Reward function r(s, a, s′): Reward is an incentive for an agent to learn a better policy. For example, it can be the change of the portfolio value when taking a at state s and arriving at new state s', i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively
Market environment: 30 consituent stocks of Dow Jones Industrial Average (DJIA) index. Accessed at the starting date of the testing period.
The data for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume.
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting swig
Downloading swig-4.1.1-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.8 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.8/1.8 MB 23.4 MB/s eta 0:00:00
Installing collected packages: swig
Successfully installed swig-4.1.1
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting wrds
Downloading wrds-3.1.6-py3-none-any.whl (12 kB)
Collecting psycopg2-binary
Downloading psycopg2_binary-2.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.0/3.0 MB 47.7 MB/s eta 0:00:00
Requirement already satisfied: scipy in /usr/local/lib/python3.9/dist-packages (from wrds) (1.10.1)
Requirement already satisfied: pandas in /usr/local/lib/python3.9/dist-packages (from wrds) (1.4.4)
Requirement already satisfied: sqlalchemy<2 in /usr/local/lib/python3.9/dist-packages (from wrds) (1.4.47)
Requirement already satisfied: numpy in /usr/local/lib/python3.9/dist-packages (from wrds) (1.22.4)
Requirement already satisfied: greenlet!=0.4.17 in /usr/local/lib/python3.9/dist-packages (from sqlalchemy<2->wrds) (2.0.2)
Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas->wrds) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas->wrds) (2022.7.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas->wrds) (1.16.0)
Installing collected packages: psycopg2-binary, wrds
Successfully installed psycopg2-binary-2.9.5 wrds-3.1.6
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting pyportfolioopt
Downloading pyportfolioopt-1.5.4-py3-none-any.whl (61 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 61.9/61.9 KB 3.3 MB/s eta 0:00:00
Requirement already satisfied: numpy<2.0.0,>=1.22.4 in /usr/local/lib/python3.9/dist-packages (from pyportfolioopt) (1.22.4)
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.9/dist-packages (from pyportfolioopt) (1.4.4)
Requirement already satisfied: scipy<2.0,>=1.3 in /usr/local/lib/python3.9/dist-packages (from pyportfolioopt) (1.10.1)
Requirement already satisfied: cvxpy<2.0.0,>=1.1.10 in /usr/local/lib/python3.9/dist-packages (from pyportfolioopt) (1.3.1)
Requirement already satisfied: ecos>=2 in /usr/local/lib/python3.9/dist-packages (from cvxpy<2.0.0,>=1.1.10->pyportfolioopt) (2.0.12)
Requirement already satisfied: scs>=1.1.6 in /usr/local/lib/python3.9/dist-packages (from cvxpy<2.0.0,>=1.1.10->pyportfolioopt) (3.2.2)
Requirement already satisfied: osqp>=0.4.1 in /usr/local/lib/python3.9/dist-packages (from cvxpy<2.0.0,>=1.1.10->pyportfolioopt) (0.6.2.post0)
Requirement already satisfied: setuptools>65.5.1 in /usr/local/lib/python3.9/dist-packages (from cvxpy<2.0.0,>=1.1.10->pyportfolioopt) (67.6.1)
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=0.19->pyportfolioopt) (2022.7.1)
Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.9/dist-packages (from pandas>=0.19->pyportfolioopt) (2.8.2)
Requirement already satisfied: qdldl in /usr/local/lib/python3.9/dist-packages (from osqp>=0.4.1->cvxpy<2.0.0,>=1.1.10->pyportfolioopt) (0.1.5.post3)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.9/dist-packages (from python-dateutil>=2.8.1->pandas>=0.19->pyportfolioopt) (1.16.0)
Installing collected packages: pyportfolioopt
Successfully installed pyportfolioopt-1.5.4
⏬ Downloading https://github.com/jaimergp/miniforge/releases/latest/download/Mambaforge-colab-Linux-x86_64.sh...
📦 Installing...
📌 Adjusting configuration...
🩹 Patching environment...
⏲ Done in 0:00:19
🔁 Restarting kernel...
Selecting previously unselected package libgl1-mesa-glx:amd64.
(Reading database ... 128288 files and directories currently installed.)
Preparing to unpack .../libgl1-mesa-glx_21.2.6-0ubuntu0.1~20.04.2_amd64.deb ...
Unpacking libgl1-mesa-glx:amd64 (21.2.6-0ubuntu0.1~20.04.2) ...
Selecting previously unselected package swig4.0.
Preparing to unpack .../swig4.0_4.0.1-5build1_amd64.deb ...
Unpacking swig4.0 (4.0.1-5build1) ...
Selecting previously unselected package swig.
Preparing to unpack .../swig_4.0.1-5build1_all.deb ...
Unpacking swig (4.0.1-5build1) ...
Setting up libgl1-mesa-glx:amd64 (21.2.6-0ubuntu0.1~20.04.2) ...
Setting up swig4.0 (4.0.1-5build1) ...
Setting up swig (4.0.1-5build1) ...
Processing triggers for man-db (2.9.1-1) ...
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/
Collecting git+https://github.com/AI4Finance-Foundation/FinRL.git
Cloning https://github.com/AI4Finance-Foundation/FinRL.git to /tmp/pip-req-build-zsjn96ks
Running command git clone --filter=blob:none --quiet https://github.com/AI4Finance-Foundation/FinRL.git /tmp/pip-req-build-zsjn96ks
Resolved https://github.com/AI4Finance-Foundation/FinRL.git to commit d3e35c7d94da2b0b4f44734a226de360b5c09d52
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Collecting elegantrl@ git+https://github.com/AI4Finance-Foundation/ElegantRL.git#egg=elegantrl
Cloning https://github.com/AI4Finance-Foundation/ElegantRL.git to /tmp/pip-install-nhzd12k3/elegantrl_0fdb0f9b53ed4e8aac03822e093bbd98
Running command git clone --filter=blob:none --quiet https://github.com/AI4Finance-Foundation/ElegantRL.git /tmp/pip-install-nhzd12k3/elegantrl_0fdb0f9b53ed4e8aac03822e093bbd98
Resolved https://github.com/AI4Finance-Foundation/ElegantRL.git to commit 594b0c31de443a24c1032b75418fdc134664e92f
Preparing metadata (setup.py) ... done
Collecting pyfolio@ git+https://github.com/quantopian/pyfolio.git#egg=pyfolio-0.9.2
Cloning https://github.com/quantopian/pyfolio.git to /tmp/pip-install-nhzd12k3/pyfolio_26e97b504ff64373aaa7bb9e77b71a1d
Running command git clone --filter=blob:none --quiet https://github.com/quantopian/pyfolio.git /tmp/pip-install-nhzd12k3/pyfolio_26e97b504ff64373aaa7bb9e77b71a1d
Resolved https://github.com/quantopian/pyfolio.git to commit 4b901f6d73aa02ceb6d04b7d83502e5c6f2e81aa
Preparing metadata (setup.py) ... done
Collecting stockstats>=0.4.0
Downloading stockstats-0.5.2-py2.py3-none-any.whl (20 kB)
Collecting lz4
Downloading lz4-4.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.3/1.3 MB 12.2 MB/s eta 0:00:00
Collecting scikit-learn>=0.21.0
Downloading scikit_learn-1.2.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 9.6/9.6 MB 31.6 MB/s eta 0:00:00
Collecting gputil
Downloading GPUtil-1.4.0.tar.gz (5.5 kB)
Preparing metadata (setup.py) ... done
Collecting stable-baselines3<2.0.0,>=1.6.2
Downloading stable_baselines3-1.7.0-py3-none-any.whl (171 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 171.8/171.8 kB 15.5 MB/s eta 0:00:00
Collecting jqdatasdk
Downloading jqdatasdk-1.8.11-py3-none-any.whl (158 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.2/158.2 kB 16.5 MB/s eta 0:00:00
Collecting alpaca_trade_api>=2.1.0
Downloading alpaca_trade_api-3.0.0-py3-none-any.whl (33 kB)
Collecting yfinance
Downloading yfinance-0.2.14-py2.py3-none-any.whl (59 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 59.7/59.7 kB 6.9 MB/s eta 0:00:00
Collecting ccxt>=1.66.32
Downloading ccxt-3.0.46-py2.py3-none-any.whl (3.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.6/3.6 MB 49.5 MB/s eta 0:00:00
Collecting pandas>=1.1.5
Downloading pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 12.2/12.2 MB 54.3 MB/s eta 0:00:00
Collecting tensorboardX
Downloading tensorboardX-2.6-py2.py3-none-any.whl (114 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 114.5/114.5 kB 12.3 MB/s eta 0:00:00
Collecting wrds>=3.1.6
Using cached wrds-3.1.6-py3-none-any.whl (12 kB)
Collecting numpy>=1.17.3
Downloading numpy-1.24.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 17.3/17.3 MB 43.0 MB/s eta 0:00:00
Collecting gym>=0.17
Downloading gym-0.26.2.tar.gz (721 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 721.7/721.7 kB 37.5 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Collecting exchange_calendars==3.6.3
Downloading exchange_calendars-3.6.3.tar.gz (152 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 152.8/152.8 kB 12.7 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Collecting ray[default,tune]>=2.0.0
Downloading ray-2.3.1-cp39-cp39-manylinux2014_x86_64.whl (58.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.6/58.6 MB 11.0 MB/s eta 0:00:00
Collecting matplotlib
Downloading matplotlib-3.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 11.6/11.6 MB 73.8 MB/s eta 0:00:00
Collecting importlib-metadata==4.13.0
Downloading importlib_metadata-4.13.0-py3-none-any.whl (23 kB)
Collecting pyluach
Downloading pyluach-2.2.0-py3-none-any.whl (25 kB)
Collecting python-dateutil
Downloading python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 247.7/247.7 kB 22.7 MB/s eta 0:00:00
Collecting pytz
Downloading pytz-2023.3-py2.py3-none-any.whl (502 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 502.3/502.3 kB 31.8 MB/s eta 0:00:00
Requirement already satisfied: toolz in /usr/local/lib/python3.9/site-packages (from exchange_calendars==3.6.3->finrl==0.3.5) (0.12.0)
Collecting korean_lunar_calendar
Downloading korean_lunar_calendar-0.3.1-py3-none-any.whl (9.0 kB)
Collecting zipp>=0.5
Downloading zipp-3.15.0-py3-none-any.whl (6.8 kB)
Collecting msgpack==1.0.3
Downloading msgpack-1.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (322 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 322.2/322.2 kB 26.4 MB/s eta 0:00:00
Collecting websocket-client<2,>=0.56.0
Downloading websocket_client-1.5.1-py3-none-any.whl (55 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 55.9/55.9 kB 6.4 MB/s eta 0:00:00
Collecting deprecation==2.1.0
Downloading deprecation-2.1.0-py2.py3-none-any.whl (11 kB)
Requirement already satisfied: requests<3,>2 in /usr/local/lib/python3.9/site-packages (from alpaca_trade_api>=2.1.0->finrl==0.3.5) (2.28.2)
Collecting websockets<11,>=9.0
Downloading websockets-10.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 106.5/106.5 kB 9.2 MB/s eta 0:00:00
Collecting PyYAML==6.0
Downloading PyYAML-6.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (661 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 661.8/661.8 kB 41.8 MB/s eta 0:00:00
Collecting aiohttp==3.8.1
Downloading aiohttp-3.8.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.2 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.2/1.2 MB 59.2 MB/s eta 0:00:00
Requirement already satisfied: urllib3<2,>1.24 in /usr/local/lib/python3.9/site-packages (from alpaca_trade_api>=2.1.0->finrl==0.3.5) (1.26.15)
Collecting aiosignal>=1.1.2
Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)
Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.9/site-packages (from aiohttp==3.8.1->alpaca_trade_api>=2.1.0->finrl==0.3.5) (2.1.1)
Collecting multidict<7.0,>=4.5
Downloading multidict-6.0.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 114.2/114.2 kB 14.4 MB/s eta 0:00:00
Collecting async-timeout<5.0,>=4.0.0a3
Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)
Collecting frozenlist>=1.1.1
Downloading frozenlist-1.3.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (158 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 158.8/158.8 kB 14.7 MB/s eta 0:00:00
Collecting yarl<2.0,>=1.0
Downloading yarl-1.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (264 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 264.6/264.6 kB 20.0 MB/s eta 0:00:00
Collecting attrs>=17.3.0
Downloading attrs-22.2.0-py3-none-any.whl (60 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 60.0/60.0 kB 6.9 MB/s eta 0:00:00
Collecting packaging
Downloading packaging-23.0-py3-none-any.whl (42 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 42.7/42.7 kB 4.4 MB/s eta 0:00:00
Requirement already satisfied: setuptools>=60.9.0 in /usr/local/lib/python3.9/site-packages (from ccxt>=1.66.32->finrl==0.3.5) (65.6.3)
Collecting aiodns>=1.1.1
Downloading aiodns-3.0.0-py3-none-any.whl (5.0 kB)
Requirement already satisfied: certifi>=2018.1.18 in /usr/local/lib/python3.9/site-packages (from ccxt>=1.66.32->finrl==0.3.5) (2022.12.7)
Requirement already satisfied: cryptography>=2.6.1 in /usr/local/lib/python3.9/site-packages (from ccxt>=1.66.32->finrl==0.3.5) (39.0.2)
Collecting cloudpickle>=1.2.0
Downloading cloudpickle-2.2.1-py3-none-any.whl (25 kB)
Collecting gym-notices>=0.0.4
Downloading gym_notices-0.0.8-py3-none-any.whl (3.0 kB)
Collecting click>=7.0
Downloading click-8.1.3-py3-none-any.whl (96 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 96.6/96.6 kB 9.3 MB/s eta 0:00:00
Collecting virtualenv>=20.0.24
Downloading virtualenv-20.21.0-py3-none-any.whl (8.7 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 8.7/8.7 MB 55.5 MB/s eta 0:00:00
Collecting protobuf!=3.19.5,>=3.15.3
Downloading protobuf-4.22.1-cp37-abi3-manylinux2014_x86_64.whl (302 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 302.4/302.4 kB 22.4 MB/s eta 0:00:00
Collecting grpcio>=1.32.0
Downloading grpcio-1.53.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 5.0/5.0 MB 54.2 MB/s eta 0:00:00
Collecting jsonschema
Downloading jsonschema-4.17.3-py3-none-any.whl (90 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 90.4/90.4 kB 8.6 MB/s eta 0:00:00
Collecting filelock
Downloading filelock-3.10.7-py3-none-any.whl (10 kB)
Collecting tabulate
Downloading tabulate-0.9.0-py3-none-any.whl (35 kB)
Collecting py-spy>=0.2.0
Downloading py_spy-0.3.14-py2.py3-none-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.0/3.0 MB 52.2 MB/s eta 0:00:00
Collecting prometheus-client>=0.7.1
Downloading prometheus_client-0.16.0-py3-none-any.whl (122 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 122.5/122.5 kB 12.5 MB/s eta 0:00:00
Collecting gpustat>=1.0.0
Downloading gpustat-1.0.0.tar.gz (90 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 90.5/90.5 kB 9.3 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Collecting aiohttp-cors
Downloading aiohttp_cors-0.7.0-py3-none-any.whl (27 kB)
Collecting colorful
Downloading colorful-0.5.5-py2.py3-none-any.whl (201 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 201.4/201.4 kB 21.8 MB/s eta 0:00:00
Collecting opencensus
Downloading opencensus-0.11.2-py2.py3-none-any.whl (128 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 128.2/128.2 kB 15.0 MB/s eta 0:00:00
Collecting smart-open
Downloading smart_open-6.3.0-py3-none-any.whl (56 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 56.8/56.8 kB 6.6 MB/s eta 0:00:00
Collecting pydantic
Downloading pydantic-1.10.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.2/3.2 MB 62.5 MB/s eta 0:00:00
Collecting threadpoolctl>=2.0.0
Downloading threadpoolctl-3.1.0-py3-none-any.whl (14 kB)
Collecting joblib>=1.1.1
Downloading joblib-1.2.0-py3-none-any.whl (297 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 298.0/298.0 kB 28.4 MB/s eta 0:00:00
Collecting scipy>=1.3.2
Downloading scipy-1.10.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 34.5/34.5 MB 21.4 MB/s eta 0:00:00
Collecting gym>=0.17
Downloading gym-0.21.0.tar.gz (1.5 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.5/1.5 MB 63.2 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Collecting torch>=1.11
Downloading torch-2.0.0-cp39-cp39-manylinux1_x86_64.whl (619.9 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 619.9/619.9 MB 1.9 MB/s eta 0:00:00
Collecting protobuf!=3.19.5,>=3.15.3
Downloading protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.0/1.0 MB 52.1 MB/s eta 0:00:00
Collecting psycopg2-binary
Using cached psycopg2_binary-2.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB)
Collecting sqlalchemy<2
Downloading SQLAlchemy-1.4.47-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 70.6 MB/s eta 0:00:00
Collecting six
Downloading six-1.16.0-py2.py3-none-any.whl (11 kB)
Collecting thriftpy2>=0.3.9
Downloading thriftpy2-0.4.16.tar.gz (643 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 643.4/643.4 kB 39.6 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Collecting pymysql>=0.7.6
Downloading PyMySQL-1.0.3-py3-none-any.whl (43 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 43.7/43.7 kB 4.1 MB/s eta 0:00:00
Collecting kiwisolver>=1.0.1
Downloading kiwisolver-1.4.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 67.1 MB/s eta 0:00:00
Collecting fonttools>=4.22.0
Downloading fonttools-4.39.3-py3-none-any.whl (1.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.0/1.0 MB 55.9 MB/s eta 0:00:00
Collecting pillow>=6.2.0
Downloading Pillow-9.4.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.4/3.4 MB 79.4 MB/s eta 0:00:00
Collecting pyparsing>=2.3.1
Downloading pyparsing-3.0.9-py3-none-any.whl (98 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.3/98.3 kB 10.9 MB/s eta 0:00:00
Collecting importlib-resources>=3.2.0
Downloading importlib_resources-5.12.0-py3-none-any.whl (36 kB)
Collecting contourpy>=1.0.1
Downloading contourpy-1.0.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (299 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 299.7/299.7 kB 25.6 MB/s eta 0:00:00
Collecting cycler>=0.10
Downloading cycler-0.11.0-py3-none-any.whl (6.4 kB)
Collecting ipython>=3.2.3
Downloading ipython-8.12.0-py3-none-any.whl (796 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 796.4/796.4 kB 49.6 MB/s eta 0:00:00
Collecting seaborn>=0.7.1
Downloading seaborn-0.12.2-py3-none-any.whl (293 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 293.3/293.3 kB 25.4 MB/s eta 0:00:00
Collecting empyrical>=0.5.0
Downloading empyrical-0.5.5.tar.gz (52 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 52.8/52.8 kB 6.4 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Collecting appdirs>=1.4.4
Downloading appdirs-1.4.4-py2.py3-none-any.whl (9.6 kB)
Collecting beautifulsoup4>=4.11.1
Downloading beautifulsoup4-4.12.0-py3-none-any.whl (132 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 132.2/132.2 kB 10.1 MB/s eta 0:00:00
Collecting html5lib>=1.1
Downloading html5lib-1.1-py2.py3-none-any.whl (112 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 112.2/112.2 kB 14.1 MB/s eta 0:00:00
Collecting frozendict>=2.3.4
Downloading frozendict-2.3.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (114 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 114.3/114.3 kB 14.2 MB/s eta 0:00:00
Collecting multitasking>=0.0.7
Downloading multitasking-0.0.11-py3-none-any.whl (8.5 kB)
Collecting lxml>=4.9.1
Downloading lxml-4.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.1 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 7.1/7.1 MB 83.7 MB/s eta 0:00:00
Collecting pycares>=4.0.0
Downloading pycares-4.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (288 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 288.7/288.7 kB 22.3 MB/s eta 0:00:00
Collecting soupsieve>1.2
Downloading soupsieve-2.4-py3-none-any.whl (37 kB)
Requirement already satisfied: cffi>=1.12 in /usr/local/lib/python3.9/site-packages (from cryptography>=2.6.1->ccxt>=1.66.32->finrl==0.3.5) (1.15.1)
Collecting pandas-datareader>=0.2
Downloading pandas_datareader-0.10.0-py3-none-any.whl (109 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 109.5/109.5 kB 11.0 MB/s eta 0:00:00
Collecting nvidia-ml-py<=11.495.46,>=11.450.129
Downloading nvidia_ml_py-11.495.46-py3-none-any.whl (25 kB)
Collecting psutil>=5.6.0
Downloading psutil-5.9.4-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (280 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 280.2/280.2 kB 23.5 MB/s eta 0:00:00
Collecting blessed>=1.17.1
Downloading blessed-1.20.0-py2.py3-none-any.whl (58 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 58.4/58.4 kB 4.1 MB/s eta 0:00:00
Collecting webencodings
Downloading webencodings-0.5.1-py2.py3-none-any.whl (11 kB)
Collecting prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30
Downloading prompt_toolkit-3.0.38-py3-none-any.whl (385 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 385.8/385.8 kB 27.9 MB/s eta 0:00:00
Collecting traitlets>=5
Downloading traitlets-5.9.0-py3-none-any.whl (117 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 117.4/117.4 kB 9.2 MB/s eta 0:00:00
Collecting typing-extensions
Downloading typing_extensions-4.5.0-py3-none-any.whl (27 kB)
Collecting pygments>=2.4.0
Downloading Pygments-2.14.0-py3-none-any.whl (1.1 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.1/1.1 MB 51.1 MB/s eta 0:00:00
Collecting jedi>=0.16
Downloading jedi-0.18.2-py2.py3-none-any.whl (1.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 1.6/1.6 MB 59.5 MB/s eta 0:00:00
Collecting stack-data
Downloading stack_data-0.6.2-py3-none-any.whl (24 kB)
Collecting decorator
Downloading decorator-5.1.1-py3-none-any.whl (9.1 kB)
Collecting matplotlib-inline
Downloading matplotlib_inline-0.1.6-py3-none-any.whl (9.4 kB)
Collecting pexpect>4.3
Downloading pexpect-4.8.0-py2.py3-none-any.whl (59 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 59.0/59.0 kB 6.1 MB/s eta 0:00:00
Collecting backcall
Downloading backcall-0.2.0-py2.py3-none-any.whl (11 kB)
Collecting pickleshare
Downloading pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB)
Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.9/site-packages (from requests<3,>2->alpaca_trade_api>=2.1.0->finrl==0.3.5) (3.4)
Collecting greenlet!=0.4.17
Downloading greenlet-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (610 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 610.9/610.9 kB 32.5 MB/s eta 0:00:00
Collecting ply<4.0,>=3.4
Downloading ply-3.11-py2.py3-none-any.whl (49 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 49.6/49.6 kB 5.2 MB/s eta 0:00:00
Collecting nvidia-cublas-cu11==11.10.3.66
Downloading nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl (317.1 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 317.1/317.1 MB 4.1 MB/s eta 0:00:00
Collecting nvidia-cusparse-cu11==11.7.4.91
Downloading nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl (173.2 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 173.2/173.2 MB 4.7 MB/s eta 0:00:00
Collecting nvidia-cusolver-cu11==11.4.0.1
Downloading nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl (102.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 102.6/102.6 MB 7.9 MB/s eta 0:00:00
Collecting triton==2.0.0
Downloading triton-2.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (63.3 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 63.3/63.3 MB 9.1 MB/s eta 0:00:00
Collecting nvidia-cuda-runtime-cu11==11.7.99
Downloading nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl (849 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 849.3/849.3 kB 28.3 MB/s eta 0:00:00
Collecting nvidia-cufft-cu11==10.9.0.58
Downloading nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux1_x86_64.whl (168.4 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 168.4/168.4 MB 5.1 MB/s eta 0:00:00
Collecting nvidia-cudnn-cu11==8.5.0.96
Downloading nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl (557.1 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 557.1/557.1 MB 2.4 MB/s eta 0:00:00
Collecting jinja2
Downloading Jinja2-3.1.2-py3-none-any.whl (133 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 133.1/133.1 kB 14.2 MB/s eta 0:00:00
Collecting networkx
Downloading networkx-3.0-py3-none-any.whl (2.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.0/2.0 MB 73.8 MB/s eta 0:00:00
Collecting sympy
Downloading sympy-1.11.1-py3-none-any.whl (6.5 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 6.5/6.5 MB 83.9 MB/s eta 0:00:00
Collecting nvidia-cuda-nvrtc-cu11==11.7.99
Downloading nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl (21.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 21.0/21.0 MB 55.1 MB/s eta 0:00:00
Collecting nvidia-cuda-cupti-cu11==11.7.101
Downloading nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl (11.8 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 11.8/11.8 MB 54.6 MB/s eta 0:00:00
Collecting nvidia-curand-cu11==10.2.10.91
Downloading nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl (54.6 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 54.6/54.6 MB 9.7 MB/s eta 0:00:00
Collecting nvidia-nvtx-cu11==11.7.91
Downloading nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl (98 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 98.6/98.6 kB 10.6 MB/s eta 0:00:00
Collecting nvidia-nccl-cu11==2.14.3
Downloading nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl (177.1 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 177.1/177.1 MB 5.4 MB/s eta 0:00:00
Requirement already satisfied: wheel in /usr/local/lib/python3.9/site-packages (from nvidia-cublas-cu11==11.10.3.66->torch>=1.11->stable-baselines3<2.0.0,>=1.6.2->finrl==0.3.5) (0.38.4)
Collecting cmake
Downloading cmake-3.26.1-py2.py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (24.0 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 24.0/24.0 MB 34.2 MB/s eta 0:00:00
Collecting lit
Downloading lit-16.0.0.tar.gz (144 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 145.0/145.0 kB 14.8 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Collecting platformdirs<4,>=2.4
Downloading platformdirs-3.2.0-py3-none-any.whl (14 kB)
Collecting distlib<1,>=0.3.6
Downloading distlib-0.3.6-py2.py3-none-any.whl (468 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 468.5/468.5 kB 34.8 MB/s eta 0:00:00
Collecting gym[box2d]
Downloading gym-0.26.1.tar.gz (719 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 719.9/719.9 kB 40.7 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.26.0.tar.gz (710 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 710.3/710.3 kB 45.8 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.25.2.tar.gz (734 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 734.5/734.5 kB 47.4 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.25.1.tar.gz (732 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 732.2/732.2 kB 37.7 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.25.0.tar.gz (720 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 720.4/720.4 kB 35.6 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.24.1.tar.gz (696 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 696.4/696.4 kB 38.2 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.24.0.tar.gz (694 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 694.4/694.4 kB 46.8 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.23.1.tar.gz (626 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 626.2/626.2 kB 45.4 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.23.0.tar.gz (624 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 624.4/624.4 kB 30.5 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Downloading gym-0.22.0.tar.gz (631 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 631.1/631.1 kB 30.3 MB/s eta 0:00:00
Installing build dependencies ... done
Getting requirements to build wheel ... done
Preparing metadata (pyproject.toml) ... done
Collecting box2d-py==2.3.5
Downloading box2d-py-2.3.5.tar.gz (374 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 374.4/374.4 kB 27.9 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
Collecting pyglet>=1.4.0
Downloading pyglet-2.0.5-py3-none-any.whl (831 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 831.3/831.3 kB 52.8 MB/s eta 0:00:00
Collecting pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0
Downloading pyrsistent-0.19.3-py3-none-any.whl (57 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 57.5/57.5 kB 7.5 MB/s eta 0:00:00
Collecting google-api-core<3.0.0,>=1.0.0
Downloading google_api_core-2.11.0-py3-none-any.whl (120 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 120.3/120.3 kB 14.5 MB/s eta 0:00:00
Collecting opencensus-context>=0.1.3
Downloading opencensus_context-0.1.3-py2.py3-none-any.whl (5.1 kB)
Collecting wcwidth>=0.1.4
Downloading wcwidth-0.2.6-py2.py3-none-any.whl (29 kB)
Requirement already satisfied: pycparser in /usr/local/lib/python3.9/site-packages (from cffi>=1.12->cryptography>=2.6.1->ccxt>=1.66.32->finrl==0.3.5) (2.21)
Collecting google-auth<3.0dev,>=2.14.1
Downloading google_auth-2.17.1-py2.py3-none-any.whl (178 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 178.1/178.1 kB 19.2 MB/s eta 0:00:00
Collecting googleapis-common-protos<2.0dev,>=1.56.2
Downloading googleapis_common_protos-1.59.0-py2.py3-none-any.whl (223 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 223.6/223.6 kB 24.1 MB/s eta 0:00:00
Collecting parso<0.9.0,>=0.8.0
Downloading parso-0.8.3-py2.py3-none-any.whl (100 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100.8/100.8 kB 11.5 MB/s eta 0:00:00
Collecting ptyprocess>=0.5
Downloading ptyprocess-0.7.0-py2.py3-none-any.whl (13 kB)
Collecting MarkupSafe>=2.0
Downloading MarkupSafe-2.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)
Collecting pure-eval
Downloading pure_eval-0.2.2-py3-none-any.whl (11 kB)
Collecting executing>=1.2.0
Downloading executing-1.2.0-py2.py3-none-any.whl (24 kB)
Collecting asttokens>=2.1.0
Downloading asttokens-2.2.1-py2.py3-none-any.whl (26 kB)
Collecting mpmath>=0.19
Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 536.2/536.2 kB 43.8 MB/s eta 0:00:00
Collecting rsa<5,>=3.1.4
Downloading rsa-4.9-py3-none-any.whl (34 kB)
Collecting pyasn1-modules>=0.2.1
Downloading pyasn1_modules-0.2.8-py2.py3-none-any.whl (155 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 155.3/155.3 kB 18.5 MB/s eta 0:00:00
Collecting cachetools<6.0,>=2.0.0
Downloading cachetools-5.3.0-py3-none-any.whl (9.3 kB)
Collecting pyasn1<0.5.0,>=0.4.6
Downloading pyasn1-0.4.8-py2.py3-none-any.whl (77 kB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 77.1/77.1 kB 8.5 MB/s eta 0:00:00
Building wheels for collected packages: finrl, exchange_calendars, gym, elegantrl, gputil, pyfolio, empyrical, gpustat, thriftpy2, box2d-py, lit
Building wheel for finrl (pyproject.toml) ... done
Created wheel for finrl: filename=finrl-0.3.5-py3-none-any.whl size=4668526 sha256=f55b41d967223f3a27e4404f4d382736d5c5cbc2e1cfd7736de48586998df184
Stored in directory: /tmp/pip-ephem-wheel-cache-fopkegt4/wheels/ec/6a/08/c43694890a7c5a62c23af4b2a497bce5ee7edef607852cf53f
Building wheel for exchange_calendars (setup.py) ... done
Created wheel for exchange_calendars: filename=exchange_calendars-3.6.3-py3-none-any.whl size=182636 sha256=dfc7624a26c2bb0463c6ce659d9f6d0b32cfc6cd49c3ef7d0c9ddcd09b49398e
Stored in directory: /root/.cache/pip/wheels/4e/02/f9/6c6eeb48a242879e357caf2813953fa8b6e26bd0110bd94226
Building wheel for gym (setup.py) ... done
Created wheel for gym: filename=gym-0.21.0-py3-none-any.whl size=1616819 sha256=faa02f535febfd071894e5017afb8902151ba8973f93e252400e27bd560366a9
Stored in directory: /root/.cache/pip/wheels/b3/50/6c/0a82c1358b4da2dbd9c1bb17e0f89467db32812ab236dbf6d5
Building wheel for elegantrl (setup.py) ... done
Created wheel for elegantrl: filename=elegantrl-0.3.6-py3-none-any.whl size=195053 sha256=2a848a648928884e7570c74b8f16d0b19603669d5bebb6b3b99cb281e10c68d4
Stored in directory: /tmp/pip-ephem-wheel-cache-fopkegt4/wheels/a3/c3/be/03eb1f20c8650f23ab13b823d93a297a917899f5d08b04b7b9
Building wheel for gputil (setup.py) ... done
Created wheel for gputil: filename=GPUtil-1.4.0-py3-none-any.whl size=7409 sha256=c2ab06060122ac074b17acd6bb902ed0348de375b21d7374d13cb0a73b1cb835
Stored in directory: /root/.cache/pip/wheels/2b/b5/24/fbb56595c286984f7315ee31821d6121e1b9828436021a88b3
Building wheel for pyfolio (setup.py) ... done
Created wheel for pyfolio: filename=pyfolio-0.9.2+75.g4b901f6-py3-none-any.whl size=75773 sha256=481aca931367143b883ff1cb591a7eae1cddbc83674ba99b77d6ce45458c74c3
Stored in directory: /tmp/pip-ephem-wheel-cache-fopkegt4/wheels/da/0d/dd/aef7001cc1238aff04ec9eabfc002341f00c50deead3083855
Building wheel for empyrical (setup.py) ... done
Created wheel for empyrical: filename=empyrical-0.5.5-py3-none-any.whl size=39776 sha256=058a2495ba35828b597997dc4fbaaf2766894aea421a9a0dabfda0298293af95
Stored in directory: /root/.cache/pip/wheels/67/23/d1/a4ef8ff88dc9af7b0eeb1b6fd0d90c6057eaad5a2df25f4e3f
Building wheel for gpustat (setup.py) ... done
Created wheel for gpustat: filename=gpustat-1.0.0-py3-none-any.whl size=19884 sha256=58bed7ad89eddee8af26ea29c48037dc74474fdcbdf76fab1dc9fa0a6e1d5f51
Stored in directory: /root/.cache/pip/wheels/ce/13/aa/145d9d670feb2cf4a0691b9a3552aafc8a1b49c5162a0f379d
Building wheel for thriftpy2 (setup.py) ... done
Created wheel for thriftpy2: filename=thriftpy2-0.4.16-cp39-cp39-linux_x86_64.whl size=529342 sha256=97b595d2db82c5223de2f982f830baeffdd4e97880ff9a00476539b23f777b33
Stored in directory: /root/.cache/pip/wheels/88/a4/d5/907737b4c175aec82087b815fa93a8afea5c6c5a3e7bb748b9
Building wheel for box2d-py (setup.py) ... done
Created wheel for box2d-py: filename=box2d_py-2.3.5-cp39-cp39-linux_x86_64.whl size=494643 sha256=714bbf157f1f852d527e4c97b5701cd21ce2c606cdb9d6a1281eeb83f722d8c2
Stored in directory: /root/.cache/pip/wheels/a4/c2/c1/076651c394f05fe60990cd85616c2d95bc1619aa113f559d7d
Building wheel for lit (setup.py) ... done
Created wheel for lit: filename=lit-16.0.0-py3-none-any.whl size=93598 sha256=4af1790b3bda595a7e575e84d292c54d3d2ab3e723ca3d49e5dc43981b53e392
Stored in directory: /root/.cache/pip/wheels/c7/ee/80/1520ca86c3557f70e5504b802072f7fc3b0e2147f376b133ed
Successfully built finrl exchange_calendars gym elegantrl gputil pyfolio empyrical gpustat thriftpy2 box2d-py lit
Installing collected packages: webencodings, wcwidth, pytz, pyglet, pyasn1, py-spy, pure-eval, ptyprocess, ply, pickleshare, opencensus-context, nvidia-ml-py, multitasking, msgpack, mpmath, lit, korean_lunar_calendar, gputil, executing, distlib, colorful, cmake, box2d-py, backcall, appdirs, zipp, websockets, websocket-client, typing-extensions, traitlets, threadpoolctl, tabulate, sympy, soupsieve, smart-open, six, rsa, PyYAML, pyrsistent, pyparsing, pymysql, pyluach, pygments, pyasn1-modules, psycopg2-binary, psutil, protobuf, prompt-toolkit, prometheus-client, platformdirs, pillow, pexpect, parso, packaging, nvidia-nvtx-cu11, nvidia-nccl-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cufft-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-nvrtc-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, numpy, networkx, multidict, MarkupSafe, lz4, lxml, kiwisolver, joblib, grpcio, greenlet, frozenlist, frozendict, fonttools, filelock, decorator, cycler, cloudpickle, click, cachetools, attrs, async-timeout, yarl, virtualenv, thriftpy2, tensorboardX, sqlalchemy, scipy, python-dateutil, pydantic, pycares, nvidia-cusolver-cu11, nvidia-cudnn-cu11, matplotlib-inline, jsonschema, jinja2, jedi, importlib-resources, importlib-metadata, html5lib, gym, googleapis-common-protos, google-auth, deprecation, contourpy, blessed, beautifulsoup4, asttokens, aiosignal, stack-data, scikit-learn, ray, pandas, matplotlib, gpustat, google-api-core, aiohttp, aiodns, yfinance, wrds, stockstats, seaborn, pandas-datareader, opencensus, jqdatasdk, ipython, exchange_calendars, ccxt, alpaca_trade_api, aiohttp-cors, empyrical, pyfolio, triton, torch, stable-baselines3, elegantrl, finrl
Successfully installed MarkupSafe-2.1.2 PyYAML-6.0 aiodns-3.0.0 aiohttp-3.8.1 aiohttp-cors-0.7.0 aiosignal-1.3.1 alpaca_trade_api-3.0.0 appdirs-1.4.4 asttokens-2.2.1 async-timeout-4.0.2 attrs-22.2.0 backcall-0.2.0 beautifulsoup4-4.12.0 blessed-1.20.0 box2d-py-2.3.5 cachetools-5.3.0 ccxt-3.0.46 click-8.1.3 cloudpickle-2.2.1 cmake-3.26.1 colorful-0.5.5 contourpy-1.0.7 cycler-0.11.0 decorator-5.1.1 deprecation-2.1.0 distlib-0.3.6 elegantrl-0.3.6 empyrical-0.5.5 exchange_calendars-3.6.3 executing-1.2.0 filelock-3.10.7 finrl-0.3.5 fonttools-4.39.3 frozendict-2.3.6 frozenlist-1.3.3 google-api-core-2.11.0 google-auth-2.17.1 googleapis-common-protos-1.59.0 gpustat-1.0.0 gputil-1.4.0 greenlet-2.0.2 grpcio-1.53.0 gym-0.21.0 html5lib-1.1 importlib-metadata-4.13.0 importlib-resources-5.12.0 ipython-8.12.0 jedi-0.18.2 jinja2-3.1.2 joblib-1.2.0 jqdatasdk-1.8.11 jsonschema-4.17.3 kiwisolver-1.4.4 korean_lunar_calendar-0.3.1 lit-16.0.0 lxml-4.9.2 lz4-4.3.2 matplotlib-3.7.1 matplotlib-inline-0.1.6 mpmath-1.3.0 msgpack-1.0.3 multidict-6.0.4 multitasking-0.0.11 networkx-3.0 numpy-1.24.2 nvidia-cublas-cu11-11.10.3.66 nvidia-cuda-cupti-cu11-11.7.101 nvidia-cuda-nvrtc-cu11-11.7.99 nvidia-cuda-runtime-cu11-11.7.99 nvidia-cudnn-cu11-8.5.0.96 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.2.10.91 nvidia-cusolver-cu11-11.4.0.1 nvidia-cusparse-cu11-11.7.4.91 nvidia-ml-py-11.495.46 nvidia-nccl-cu11-2.14.3 nvidia-nvtx-cu11-11.7.91 opencensus-0.11.2 opencensus-context-0.1.3 packaging-23.0 pandas-1.5.3 pandas-datareader-0.10.0 parso-0.8.3 pexpect-4.8.0 pickleshare-0.7.5 pillow-9.4.0 platformdirs-3.2.0 ply-3.11 prometheus-client-0.16.0 prompt-toolkit-3.0.38 protobuf-3.20.3 psutil-5.9.4 psycopg2-binary-2.9.5 ptyprocess-0.7.0 pure-eval-0.2.2 py-spy-0.3.14 pyasn1-0.4.8 pyasn1-modules-0.2.8 pycares-4.3.0 pydantic-1.10.7 pyfolio-0.9.2+75.g4b901f6 pyglet-2.0.5 pygments-2.14.0 pyluach-2.2.0 pymysql-1.0.3 pyparsing-3.0.9 pyrsistent-0.19.3 python-dateutil-2.8.2 pytz-2023.3 ray-2.3.1 rsa-4.9 scikit-learn-1.2.2 scipy-1.10.1 seaborn-0.12.2 six-1.16.0 smart-open-6.3.0 soupsieve-2.4 sqlalchemy-1.4.47 stable-baselines3-1.7.0 stack-data-0.6.2 stockstats-0.5.2 sympy-1.11.1 tabulate-0.9.0 tensorboardX-2.6 threadpoolctl-3.1.0 thriftpy2-0.4.16 torch-2.0.0 traitlets-5.9.0 triton-2.0.0 typing-extensions-4.5.0 virtualenv-20.21.0 wcwidth-0.2.6 webencodings-0.5.1 websocket-client-1.5.1 websockets-10.4 wrds-3.1.6 yarl-1.8.2 yfinance-0.2.14 zipp-3.15.0
WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv
流式输出内容被截断,只能显示最后 5000 行内容。
| std | 1.02 |
| value_loss | 52.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 10 |
| time_elapsed | 316 |
| total_timesteps | 20480 |
| train/ | |
| approx_kl | 0.018726377 |
| clip_fraction | 0.228 |
| clip_range | 0.2 |
| entropy_loss | -41.6 |
| explained_variance | -0.00599 |
| learning_rate | 0.00025 |
| loss | 10 |
| n_updates | 90 |
| policy_gradient_loss | -0.0229 |
| reward | 1.8604985 |
| std | 1.02 |
| value_loss | 34 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 11 |
| time_elapsed | 350 |
| total_timesteps | 22528 |
| train/ | |
| approx_kl | 0.017771121 |
| clip_fraction | 0.201 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | -0.00452 |
| learning_rate | 0.00025 |
| loss | 102 |
| n_updates | 100 |
| policy_gradient_loss | -0.0176 |
| reward | 2.4363315 |
| std | 1.02 |
| value_loss | 257 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 12 |
| time_elapsed | 380 |
| total_timesteps | 24576 |
| train/ | |
| approx_kl | 0.021592125 |
| clip_fraction | 0.24 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | -0.00462 |
| learning_rate | 0.00025 |
| loss | 13.1 |
| n_updates | 110 |
| policy_gradient_loss | -0.0218 |
| reward | -0.36686477 |
| std | 1.02 |
| value_loss | 27.8 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 13 |
| time_elapsed | 417 |
| total_timesteps | 26624 |
| train/ | |
| approx_kl | 0.016095877 |
| clip_fraction | 0.171 |
| clip_range | 0.2 |
| entropy_loss | -41.8 |
| explained_variance | 0.00607 |
| learning_rate | 0.00025 |
| loss | 63.8 |
| n_updates | 120 |
| policy_gradient_loss | -0.0175 |
| reward | -6.2590113 |
| std | 1.02 |
| value_loss | 161 |
-----------------------------------------
----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 14 |
| time_elapsed | 447 |
| total_timesteps | 28672 |
| train/ | |
| approx_kl | 0.02099569 |
| clip_fraction | 0.204 |
| clip_range | 0.2 |
| entropy_loss | -41.9 |
| explained_variance | 0.00587 |
| learning_rate | 0.00025 |
| loss | 18.1 |
| n_updates | 130 |
| policy_gradient_loss | -0.0176 |
| reward | -1.5635415 |
| std | 1.03 |
| value_loss | 76.1 |
----------------------------------------
day: 3374, episode: 10
begin_total_asset: 1017321.61
end_total_asset: 4690150.25
total_reward: 3672828.63
total_cost: 440655.06
total_trades: 91574
Sharpe: 0.777
=================================
------------------------------------------
| time/ | |
| fps | 63 |
| iterations | 15 |
| time_elapsed | 480 |
| total_timesteps | 30720 |
| train/ | |
| approx_kl | 0.01574407 |
| clip_fraction | 0.252 |
| clip_range | 0.2 |
| entropy_loss | -41.9 |
| explained_variance | 0.045 |
| learning_rate | 0.00025 |
| loss | 8.21 |
| n_updates | 140 |
| policy_gradient_loss | -0.0207 |
| reward | -0.058135245 |
| std | 1.03 |
| value_loss | 20 |
------------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 16 |
| time_elapsed | 511 |
| total_timesteps | 32768 |
| train/ | |
| approx_kl | 0.018864237 |
| clip_fraction | 0.19 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | -0.0334 |
| learning_rate | 0.00025 |
| loss | 40.5 |
| n_updates | 150 |
| policy_gradient_loss | -0.0158 |
| reward | 2.1892703 |
| std | 1.03 |
| value_loss | 80.4 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 17 |
| time_elapsed | 542 |
| total_timesteps | 34816 |
| train/ | |
| approx_kl | 0.025924759 |
| clip_fraction | 0.183 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | -0.0494 |
| learning_rate | 0.00025 |
| loss | 8.64 |
| n_updates | 160 |
| policy_gradient_loss | -0.0154 |
| reward | -1.6194284 |
| std | 1.03 |
| value_loss | 19.1 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 18 |
| time_elapsed | 576 |
| total_timesteps | 36864 |
| train/ | |
| approx_kl | 0.023486339 |
| clip_fraction | 0.227 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | -0.00164 |
| learning_rate | 0.00025 |
| loss | 71 |
| n_updates | 170 |
| policy_gradient_loss | -0.0128 |
| reward | -6.5787015 |
| std | 1.03 |
| value_loss | 175 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 19 |
| time_elapsed | 609 |
| total_timesteps | 38912 |
| train/ | |
| approx_kl | 0.047546946 |
| clip_fraction | 0.278 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | 0.0083 |
| learning_rate | 0.00025 |
| loss | 22.2 |
| n_updates | 180 |
| policy_gradient_loss | -0.00743 |
| reward | 3.6853487 |
| std | 1.03 |
| value_loss | 88.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 20 |
| time_elapsed | 643 |
| total_timesteps | 40960 |
| train/ | |
| approx_kl | 0.028585846 |
| clip_fraction | 0.238 |
| clip_range | 0.2 |
| entropy_loss | -42.1 |
| explained_variance | -0.018 |
| learning_rate | 0.00025 |
| loss | 12.6 |
| n_updates | 190 |
| policy_gradient_loss | -0.0166 |
| reward | 2.84366 |
| std | 1.03 |
| value_loss | 35.7 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 21 |
| time_elapsed | 672 |
| total_timesteps | 43008 |
| train/ | |
| approx_kl | 0.021615773 |
| clip_fraction | 0.283 |
| clip_range | 0.2 |
| entropy_loss | -42.1 |
| explained_variance | 0.0164 |
| learning_rate | 0.00025 |
| loss | 39.1 |
| n_updates | 200 |
| policy_gradient_loss | -0.0119 |
| reward | 7.260352 |
| std | 1.04 |
| value_loss | 85.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 22 |
| time_elapsed | 703 |
| total_timesteps | 45056 |
| train/ | |
| approx_kl | 0.023984132 |
| clip_fraction | 0.174 |
| clip_range | 0.2 |
| entropy_loss | -42.2 |
| explained_variance | -0.0214 |
| learning_rate | 0.00025 |
| loss | 10.8 |
| n_updates | 210 |
| policy_gradient_loss | -0.015 |
| reward | 0.7453349 |
| std | 1.04 |
| value_loss | 27.4 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 23 |
| time_elapsed | 736 |
| total_timesteps | 47104 |
| train/ | |
| approx_kl | 0.026311198 |
| clip_fraction | 0.239 |
| clip_range | 0.2 |
| entropy_loss | -42.2 |
| explained_variance | 0.0117 |
| learning_rate | 0.00025 |
| loss | 53.5 |
| n_updates | 220 |
| policy_gradient_loss | -0.0147 |
| reward | -3.601917 |
| std | 1.04 |
| value_loss | 109 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 24 |
| time_elapsed | 765 |
| total_timesteps | 49152 |
| train/ | |
| approx_kl | 0.021329464 |
| clip_fraction | 0.228 |
| clip_range | 0.2 |
| entropy_loss | -42.2 |
| explained_variance | 0.0287 |
| learning_rate | 0.00025 |
| loss | 35.5 |
| n_updates | 230 |
| policy_gradient_loss | -0.0174 |
| reward | -1.4932549 |
| std | 1.04 |
| value_loss | 69.7 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 25 |
| time_elapsed | 799 |
| total_timesteps | 51200 |
| train/ | |
| approx_kl | 0.033834375 |
| clip_fraction | 0.347 |
| clip_range | 0.2 |
| entropy_loss | -42.2 |
| explained_variance | -0.0439 |
| learning_rate | 0.00025 |
| loss | 11.2 |
| n_updates | 240 |
| policy_gradient_loss | -0.0175 |
| reward | -0.13293022 |
| std | 1.04 |
| value_loss | 31.1 |
-----------------------------------------
{'batch_size': 128, 'buffer_size': 100000, 'learning_rate': 0.0001, 'learning_starts': 100, 'ent_coef': 'auto_0.1'}
Using cpu device
Logging to results/sac
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 19 |
| time_elapsed | 693 |
| total_timesteps | 13500 |
| train/ | |
| actor_loss | 1.23e+03 |
| critic_loss | 941 |
| ent_coef | 0.175 |
| ent_coef_loss | -80.9 |
| learning_rate | 0.0001 |
| n_updates | 13399 |
| reward | -4.1185117 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 19 |
| time_elapsed | 1407 |
| total_timesteps | 27000 |
| train/ | |
| actor_loss | 486 |
| critic_loss | 378 |
| ent_coef | 0.047 |
| ent_coef_loss | -97.4 |
| learning_rate | 0.0001 |
| n_updates | 26899 |
| reward | -6.0287046 |
-----------------------------------
day: 3374, episode: 10
begin_total_asset: 1039580.61
end_total_asset: 4449383.64
total_reward: 3409803.03
total_cost: 3171.06
total_trades: 48397
Sharpe: 0.687
=================================
-----------------------------------
| time/ | |
| episodes | 12 |
| fps | 19 |
| time_elapsed | 2123 |
| total_timesteps | 40500 |
| train/ | |
| actor_loss | 201 |
| critic_loss | 10.8 |
| ent_coef | 0.0131 |
| ent_coef_loss | -63.2 |
| learning_rate | 0.0001 |
| n_updates | 40399 |
| reward | -5.6925883 |
-----------------------------------
{'batch_size': 100, 'buffer_size': 1000000, 'learning_rate': 0.001}
Using cpu device
Logging to results/td3
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 24 |
| time_elapsed | 545 |
| total_timesteps | 13500 |
| train/ | |
| actor_loss | 16.7 |
| critic_loss | 341 |
| learning_rate | 0.001 |
| n_updates | 10125 |
| reward | -5.7216434 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 21 |
| time_elapsed | 1228 |
| total_timesteps | 27000 |
| train/ | |
| actor_loss | 18.7 |
| critic_loss | 21.4 |
| learning_rate | 0.001 |
| n_updates | 23625 |
| reward | -5.7216434 |
-----------------------------------
day: 3374, episode: 10
begin_total_asset: 1043903.24
end_total_asset: 5291054.90
total_reward: 4247151.66
total_cost: 1042.86
total_trades: 64106
Sharpe: 0.723
=================================
-----------------------------------
| time/ | |
| episodes | 12 |
| fps | 21 |
| time_elapsed | 1923 |
| total_timesteps | 40500 |
| train/ | |
| actor_loss | 20.6 |
| critic_loss | 15.9 |
| learning_rate | 0.001 |
| n_updates | 37125 |
| reward | -5.7216434 |
-----------------------------------
hit end!
hit end!
hit end!
hit end!
hit end!
[*********************100%***********************] 1 of 1 completed
Shape of DataFrame: (22, 8)
i: 2
{'n_steps': 5, 'ent_coef': 0.01, 'learning_rate': 0.0007}
Using cpu device
Logging to results/a2c
---------------------------------------
| time/ | |
| fps | 55 |
| iterations | 100 |
| time_elapsed | 9 |
| total_timesteps | 500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0.0552 |
| learning_rate | 0.0007 |
| n_updates | 99 |
| policy_loss | -125 |
| reward | -0.19224237 |
| std | 0.997 |
| value_loss | 10.9 |
---------------------------------------
------------------------------------
| time/ | |
| fps | 65 |
| iterations | 200 |
| time_elapsed | 15 |
| total_timesteps | 1000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 199 |
| policy_loss | -65.7 |
| reward | 2.47076 |
| std | 0.998 |
| value_loss | 3.14 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 300 |
| time_elapsed | 24 |
| total_timesteps | 1500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 299 |
| policy_loss | 221 |
| reward | -0.668967 |
| std | 0.999 |
| value_loss | 38 |
-------------------------------------
------------------------------------
| time/ | |
| fps | 61 |
| iterations | 400 |
| time_elapsed | 32 |
| total_timesteps | 2000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 399 |
| policy_loss | 2.8 |
| reward | 2.104001 |
| std | 0.997 |
| value_loss | 2.71 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 64 |
| iterations | 500 |
| time_elapsed | 39 |
| total_timesteps | 2500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 499 |
| policy_loss | 239 |
| reward | 3.0126274 |
| std | 0.999 |
| value_loss | 39.6 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 600 |
| time_elapsed | 48 |
| total_timesteps | 3000 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 599 |
| policy_loss | -524 |
| reward | 3.9946847 |
| std | 1 |
| value_loss | 293 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 62 |
| iterations | 700 |
| time_elapsed | 56 |
| total_timesteps | 3500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0.108 |
| learning_rate | 0.0007 |
| n_updates | 699 |
| policy_loss | -37.1 |
| reward | 1.4987615 |
| std | 1 |
| value_loss | 1.8 |
-------------------------------------
------------------------------------
| time/ | |
| fps | 63 |
| iterations | 800 |
| time_elapsed | 62 |
| total_timesteps | 4000 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 799 |
| policy_loss | -337 |
| reward | 2.046587 |
| std | 1 |
| value_loss | 77.1 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 900 |
| time_elapsed | 72 |
| total_timesteps | 4500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 899 |
| policy_loss | 26.2 |
| reward | 1.0195923 |
| std | 1 |
| value_loss | 4.92 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 62 |
| iterations | 1000 |
| time_elapsed | 79 |
| total_timesteps | 5000 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 999 |
| policy_loss | 80.3 |
| reward | -3.5495179 |
| std | 1 |
| value_loss | 9.56 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 63 |
| iterations | 1100 |
| time_elapsed | 86 |
| total_timesteps | 5500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | -2.38e-07 |
| learning_rate | 0.0007 |
| n_updates | 1099 |
| policy_loss | -258 |
| reward | 1.6695346 |
| std | 1 |
| value_loss | 44.9 |
-------------------------------------
------------------------------------
| time/ | |
| fps | 62 |
| iterations | 1200 |
| time_elapsed | 96 |
| total_timesteps | 6000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -0.00397 |
| learning_rate | 0.0007 |
| n_updates | 1199 |
| policy_loss | 185 |
| reward | 2.245284 |
| std | 1 |
| value_loss | 26.3 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 60 |
| iterations | 1300 |
| time_elapsed | 106 |
| total_timesteps | 6500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 1299 |
| policy_loss | 150 |
| reward | 1.491629 |
| std | 0.998 |
| value_loss | 21.5 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 1400 |
| time_elapsed | 117 |
| total_timesteps | 7000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1399 |
| policy_loss | -107 |
| reward | -0.81370664 |
| std | 0.998 |
| value_loss | 8.34 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 60 |
| iterations | 1500 |
| time_elapsed | 124 |
| total_timesteps | 7500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -0.0459 |
| learning_rate | 0.0007 |
| n_updates | 1499 |
| policy_loss | -10 |
| reward | 2.3688922 |
| std | 0.997 |
| value_loss | 0.922 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 60 |
| iterations | 1600 |
| time_elapsed | 131 |
| total_timesteps | 8000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1599 |
| policy_loss | 128 |
| reward | 0.56861943 |
| std | 0.998 |
| value_loss | 19.5 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 1700 |
| time_elapsed | 141 |
| total_timesteps | 8500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0.203 |
| learning_rate | 0.0007 |
| n_updates | 1699 |
| policy_loss | 37 |
| reward | 1.2727017 |
| std | 0.996 |
| value_loss | 3.2 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 60 |
| iterations | 1800 |
| time_elapsed | 148 |
| total_timesteps | 9000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1799 |
| policy_loss | 80.9 |
| reward | 3.9352329 |
| std | 0.996 |
| value_loss | 9.56 |
-------------------------------------
------------------------------------
| time/ | |
| fps | 60 |
| iterations | 1900 |
| time_elapsed | 156 |
| total_timesteps | 9500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1899 |
| policy_loss | 507 |
| reward | 6.328624 |
| std | 0.997 |
| value_loss | 187 |
------------------------------------
--------------------------------------
| time/ | |
| fps | 60 |
| iterations | 2000 |
| time_elapsed | 166 |
| total_timesteps | 10000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1999 |
| policy_loss | -126 |
| reward | -2.8187668 |
| std | 1 |
| value_loss | 8.37 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 60 |
| iterations | 2100 |
| time_elapsed | 172 |
| total_timesteps | 10500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 2099 |
| policy_loss | -58.5 |
| reward | 0.2734109 |
| std | 0.999 |
| value_loss | 3 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 60 |
| iterations | 2200 |
| time_elapsed | 180 |
| total_timesteps | 11000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2199 |
| policy_loss | 157 |
| reward | 0.68144214 |
| std | 0.997 |
| value_loss | 19.9 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 60 |
| iterations | 2300 |
| time_elapsed | 190 |
| total_timesteps | 11500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 2299 |
| policy_loss | -67.3 |
| reward | -1.8721669 |
| std | 0.999 |
| value_loss | 2.49 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 2400 |
| time_elapsed | 196 |
| total_timesteps | 12000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -0.0105 |
| learning_rate | 0.0007 |
| n_updates | 2399 |
| policy_loss | 144 |
| reward | 0.47134838 |
| std | 0.997 |
| value_loss | 26.3 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 60 |
| iterations | 2500 |
| time_elapsed | 204 |
| total_timesteps | 12500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2499 |
| policy_loss | 589 |
| reward | -1.9081986 |
| std | 0.997 |
| value_loss | 221 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 60 |
| iterations | 2600 |
| time_elapsed | 213 |
| total_timesteps | 13000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2599 |
| policy_loss | 352 |
| reward | 6.1386447 |
| std | 0.996 |
| value_loss | 148 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 2700 |
| time_elapsed | 219 |
| total_timesteps | 13500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | -0.0134 |
| learning_rate | 0.0007 |
| n_updates | 2699 |
| policy_loss | -131 |
| reward | 0.6143146 |
| std | 0.995 |
| value_loss | 12.3 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 2800 |
| time_elapsed | 229 |
| total_timesteps | 14000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2799 |
| policy_loss | 132 |
| reward | 1.7656372 |
| std | 0.995 |
| value_loss | 13.2 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 2900 |
| time_elapsed | 237 |
| total_timesteps | 14500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | -0.0245 |
| learning_rate | 0.0007 |
| n_updates | 2899 |
| policy_loss | 17.1 |
| reward | 0.08867768 |
| std | 0.995 |
| value_loss | 3.2 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3000 |
| time_elapsed | 243 |
| total_timesteps | 15000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2999 |
| policy_loss | 48.4 |
| reward | -3.6771903 |
| std | 0.995 |
| value_loss | 2.24 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3100 |
| time_elapsed | 253 |
| total_timesteps | 15500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 3099 |
| policy_loss | -0.565 |
| reward | 0.679106 |
| std | 0.998 |
| value_loss | 1.98 |
------------------------------------
----------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3200 |
| time_elapsed | 260 |
| total_timesteps | 16000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3199 |
| policy_loss | 26.6 |
| reward | 0.0013427841 |
| std | 0.998 |
| value_loss | 11.3 |
----------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3300 |
| time_elapsed | 267 |
| total_timesteps | 16500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3299 |
| policy_loss | 54.6 |
| reward | 1.6012005 |
| std | 0.998 |
| value_loss | 7.47 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3400 |
| time_elapsed | 277 |
| total_timesteps | 17000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -0.0366 |
| learning_rate | 0.0007 |
| n_updates | 3399 |
| policy_loss | -33.7 |
| reward | 0.8685799 |
| std | 1 |
| value_loss | 3.79 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3500 |
| time_elapsed | 284 |
| total_timesteps | 17500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3499 |
| policy_loss | 21 |
| reward | 0.14613488 |
| std | 1 |
| value_loss | 1.32 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3600 |
| time_elapsed | 291 |
| total_timesteps | 18000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 3599 |
| policy_loss | -173 |
| reward | -1.2669375 |
| std | 1 |
| value_loss | 20.9 |
--------------------------------------
-----------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3700 |
| time_elapsed | 301 |
| total_timesteps | 18500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3699 |
| policy_loss | -53.5 |
| reward | -0.0045535835 |
| std | 1 |
| value_loss | 8.58 |
-----------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3800 |
| time_elapsed | 308 |
| total_timesteps | 19000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3799 |
| policy_loss | 98.2 |
| reward | 0.6932831 |
| std | 1 |
| value_loss | 7.95 |
-------------------------------------
------------------------------------
| time/ | |
| fps | 61 |
| iterations | 3900 |
| time_elapsed | 316 |
| total_timesteps | 19500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3899 |
| policy_loss | 628 |
| reward | 8.699067 |
| std | 1 |
| value_loss | 335 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4000 |
| time_elapsed | 325 |
| total_timesteps | 20000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3999 |
| policy_loss | 605 |
| reward | 17.186195 |
| std | 1 |
| value_loss | 266 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4100 |
| time_elapsed | 331 |
| total_timesteps | 20500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0.0757 |
| learning_rate | 0.0007 |
| n_updates | 4099 |
| policy_loss | 187 |
| reward | 1.1687305 |
| std | 1 |
| value_loss | 22.2 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4200 |
| time_elapsed | 341 |
| total_timesteps | 21000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4199 |
| policy_loss | -7.42 |
| reward | -0.5722446 |
| std | 1 |
| value_loss | 0.248 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4300 |
| time_elapsed | 351 |
| total_timesteps | 21500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4299 |
| policy_loss | 44.7 |
| reward | -0.39718863 |
| std | 1 |
| value_loss | 2.09 |
---------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4400 |
| time_elapsed | 359 |
| total_timesteps | 22000 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4399 |
| policy_loss | -29.9 |
| reward | -0.07916131 |
| std | 1 |
| value_loss | 0.947 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 60 |
| iterations | 4500 |
| time_elapsed | 369 |
| total_timesteps | 22500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 4499 |
| policy_loss | -28.5 |
| reward | 1.8631558 |
| std | 1 |
| value_loss | 1.83 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4600 |
| time_elapsed | 375 |
| total_timesteps | 23000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4599 |
| policy_loss | 58.4 |
| reward | 1.4081724 |
| std | 0.999 |
| value_loss | 77 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4700 |
| time_elapsed | 383 |
| total_timesteps | 23500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4699 |
| policy_loss | 79.9 |
| reward | -2.0728068 |
| std | 0.998 |
| value_loss | 4.66 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4800 |
| time_elapsed | 392 |
| total_timesteps | 24000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0.0901 |
| learning_rate | 0.0007 |
| n_updates | 4799 |
| policy_loss | -15.9 |
| reward | -0.09403604 |
| std | 0.998 |
| value_loss | 0.165 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 4900 |
| time_elapsed | 399 |
| total_timesteps | 24500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4899 |
| policy_loss | -110 |
| reward | 2.0542228 |
| std | 1 |
| value_loss | 10.8 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5000 |
| time_elapsed | 407 |
| total_timesteps | 25000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4999 |
| policy_loss | -186 |
| reward | 2.1355224 |
| std | 0.999 |
| value_loss | 27.6 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5100 |
| time_elapsed | 416 |
| total_timesteps | 25500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5099 |
| policy_loss | -13.1 |
| reward | -0.08651471 |
| std | 0.999 |
| value_loss | 1.59 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5200 |
| time_elapsed | 423 |
| total_timesteps | 26000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5199 |
| policy_loss | 99 |
| reward | 2.3819537 |
| std | 0.997 |
| value_loss | 29.5 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5300 |
| time_elapsed | 432 |
| total_timesteps | 26500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 5299 |
| policy_loss | 372 |
| reward | -22.664398 |
| std | 0.997 |
| value_loss | 196 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5400 |
| time_elapsed | 440 |
| total_timesteps | 27000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5399 |
| policy_loss | 153 |
| reward | 1.1176498 |
| std | 0.995 |
| value_loss | 15.5 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5500 |
| time_elapsed | 446 |
| total_timesteps | 27500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 5499 |
| policy_loss | -92.6 |
| reward | -5.1304746 |
| std | 0.996 |
| value_loss | 14.5 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5600 |
| time_elapsed | 456 |
| total_timesteps | 28000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0.0186 |
| learning_rate | 0.0007 |
| n_updates | 5599 |
| policy_loss | 62.9 |
| reward | 1.1683302 |
| std | 0.996 |
| value_loss | 9.46 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5700 |
| time_elapsed | 464 |
| total_timesteps | 28500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 5699 |
| policy_loss | 34.4 |
| reward | -3.4618378 |
| std | 0.995 |
| value_loss | 12 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5800 |
| time_elapsed | 471 |
| total_timesteps | 29000 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | -0.247 |
| learning_rate | 0.0007 |
| n_updates | 5799 |
| policy_loss | -171 |
| reward | 5.8363895 |
| std | 0.996 |
| value_loss | 20.7 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 5900 |
| time_elapsed | 481 |
| total_timesteps | 29500 |
| train/ | |
| entropy_loss | -41 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5899 |
| policy_loss | 250 |
| reward | -4.7651134 |
| std | 0.996 |
| value_loss | 83.8 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6000 |
| time_elapsed | 487 |
| total_timesteps | 30000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5999 |
| policy_loss | -211 |
| reward | 3.167639 |
| std | 0.999 |
| value_loss | 95.9 |
------------------------------------
day: 3352, episode: 10
begin_total_asset: 1005653.74
end_total_asset: 8785262.38
total_reward: 7779608.65
total_cost: 31168.83
total_trades: 45054
Sharpe: 0.834
=================================
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6100 |
| time_elapsed | 495 |
| total_timesteps | 30500 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -0.113 |
| learning_rate | 0.0007 |
| n_updates | 6099 |
| policy_loss | 21.6 |
| reward | 0.12259659 |
| std | 1 |
| value_loss | 0.918 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6200 |
| time_elapsed | 505 |
| total_timesteps | 31000 |
| train/ | |
| entropy_loss | -41.1 |
| explained_variance | -0.00301 |
| learning_rate | 0.0007 |
| n_updates | 6199 |
| policy_loss | -126 |
| reward | 1.5182142 |
| std | 1 |
| value_loss | 16.8 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6300 |
| time_elapsed | 511 |
| total_timesteps | 31500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | -1.74 |
| learning_rate | 0.0007 |
| n_updates | 6299 |
| policy_loss | -25.1 |
| reward | 0.5284405 |
| std | 1 |
| value_loss | 1.56 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6400 |
| time_elapsed | 519 |
| total_timesteps | 32000 |
| train/ | |
| entropy_loss | -41.3 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6399 |
| policy_loss | 123 |
| reward | -3.4704874 |
| std | 1.01 |
| value_loss | 14.2 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6500 |
| time_elapsed | 528 |
| total_timesteps | 32500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 6499 |
| policy_loss | -102 |
| reward | 3.8022645 |
| std | 1.01 |
| value_loss | 11 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6600 |
| time_elapsed | 535 |
| total_timesteps | 33000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6599 |
| policy_loss | 372 |
| reward | 24.101572 |
| std | 1.01 |
| value_loss | 136 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6700 |
| time_elapsed | 543 |
| total_timesteps | 33500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 6699 |
| policy_loss | -923 |
| reward | -11.455252 |
| std | 1.01 |
| value_loss | 474 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6800 |
| time_elapsed | 552 |
| total_timesteps | 34000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | -0.553 |
| learning_rate | 0.0007 |
| n_updates | 6799 |
| policy_loss | -111 |
| reward | 0.10300914 |
| std | 1.01 |
| value_loss | 9.3 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 6900 |
| time_elapsed | 558 |
| total_timesteps | 34500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6899 |
| policy_loss | 133 |
| reward | -0.71322364 |
| std | 1.01 |
| value_loss | 15.3 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7000 |
| time_elapsed | 567 |
| total_timesteps | 35000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6999 |
| policy_loss | -84.3 |
| reward | 2.3256698 |
| std | 1.01 |
| value_loss | 4.58 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7100 |
| time_elapsed | 575 |
| total_timesteps | 35500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 7099 |
| policy_loss | -2.44 |
| reward | 0.9263134 |
| std | 1.01 |
| value_loss | 1.21 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7200 |
| time_elapsed | 586 |
| total_timesteps | 36000 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 7199 |
| policy_loss | -228 |
| reward | -1.9283981 |
| std | 1.01 |
| value_loss | 42 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7300 |
| time_elapsed | 596 |
| total_timesteps | 36500 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 7299 |
| policy_loss | 81 |
| reward | -6.168546 |
| std | 1.01 |
| value_loss | 8.16 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7400 |
| time_elapsed | 602 |
| total_timesteps | 37000 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 7399 |
| policy_loss | -136 |
| reward | -0.66517484 |
| std | 1.02 |
| value_loss | 12.4 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7500 |
| time_elapsed | 610 |
| total_timesteps | 37500 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 1.44e-05 |
| learning_rate | 0.0007 |
| n_updates | 7499 |
| policy_loss | -368 |
| reward | 0.28679553 |
| std | 1.02 |
| value_loss | 81.7 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7600 |
| time_elapsed | 620 |
| total_timesteps | 38000 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 7599 |
| policy_loss | -80.4 |
| reward | -0.02342434 |
| std | 1.02 |
| value_loss | 4.71 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7700 |
| time_elapsed | 626 |
| total_timesteps | 38500 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | -3.11 |
| learning_rate | 0.0007 |
| n_updates | 7699 |
| policy_loss | -91.7 |
| reward | 2.6142132 |
| std | 1.02 |
| value_loss | 6.61 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7800 |
| time_elapsed | 635 |
| total_timesteps | 39000 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 0.125 |
| learning_rate | 0.0007 |
| n_updates | 7799 |
| policy_loss | 4.76 |
| reward | -1.2840562 |
| std | 1.02 |
| value_loss | 0.762 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 7900 |
| time_elapsed | 644 |
| total_timesteps | 39500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0.0476 |
| learning_rate | 0.0007 |
| n_updates | 7899 |
| policy_loss | 273 |
| reward | -0.55217224 |
| std | 1.02 |
| value_loss | 46.2 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8000 |
| time_elapsed | 650 |
| total_timesteps | 40000 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 7999 |
| policy_loss | -769 |
| reward | 1.6622137 |
| std | 1.02 |
| value_loss | 367 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8100 |
| time_elapsed | 660 |
| total_timesteps | 40500 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | -0.131 |
| learning_rate | 0.0007 |
| n_updates | 8099 |
| policy_loss | 38.2 |
| reward | 0.38162667 |
| std | 1.02 |
| value_loss | 1.09 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8200 |
| time_elapsed | 668 |
| total_timesteps | 41000 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | -0.306 |
| learning_rate | 0.0007 |
| n_updates | 8199 |
| policy_loss | 40.8 |
| reward | 0.8386523 |
| std | 1.02 |
| value_loss | 3.26 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8300 |
| time_elapsed | 674 |
| total_timesteps | 41500 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8299 |
| policy_loss | 41.7 |
| reward | 1.5822707 |
| std | 1.02 |
| value_loss | 4.75 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8400 |
| time_elapsed | 684 |
| total_timesteps | 42000 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 8399 |
| policy_loss | 133 |
| reward | 0.1792632 |
| std | 1.02 |
| value_loss | 15.6 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8500 |
| time_elapsed | 691 |
| total_timesteps | 42500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8499 |
| policy_loss | 99.2 |
| reward | 1.6896911 |
| std | 1.02 |
| value_loss | 33.2 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8600 |
| time_elapsed | 699 |
| total_timesteps | 43000 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | -0.0163 |
| learning_rate | 0.0007 |
| n_updates | 8599 |
| policy_loss | -836 |
| reward | 30.580954 |
| std | 1.02 |
| value_loss | 436 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8700 |
| time_elapsed | 709 |
| total_timesteps | 43500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0.0669 |
| learning_rate | 0.0007 |
| n_updates | 8699 |
| policy_loss | -430 |
| reward | -9.169519 |
| std | 1.02 |
| value_loss | 186 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8800 |
| time_elapsed | 715 |
| total_timesteps | 44000 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0.178 |
| learning_rate | 0.0007 |
| n_updates | 8799 |
| policy_loss | -2.39 |
| reward | -0.505542 |
| std | 1.02 |
| value_loss | 0.0762 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 8900 |
| time_elapsed | 723 |
| total_timesteps | 44500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0.0519 |
| learning_rate | 0.0007 |
| n_updates | 8899 |
| policy_loss | -29 |
| reward | 1.4009765 |
| std | 1.02 |
| value_loss | 0.617 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9000 |
| time_elapsed | 733 |
| total_timesteps | 45000 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 0.0464 |
| learning_rate | 0.0007 |
| n_updates | 8999 |
| policy_loss | -142 |
| reward | -1.6482956 |
| std | 1.02 |
| value_loss | 12.1 |
--------------------------------------
----------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9100 |
| time_elapsed | 739 |
| total_timesteps | 45500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0.128 |
| learning_rate | 0.0007 |
| n_updates | 9099 |
| policy_loss | -18.8 |
| reward | -0.022230674 |
| std | 1.02 |
| value_loss | 1.08 |
----------------------------------------
---------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9200 |
| time_elapsed | 748 |
| total_timesteps | 46000 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 9199 |
| policy_loss | 35.8 |
| reward | -0.16132466 |
| std | 1.02 |
| value_loss | 6.5 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9300 |
| time_elapsed | 757 |
| total_timesteps | 46500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0.00416 |
| learning_rate | 0.0007 |
| n_updates | 9299 |
| policy_loss | -192 |
| reward | -3.3674068 |
| std | 1.02 |
| value_loss | 87.7 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9400 |
| time_elapsed | 763 |
| total_timesteps | 47000 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | -0.0393 |
| learning_rate | 0.0007 |
| n_updates | 9399 |
| policy_loss | -37.6 |
| reward | 1.150722 |
| std | 1.02 |
| value_loss | 3.37 |
------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9500 |
| time_elapsed | 772 |
| total_timesteps | 47500 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 9499 |
| policy_loss | -25.2 |
| reward | 0.41208658 |
| std | 1.02 |
| value_loss | 0.698 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9600 |
| time_elapsed | 780 |
| total_timesteps | 48000 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 9599 |
| policy_loss | 9.9 |
| reward | 0.5765088 |
| std | 1.03 |
| value_loss | 2.06 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9700 |
| time_elapsed | 787 |
| total_timesteps | 48500 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 9699 |
| policy_loss | 315 |
| reward | -0.2841707 |
| std | 1.03 |
| value_loss | 49.4 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9800 |
| time_elapsed | 797 |
| total_timesteps | 49000 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 9799 |
| policy_loss | 125 |
| reward | 0.6355639 |
| std | 1.03 |
| value_loss | 9.9 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 61 |
| iterations | 9900 |
| time_elapsed | 804 |
| total_timesteps | 49500 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 9899 |
| policy_loss | 155 |
| reward | -4.6037025 |
| std | 1.03 |
| value_loss | 16.2 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 61 |
| iterations | 10000 |
| time_elapsed | 811 |
| total_timesteps | 50000 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 9999 |
| policy_loss | 104 |
| reward | -3.306132 |
| std | 1.03 |
| value_loss | 9.5 |
-------------------------------------
{'batch_size': 128, 'buffer_size': 50000, 'learning_rate': 0.001}
Using cpu device
Logging to results/ddpg
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 24 |
| time_elapsed | 547 |
| total_timesteps | 13412 |
| train/ | |
| actor_loss | 12.5 |
| critic_loss | 295 |
| learning_rate | 0.001 |
| n_updates | 10059 |
| reward | -6.3763723 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 21 |
| time_elapsed | 1237 |
| total_timesteps | 26824 |
| train/ | |
| actor_loss | -5.51 |
| critic_loss | 14.7 |
| learning_rate | 0.001 |
| n_updates | 23471 |
| reward | -6.3763723 |
-----------------------------------
day: 3352, episode: 10
begin_total_asset: 1011382.29
end_total_asset: 6058882.63
total_reward: 5047500.34
total_cost: 1010.37
total_trades: 46928
Sharpe: 0.807
=================================
-----------------------------------
| time/ | |
| episodes | 12 |
| fps | 20 |
| time_elapsed | 1942 |
| total_timesteps | 40236 |
| train/ | |
| actor_loss | -8.67 |
| critic_loss | 7.57 |
| learning_rate | 0.001 |
| n_updates | 36883 |
| reward | -6.3763723 |
-----------------------------------
{'n_steps': 2048, 'ent_coef': 0.01, 'learning_rate': 0.00025, 'batch_size': 128}
Using cpu device
Logging to results/ppo
------------------------------------
| time/ | |
| fps | 60 |
| iterations | 1 |
| time_elapsed | 33 |
| total_timesteps | 2048 |
| train/ | |
| reward | -0.20400214 |
------------------------------------
-----------------------------------------
| time/ | |
| fps | 61 |
| iterations | 2 |
| time_elapsed | 66 |
| total_timesteps | 4096 |
| train/ | |
| approx_kl | 0.019446293 |
| clip_fraction | 0.218 |
| clip_range | 0.2 |
| entropy_loss | -41.2 |
| explained_variance | -0.0153 |
| learning_rate | 0.00025 |
| loss | 8.32 |
| n_updates | 10 |
| policy_gradient_loss | -0.0239 |
| reward | 0.964798 |
| std | 1 |
| value_loss | 12.1 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 60 |
| iterations | 3 |
| time_elapsed | 100 |
| total_timesteps | 6144 |
| train/ | |
| approx_kl | 0.017402954 |
| clip_fraction | 0.182 |
| clip_range | 0.2 |
| entropy_loss | -41.2 |
| explained_variance | 0.000782 |
| learning_rate | 0.00025 |
| loss | 28.3 |
| n_updates | 20 |
| policy_gradient_loss | -0.0164 |
| reward | 7.5384216 |
| std | 1 |
| value_loss | 51.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 4 |
| time_elapsed | 131 |
| total_timesteps | 8192 |
| train/ | |
| approx_kl | 0.015737543 |
| clip_fraction | 0.162 |
| clip_range | 0.2 |
| entropy_loss | -41.3 |
| explained_variance | -0.0037 |
| learning_rate | 0.00025 |
| loss | 22.7 |
| n_updates | 30 |
| policy_gradient_loss | -0.0225 |
| reward | 2.27421 |
| std | 1.01 |
| value_loss | 38.2 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 5 |
| time_elapsed | 165 |
| total_timesteps | 10240 |
| train/ | |
| approx_kl | 0.020310912 |
| clip_fraction | 0.184 |
| clip_range | 0.2 |
| entropy_loss | -41.3 |
| explained_variance | -0.00721 |
| learning_rate | 0.00025 |
| loss | 12 |
| n_updates | 40 |
| policy_gradient_loss | -0.0202 |
| reward | 0.7753585 |
| std | 1.01 |
| value_loss | 21.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 6 |
| time_elapsed | 196 |
| total_timesteps | 12288 |
| train/ | |
| approx_kl | 0.014960194 |
| clip_fraction | 0.143 |
| clip_range | 0.2 |
| entropy_loss | -41.4 |
| explained_variance | -0.0299 |
| learning_rate | 0.00025 |
| loss | 30.5 |
| n_updates | 50 |
| policy_gradient_loss | -0.0179 |
| reward | 2.62347 |
| std | 1.01 |
| value_loss | 46.2 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 7 |
| time_elapsed | 228 |
| total_timesteps | 14336 |
| train/ | |
| approx_kl | 0.023127541 |
| clip_fraction | 0.193 |
| clip_range | 0.2 |
| entropy_loss | -41.4 |
| explained_variance | -0.023 |
| learning_rate | 0.00025 |
| loss | 6.36 |
| n_updates | 60 |
| policy_gradient_loss | -0.0221 |
| reward | 1.0379714 |
| std | 1.01 |
| value_loss | 14.1 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 8 |
| time_elapsed | 260 |
| total_timesteps | 16384 |
| train/ | |
| approx_kl | 0.018745095 |
| clip_fraction | 0.201 |
| clip_range | 0.2 |
| entropy_loss | -41.5 |
| explained_variance | 0.00254 |
| learning_rate | 0.00025 |
| loss | 18.3 |
| n_updates | 70 |
| policy_gradient_loss | -0.019 |
| reward | -0.21705139 |
| std | 1.01 |
| value_loss | 59.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 9 |
| time_elapsed | 294 |
| total_timesteps | 18432 |
| train/ | |
| approx_kl | 0.018167643 |
| clip_fraction | 0.154 |
| clip_range | 0.2 |
| entropy_loss | -41.5 |
| explained_variance | -0.000664 |
| learning_rate | 0.00025 |
| loss | 21.5 |
| n_updates | 80 |
| policy_gradient_loss | -0.0144 |
| reward | -0.31962025 |
| std | 1.01 |
| value_loss | 36.6 |
-----------------------------------------
----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 10 |
| time_elapsed | 328 |
| total_timesteps | 20480 |
| train/ | |
| approx_kl | 0.02108417 |
| clip_fraction | 0.244 |
| clip_range | 0.2 |
| entropy_loss | -41.6 |
| explained_variance | 0.0203 |
| learning_rate | 0.00025 |
| loss | 7.36 |
| n_updates | 90 |
| policy_gradient_loss | -0.0191 |
| reward | 0.07936729 |
| std | 1.02 |
| value_loss | 23.3 |
----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 11 |
| time_elapsed | 357 |
| total_timesteps | 22528 |
| train/ | |
| approx_kl | 0.014700897 |
| clip_fraction | 0.166 |
| clip_range | 0.2 |
| entropy_loss | -41.6 |
| explained_variance | 0.00383 |
| learning_rate | 0.00025 |
| loss | 29.1 |
| n_updates | 100 |
| policy_gradient_loss | -0.0156 |
| reward | 1.4870173 |
| std | 1.02 |
| value_loss | 93.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 12 |
| time_elapsed | 391 |
| total_timesteps | 24576 |
| train/ | |
| approx_kl | 0.017688308 |
| clip_fraction | 0.194 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | -0.0104 |
| learning_rate | 0.00025 |
| loss | 6.58 |
| n_updates | 110 |
| policy_gradient_loss | -0.0161 |
| reward | -0.7623598 |
| std | 1.02 |
| value_loss | 17.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 13 |
| time_elapsed | 422 |
| total_timesteps | 26624 |
| train/ | |
| approx_kl | 0.023069832 |
| clip_fraction | 0.24 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | 0.0101 |
| learning_rate | 0.00025 |
| loss | 38.8 |
| n_updates | 120 |
| policy_gradient_loss | -0.0147 |
| reward | 3.4454083 |
| std | 1.02 |
| value_loss | 64.9 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 14 |
| time_elapsed | 454 |
| total_timesteps | 28672 |
| train/ | |
| approx_kl | 0.017561657 |
| clip_fraction | 0.204 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | -0.0172 |
| learning_rate | 0.00025 |
| loss | 21.4 |
| n_updates | 130 |
| policy_gradient_loss | -0.02 |
| reward | 0.9586051 |
| std | 1.02 |
| value_loss | 52.4 |
-----------------------------------------
day: 3352, episode: 10
begin_total_asset: 988584.72
end_total_asset: 3416710.65
total_reward: 2428125.94
total_cost: 420148.99
total_trades: 89136
Sharpe: 0.598
=================================
----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 15 |
| time_elapsed | 487 |
| total_timesteps | 30720 |
| train/ | |
| approx_kl | 0.02006042 |
| clip_fraction | 0.219 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | -0.0279 |
| learning_rate | 0.00025 |
| loss | 13.3 |
| n_updates | 140 |
| policy_gradient_loss | -0.0185 |
| reward | -0.3580386 |
| std | 1.02 |
| value_loss | 23.2 |
----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 16 |
| time_elapsed | 523 |
| total_timesteps | 32768 |
| train/ | |
| approx_kl | 0.025233287 |
| clip_fraction | 0.243 |
| clip_range | 0.2 |
| entropy_loss | -41.8 |
| explained_variance | -0.00552 |
| learning_rate | 0.00025 |
| loss | 22.4 |
| n_updates | 150 |
| policy_gradient_loss | -0.0176 |
| reward | -0.5090524 |
| std | 1.02 |
| value_loss | 69.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 17 |
| time_elapsed | 556 |
| total_timesteps | 34816 |
| train/ | |
| approx_kl | 0.022021335 |
| clip_fraction | 0.216 |
| clip_range | 0.2 |
| entropy_loss | -41.8 |
| explained_variance | 0.0188 |
| learning_rate | 0.00025 |
| loss | 8.75 |
| n_updates | 160 |
| policy_gradient_loss | -0.0188 |
| reward | 1.8985721 |
| std | 1.03 |
| value_loss | 23.2 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 18 |
| time_elapsed | 586 |
| total_timesteps | 36864 |
| train/ | |
| approx_kl | 0.019396901 |
| clip_fraction | 0.229 |
| clip_range | 0.2 |
| entropy_loss | -41.9 |
| explained_variance | 0.00194 |
| learning_rate | 0.00025 |
| loss | 14.6 |
| n_updates | 170 |
| policy_gradient_loss | -0.0195 |
| reward | -0.31956208 |
| std | 1.03 |
| value_loss | 39.6 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 19 |
| time_elapsed | 622 |
| total_timesteps | 38912 |
| train/ | |
| approx_kl | 0.020318478 |
| clip_fraction | 0.225 |
| clip_range | 0.2 |
| entropy_loss | -41.9 |
| explained_variance | 0.0132 |
| learning_rate | 0.00025 |
| loss | 22.3 |
| n_updates | 180 |
| policy_gradient_loss | -0.0128 |
| reward | 0.33881456 |
| std | 1.03 |
| value_loss | 55.7 |
-----------------------------------------
----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 20 |
| time_elapsed | 652 |
| total_timesteps | 40960 |
| train/ | |
| approx_kl | 0.02080874 |
| clip_fraction | 0.179 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | 0.0334 |
| learning_rate | 0.00025 |
| loss | 5.55 |
| n_updates | 190 |
| policy_gradient_loss | -0.0186 |
| reward | 0.15585361 |
| std | 1.03 |
| value_loss | 19.1 |
----------------------------------------
----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 21 |
| time_elapsed | 686 |
| total_timesteps | 43008 |
| train/ | |
| approx_kl | 0.01973752 |
| clip_fraction | 0.227 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | 0.00997 |
| learning_rate | 0.00025 |
| loss | 19 |
| n_updates | 200 |
| policy_gradient_loss | -0.0153 |
| reward | -14.07267 |
| std | 1.03 |
| value_loss | 75.2 |
----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 22 |
| time_elapsed | 717 |
| total_timesteps | 45056 |
| train/ | |
| approx_kl | 0.013898542 |
| clip_fraction | 0.0931 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | -0.000876 |
| learning_rate | 0.00025 |
| loss | 12.2 |
| n_updates | 210 |
| policy_gradient_loss | -0.0138 |
| reward | -5.085373 |
| std | 1.03 |
| value_loss | 27 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 23 |
| time_elapsed | 750 |
| total_timesteps | 47104 |
| train/ | |
| approx_kl | 0.01667095 |
| clip_fraction | 0.185 |
| clip_range | 0.2 |
| entropy_loss | -42.1 |
| explained_variance | 0.00379 |
| learning_rate | 0.00025 |
| loss | 8.83 |
| n_updates | 220 |
| policy_gradient_loss | -0.0139 |
| reward | -0.11939671 |
| std | 1.03 |
| value_loss | 30.8 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 24 |
| time_elapsed | 785 |
| total_timesteps | 49152 |
| train/ | |
| approx_kl | 0.027711859 |
| clip_fraction | 0.253 |
| clip_range | 0.2 |
| entropy_loss | -42.1 |
| explained_variance | 0.0238 |
| learning_rate | 0.00025 |
| loss | 31.9 |
| n_updates | 230 |
| policy_gradient_loss | -0.00308 |
| reward | -1.080327 |
| std | 1.03 |
| value_loss | 75 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 62 |
| iterations | 25 |
| time_elapsed | 817 |
| total_timesteps | 51200 |
| train/ | |
| approx_kl | 0.025901645 |
| clip_fraction | 0.278 |
| clip_range | 0.2 |
| entropy_loss | -42.1 |
| explained_variance | 0.0481 |
| learning_rate | 0.00025 |
| loss | 5.34 |
| n_updates | 240 |
| policy_gradient_loss | -0.0164 |
| reward | 0.08477563 |
| std | 1.04 |
| value_loss | 13 |
-----------------------------------------
{'batch_size': 128, 'buffer_size': 100000, 'learning_rate': 0.0001, 'learning_starts': 100, 'ent_coef': 'auto_0.1'}
Using cpu device
Logging to results/sac
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 19 |
| time_elapsed | 703 |
| total_timesteps | 13412 |
| train/ | |
| actor_loss | 1.68e+03 |
| critic_loss | 1e+04 |
| ent_coef | 0.309 |
| ent_coef_loss | -0.516 |
| learning_rate | 0.0001 |
| n_updates | 13311 |
| reward | -11.183781 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 19 |
| time_elapsed | 1410 |
| total_timesteps | 26824 |
| train/ | |
| actor_loss | 677 |
| critic_loss | 66.2 |
| ent_coef | 0.0855 |
| ent_coef_loss | -112 |
| learning_rate | 0.0001 |
| n_updates | 26723 |
| reward | -10.753805 |
-----------------------------------
day: 3352, episode: 10
begin_total_asset: 1005927.23
end_total_asset: 5294689.46
total_reward: 4288762.22
total_cost: 37988.65
total_trades: 61507
Sharpe: 0.700
=================================
----------------------------------
| time/ | |
| episodes | 12 |
| fps | 18 |
| time_elapsed | 2126 |
| total_timesteps | 40236 |
| train/ | |
| actor_loss | 304 |
| critic_loss | 20.1 |
| ent_coef | 0.0227 |
| ent_coef_loss | -145 |
| learning_rate | 0.0001 |
| n_updates | 40135 |
| reward | -9.593834 |
----------------------------------
{'batch_size': 100, 'buffer_size': 1000000, 'learning_rate': 0.001}
Using cpu device
Logging to results/td3
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 24 |
| time_elapsed | 544 |
| total_timesteps | 13412 |
| train/ | |
| actor_loss | 132 |
| critic_loss | 6.19e+03 |
| learning_rate | 0.001 |
| n_updates | 10059 |
| reward | -2.3487854 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 21 |
| time_elapsed | 1242 |
| total_timesteps | 26824 |
| train/ | |
| actor_loss | 49 |
| critic_loss | 584 |
| learning_rate | 0.001 |
| n_updates | 23471 |
| reward | -2.3487854 |
-----------------------------------
day: 3352, episode: 10
begin_total_asset: 1012427.98
end_total_asset: 5866237.13
total_reward: 4853809.15
total_cost: 1011.41
total_trades: 53632
Sharpe: 0.831
=================================
-----------------------------------
| time/ | |
| episodes | 12 |
| fps | 20 |
| time_elapsed | 1943 |
| total_timesteps | 40236 |
| train/ | |
| actor_loss | 37.3 |
| critic_loss | 101 |
| learning_rate | 0.001 |
| n_updates | 36883 |
| reward | -2.3487854 |
-----------------------------------
hit end!
hit end!
hit end!
hit end!
hit end!
[*********************100%***********************] 1 of 1 completed
Shape of DataFrame: (22, 8)
i: 3
{'n_steps': 5, 'ent_coef': 0.01, 'learning_rate': 0.0007}
Using cpu device
Logging to results/a2c
-------------------------------------
| time/ | |
| fps | 46 |
| iterations | 100 |
| time_elapsed | 10 |
| total_timesteps | 500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | -0.471 |
| learning_rate | 0.0007 |
| n_updates | 99 |
| policy_loss | 86.2 |
| reward | 1.3343517 |
| std | 1 |
| value_loss | 5.99 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 47 |
| iterations | 200 |
| time_elapsed | 20 |
| total_timesteps | 1000 |
| train/ | |
| entropy_loss | -41.3 |
| explained_variance | -0.271 |
| learning_rate | 0.0007 |
| n_updates | 199 |
| policy_loss | 44.4 |
| reward | -1.4969016 |
| std | 1 |
| value_loss | 1.22 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 47 |
| iterations | 300 |
| time_elapsed | 31 |
| total_timesteps | 1500 |
| train/ | |
| entropy_loss | -41.3 |
| explained_variance | 0.0667 |
| learning_rate | 0.0007 |
| n_updates | 299 |
| policy_loss | 141 |
| reward | -4.3429856 |
| std | 1 |
| value_loss | 15.6 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 51 |
| iterations | 400 |
| time_elapsed | 39 |
| total_timesteps | 2000 |
| train/ | |
| entropy_loss | -41.3 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 399 |
| policy_loss | 28.9 |
| reward | -2.9280229 |
| std | 1.01 |
| value_loss | 0.941 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 54 |
| iterations | 500 |
| time_elapsed | 46 |
| total_timesteps | 2500 |
| train/ | |
| entropy_loss | -41.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 499 |
| policy_loss | -356 |
| reward | 2.440834 |
| std | 1 |
| value_loss | 95.7 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 52 |
| iterations | 600 |
| time_elapsed | 56 |
| total_timesteps | 3000 |
| train/ | |
| entropy_loss | -41.3 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 599 |
| policy_loss | -187 |
| reward | 7.7011724 |
| std | 1.01 |
| value_loss | 30.6 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 55 |
| iterations | 700 |
| time_elapsed | 63 |
| total_timesteps | 3500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | -0.042 |
| learning_rate | 0.0007 |
| n_updates | 699 |
| policy_loss | 23.3 |
| reward | -1.0782235 |
| std | 1.01 |
| value_loss | 0.963 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 56 |
| iterations | 800 |
| time_elapsed | 71 |
| total_timesteps | 4000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 799 |
| policy_loss | -258 |
| reward | -0.20911986 |
| std | 1.01 |
| value_loss | 50.4 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 55 |
| iterations | 900 |
| time_elapsed | 81 |
| total_timesteps | 4500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0.118 |
| learning_rate | 0.0007 |
| n_updates | 899 |
| policy_loss | -66.9 |
| reward | 0.8433642 |
| std | 1.01 |
| value_loss | 2.9 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 57 |
| iterations | 1000 |
| time_elapsed | 87 |
| total_timesteps | 5000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 999 |
| policy_loss | 5.19 |
| reward | -1.4874439 |
| std | 1.01 |
| value_loss | 4.01 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 57 |
| iterations | 1100 |
| time_elapsed | 96 |
| total_timesteps | 5500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | -0.555 |
| learning_rate | 0.0007 |
| n_updates | 1099 |
| policy_loss | -77.7 |
| reward | 1.8939301 |
| std | 1.01 |
| value_loss | 3.97 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 57 |
| iterations | 1200 |
| time_elapsed | 105 |
| total_timesteps | 6000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1199 |
| policy_loss | 187 |
| reward | 2.3026025 |
| std | 1.01 |
| value_loss | 33.4 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 58 |
| iterations | 1300 |
| time_elapsed | 111 |
| total_timesteps | 6500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1299 |
| policy_loss | 47.1 |
| reward | 1.9173757 |
| std | 1.01 |
| value_loss | 5.89 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 54 |
| iterations | 1400 |
| time_elapsed | 127 |
| total_timesteps | 7000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | -0.0644 |
| learning_rate | 0.0007 |
| n_updates | 1399 |
| policy_loss | 32.9 |
| reward | -3.0739012 |
| std | 1.01 |
| value_loss | 1.06 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 55 |
| iterations | 1500 |
| time_elapsed | 134 |
| total_timesteps | 7500 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 1499 |
| policy_loss | 305 |
| reward | 2.5744946 |
| std | 1.01 |
| value_loss | 50.5 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 55 |
| iterations | 1600 |
| time_elapsed | 144 |
| total_timesteps | 8000 |
| train/ | |
| entropy_loss | -41.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1599 |
| policy_loss | -4.88 |
| reward | -2.1707737 |
| std | 1.01 |
| value_loss | 1.28 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 55 |
| iterations | 1700 |
| time_elapsed | 151 |
| total_timesteps | 8500 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 1699 |
| policy_loss | 160 |
| reward | -0.81266195 |
| std | 1.01 |
| value_loss | 16 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 56 |
| iterations | 1800 |
| time_elapsed | 158 |
| total_timesteps | 9000 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | -0.208 |
| learning_rate | 0.0007 |
| n_updates | 1799 |
| policy_loss | 38.1 |
| reward | -1.4904355 |
| std | 1.01 |
| value_loss | 5.15 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 56 |
| iterations | 1900 |
| time_elapsed | 169 |
| total_timesteps | 9500 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | 1.79e-07 |
| learning_rate | 0.0007 |
| n_updates | 1899 |
| policy_loss | 282 |
| reward | -0.36043915 |
| std | 1.01 |
| value_loss | 56 |
---------------------------------------
---------------------------------------
| time/ | |
| fps | 56 |
| iterations | 2000 |
| time_elapsed | 175 |
| total_timesteps | 10000 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | -0.0747 |
| learning_rate | 0.0007 |
| n_updates | 1999 |
| policy_loss | -471 |
| reward | -0.37017918 |
| std | 1.01 |
| value_loss | 171 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 57 |
| iterations | 2100 |
| time_elapsed | 183 |
| total_timesteps | 10500 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | 0.163 |
| learning_rate | 0.0007 |
| n_updates | 2099 |
| policy_loss | 1.74 |
| reward | -1.2063048 |
| std | 1.01 |
| value_loss | 0.28 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 56 |
| iterations | 2200 |
| time_elapsed | 193 |
| total_timesteps | 11000 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | -0.326 |
| learning_rate | 0.0007 |
| n_updates | 2199 |
| policy_loss | -94 |
| reward | 1.8247845 |
| std | 1.01 |
| value_loss | 5.61 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 57 |
| iterations | 2300 |
| time_elapsed | 199 |
| total_timesteps | 11500 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 0.0682 |
| learning_rate | 0.0007 |
| n_updates | 2299 |
| policy_loss | -128 |
| reward | 0.4869665 |
| std | 1.01 |
| value_loss | 15.7 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 57 |
| iterations | 2400 |
| time_elapsed | 208 |
| total_timesteps | 12000 |
| train/ | |
| entropy_loss | -41.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2399 |
| policy_loss | -173 |
| reward | -0.9164407 |
| std | 1.01 |
| value_loss | 23.1 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 57 |
| iterations | 2500 |
| time_elapsed | 217 |
| total_timesteps | 12500 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2499 |
| policy_loss | 86.3 |
| reward | 3.2540042 |
| std | 1.02 |
| value_loss | 5.33 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 58 |
| iterations | 2600 |
| time_elapsed | 223 |
| total_timesteps | 13000 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 2599 |
| policy_loss | 428 |
| reward | 2.4169402 |
| std | 1.02 |
| value_loss | 112 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 57 |
| iterations | 2700 |
| time_elapsed | 233 |
| total_timesteps | 13500 |
| train/ | |
| entropy_loss | -41.6 |
| explained_variance | 0.0601 |
| learning_rate | 0.0007 |
| n_updates | 2699 |
| policy_loss | 1.73 |
| reward | -1.3785244 |
| std | 1.02 |
| value_loss | 0.378 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 2800 |
| time_elapsed | 241 |
| total_timesteps | 14000 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2799 |
| policy_loss | 45.3 |
| reward | -1.8347946 |
| std | 1.02 |
| value_loss | 4.25 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 2900 |
| time_elapsed | 247 |
| total_timesteps | 14500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 2899 |
| policy_loss | -49.6 |
| reward | 0.13086061 |
| std | 1.02 |
| value_loss | 1.75 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3000 |
| time_elapsed | 258 |
| total_timesteps | 15000 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | -0.104 |
| learning_rate | 0.0007 |
| n_updates | 2999 |
| policy_loss | -51.1 |
| reward | -2.9340496 |
| std | 1.02 |
| value_loss | 1.92 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3100 |
| time_elapsed | 266 |
| total_timesteps | 15500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 3099 |
| policy_loss | -96 |
| reward | 5.6104155 |
| std | 1.02 |
| value_loss | 7.44 |
-------------------------------------
------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3200 |
| time_elapsed | 273 |
| total_timesteps | 16000 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3199 |
| policy_loss | 288 |
| reward | 4.10712 |
| std | 1.02 |
| value_loss | 56 |
------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3300 |
| time_elapsed | 283 |
| total_timesteps | 16500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 3299 |
| policy_loss | 29.9 |
| reward | 0.10846165 |
| std | 1.02 |
| value_loss | 6.75 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3400 |
| time_elapsed | 290 |
| total_timesteps | 17000 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3399 |
| policy_loss | -128 |
| reward | -0.26822066 |
| std | 1.02 |
| value_loss | 12.3 |
---------------------------------------
---------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3500 |
| time_elapsed | 298 |
| total_timesteps | 17500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3499 |
| policy_loss | 23.3 |
| reward | 0.012110213 |
| std | 1.02 |
| value_loss | 0.832 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3600 |
| time_elapsed | 308 |
| total_timesteps | 18000 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3599 |
| policy_loss | -94.5 |
| reward | -0.6443226 |
| std | 1.02 |
| value_loss | 11.1 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3700 |
| time_elapsed | 314 |
| total_timesteps | 18500 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 3699 |
| policy_loss | -16.7 |
| reward | 1.8698422 |
| std | 1.02 |
| value_loss | 0.374 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3800 |
| time_elapsed | 323 |
| total_timesteps | 19000 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 3799 |
| policy_loss | 166 |
| reward | -1.3664656 |
| std | 1.02 |
| value_loss | 19.5 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 3900 |
| time_elapsed | 332 |
| total_timesteps | 19500 |
| train/ | |
| entropy_loss | -41.7 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3899 |
| policy_loss | 43.9 |
| reward | -1.1592114 |
| std | 1.02 |
| value_loss | 2.46 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 58 |
| iterations | 4000 |
| time_elapsed | 339 |
| total_timesteps | 20000 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 3999 |
| policy_loss | -31.6 |
| reward | 1.018338 |
| std | 1.02 |
| value_loss | 0.683 |
------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 4100 |
| time_elapsed | 348 |
| total_timesteps | 20500 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4099 |
| policy_loss | -21.4 |
| reward | 0.26098472 |
| std | 1.02 |
| value_loss | 0.295 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 58 |
| iterations | 4200 |
| time_elapsed | 356 |
| total_timesteps | 21000 |
| train/ | |
| entropy_loss | -41.8 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 4199 |
| policy_loss | 37.3 |
| reward | 2.0496662 |
| std | 1.02 |
| value_loss | 1.24 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 4300 |
| time_elapsed | 362 |
| total_timesteps | 21500 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 4299 |
| policy_loss | 21.7 |
| reward | 0.5919729 |
| std | 1.03 |
| value_loss | 0.614 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 58 |
| iterations | 4400 |
| time_elapsed | 373 |
| total_timesteps | 22000 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4399 |
| policy_loss | -59.5 |
| reward | -0.44648832 |
| std | 1.03 |
| value_loss | 2.35 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 4500 |
| time_elapsed | 380 |
| total_timesteps | 22500 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 4499 |
| policy_loss | 75.7 |
| reward | -1.7295737 |
| std | 1.03 |
| value_loss | 5.7 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 59 |
| iterations | 4600 |
| time_elapsed | 387 |
| total_timesteps | 23000 |
| train/ | |
| entropy_loss | -41.9 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4599 |
| policy_loss | -194 |
| reward | -2.21535 |
| std | 1.03 |
| value_loss | 37.3 |
------------------------------------
--------------------------------------
| time/ | |
| fps | 58 |
| iterations | 4700 |
| time_elapsed | 398 |
| total_timesteps | 23500 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | -0.0141 |
| learning_rate | 0.0007 |
| n_updates | 4699 |
| policy_loss | -32.7 |
| reward | 0.16243774 |
| std | 1.03 |
| value_loss | 1.75 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 59 |
| iterations | 4800 |
| time_elapsed | 404 |
| total_timesteps | 24000 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | 0.168 |
| learning_rate | 0.0007 |
| n_updates | 4799 |
| policy_loss | -61.7 |
| reward | 0.961177 |
| std | 1.03 |
| value_loss | 2.67 |
------------------------------------
------------------------------------
| time/ | |
| fps | 59 |
| iterations | 4900 |
| time_elapsed | 412 |
| total_timesteps | 24500 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4899 |
| policy_loss | -54.1 |
| reward | 3.000443 |
| std | 1.03 |
| value_loss | 2.52 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5000 |
| time_elapsed | 422 |
| total_timesteps | 25000 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 4999 |
| policy_loss | 75.7 |
| reward | 0.7883484 |
| std | 1.03 |
| value_loss | 6.61 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5100 |
| time_elapsed | 428 |
| total_timesteps | 25500 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5099 |
| policy_loss | 237 |
| reward | -0.49083808 |
| std | 1.03 |
| value_loss | 39.1 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5200 |
| time_elapsed | 437 |
| total_timesteps | 26000 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5199 |
| policy_loss | 152 |
| reward | 2.7196112 |
| std | 1.03 |
| value_loss | 16.1 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5300 |
| time_elapsed | 445 |
| total_timesteps | 26500 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 5299 |
| policy_loss | -317 |
| reward | 0.59174556 |
| std | 1.03 |
| value_loss | 63.7 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5400 |
| time_elapsed | 452 |
| total_timesteps | 27000 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5399 |
| policy_loss | -126 |
| reward | 0.06384493 |
| std | 1.03 |
| value_loss | 9.43 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5500 |
| time_elapsed | 461 |
| total_timesteps | 27500 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 5499 |
| policy_loss | -11.3 |
| reward | -1.1629822 |
| std | 1.03 |
| value_loss | 0.213 |
--------------------------------------
------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5600 |
| time_elapsed | 469 |
| total_timesteps | 28000 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5599 |
| policy_loss | 91 |
| reward | 1.35537 |
| std | 1.03 |
| value_loss | 5.83 |
------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5700 |
| time_elapsed | 476 |
| total_timesteps | 28500 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 5699 |
| policy_loss | -18.6 |
| reward | -2.177703 |
| std | 1.03 |
| value_loss | 0.358 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5800 |
| time_elapsed | 487 |
| total_timesteps | 29000 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 5799 |
| policy_loss | -36.6 |
| reward | -2.1937134 |
| std | 1.03 |
| value_loss | 2.54 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 5900 |
| time_elapsed | 497 |
| total_timesteps | 29500 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 5899 |
| policy_loss | -94.3 |
| reward | -1.7350562 |
| std | 1.03 |
| value_loss | 7.48 |
--------------------------------------
day: 3330, episode: 10
begin_total_asset: 952508.66
end_total_asset: 4088694.53
total_reward: 3136185.87
total_cost: 3157.22
total_trades: 58734
Sharpe: 0.733
=================================
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6000 |
| time_elapsed | 507 |
| total_timesteps | 30000 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 5999 |
| policy_loss | 9.33 |
| reward | 1.7072018 |
| std | 1.03 |
| value_loss | 0.168 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6100 |
| time_elapsed | 515 |
| total_timesteps | 30500 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | 0.137 |
| learning_rate | 0.0007 |
| n_updates | 6099 |
| policy_loss | 86.1 |
| reward | 0.23781453 |
| std | 1.03 |
| value_loss | 5.84 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6200 |
| time_elapsed | 522 |
| total_timesteps | 31000 |
| train/ | |
| entropy_loss | -42 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 6199 |
| policy_loss | 81.6 |
| reward | -0.55448675 |
| std | 1.03 |
| value_loss | 4.51 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6300 |
| time_elapsed | 532 |
| total_timesteps | 31500 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6299 |
| policy_loss | -123 |
| reward | 0.53070265 |
| std | 1.03 |
| value_loss | 10.1 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6400 |
| time_elapsed | 539 |
| total_timesteps | 32000 |
| train/ | |
| entropy_loss | -42.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6399 |
| policy_loss | -35.1 |
| reward | -0.7190698 |
| std | 1.04 |
| value_loss | 0.746 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6500 |
| time_elapsed | 547 |
| total_timesteps | 32500 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 6499 |
| policy_loss | -195 |
| reward | -0.20805828 |
| std | 1.04 |
| value_loss | 24.3 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6600 |
| time_elapsed | 557 |
| total_timesteps | 33000 |
| train/ | |
| entropy_loss | -42.1 |
| explained_variance | 0.0285 |
| learning_rate | 0.0007 |
| n_updates | 6599 |
| policy_loss | -113 |
| reward | -2.668644 |
| std | 1.04 |
| value_loss | 13.9 |
-------------------------------------
----------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6700 |
| time_elapsed | 563 |
| total_timesteps | 33500 |
| train/ | |
| entropy_loss | -42.2 |
| explained_variance | -0.603 |
| learning_rate | 0.0007 |
| n_updates | 6699 |
| policy_loss | -39.6 |
| reward | -0.083356254 |
| std | 1.04 |
| value_loss | 0.818 |
----------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6800 |
| time_elapsed | 572 |
| total_timesteps | 34000 |
| train/ | |
| entropy_loss | -42.2 |
| explained_variance | 0.0184 |
| learning_rate | 0.0007 |
| n_updates | 6799 |
| policy_loss | 86.5 |
| reward | 0.6618178 |
| std | 1.04 |
| value_loss | 5.35 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 6900 |
| time_elapsed | 581 |
| total_timesteps | 34500 |
| train/ | |
| entropy_loss | -42.2 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6899 |
| policy_loss | 56.7 |
| reward | 0.052872755 |
| std | 1.04 |
| value_loss | 2.85 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7000 |
| time_elapsed | 587 |
| total_timesteps | 35000 |
| train/ | |
| entropy_loss | -42.3 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 6999 |
| policy_loss | 197 |
| reward | 1.6442178 |
| std | 1.04 |
| value_loss | 26.3 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7100 |
| time_elapsed | 597 |
| total_timesteps | 35500 |
| train/ | |
| entropy_loss | -42.3 |
| explained_variance | -0.0238 |
| learning_rate | 0.0007 |
| n_updates | 7099 |
| policy_loss | 39.7 |
| reward | -0.16224274 |
| std | 1.04 |
| value_loss | 1.43 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7200 |
| time_elapsed | 605 |
| total_timesteps | 36000 |
| train/ | |
| entropy_loss | -42.3 |
| explained_variance | 0.03 |
| learning_rate | 0.0007 |
| n_updates | 7199 |
| policy_loss | 139 |
| reward | -0.1674491 |
| std | 1.04 |
| value_loss | 11.7 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7300 |
| time_elapsed | 611 |
| total_timesteps | 36500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | -0.0288 |
| learning_rate | 0.0007 |
| n_updates | 7299 |
| policy_loss | -406 |
| reward | 2.2645469 |
| std | 1.04 |
| value_loss | 134 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7400 |
| time_elapsed | 622 |
| total_timesteps | 37000 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 0.0351 |
| learning_rate | 0.0007 |
| n_updates | 7399 |
| policy_loss | 73.6 |
| reward | 0.30078474 |
| std | 1.04 |
| value_loss | 3.6 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7500 |
| time_elapsed | 629 |
| total_timesteps | 37500 |
| train/ | |
| entropy_loss | -42.3 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 7499 |
| policy_loss | -8.08 |
| reward | -0.3665664 |
| std | 1.04 |
| value_loss | 0.214 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7600 |
| time_elapsed | 636 |
| total_timesteps | 38000 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 7599 |
| policy_loss | 42.9 |
| reward | -0.79383886 |
| std | 1.04 |
| value_loss | 1.9 |
---------------------------------------
----------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7700 |
| time_elapsed | 647 |
| total_timesteps | 38500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 7699 |
| policy_loss | -104 |
| reward | -0.073217735 |
| std | 1.05 |
| value_loss | 10.3 |
----------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7800 |
| time_elapsed | 653 |
| total_timesteps | 39000 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 7799 |
| policy_loss | -152 |
| reward | -1.8329335 |
| std | 1.05 |
| value_loss | 16.7 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 7900 |
| time_elapsed | 661 |
| total_timesteps | 39500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 7899 |
| policy_loss | 144 |
| reward | -0.8008484 |
| std | 1.05 |
| value_loss | 15.8 |
--------------------------------------
----------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8000 |
| time_elapsed | 671 |
| total_timesteps | 40000 |
| train/ | |
| entropy_loss | -42.3 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 7999 |
| policy_loss | -8.53 |
| reward | -0.031915538 |
| std | 1.04 |
| value_loss | 0.0835 |
----------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8100 |
| time_elapsed | 677 |
| total_timesteps | 40500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 8099 |
| policy_loss | -69.3 |
| reward | 0.8095603 |
| std | 1.04 |
| value_loss | 3.08 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8200 |
| time_elapsed | 686 |
| total_timesteps | 41000 |
| train/ | |
| entropy_loss | -42.3 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8199 |
| policy_loss | -5.2 |
| reward | -0.5655167 |
| std | 1.04 |
| value_loss | 0.69 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8300 |
| time_elapsed | 695 |
| total_timesteps | 41500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8299 |
| policy_loss | -29.8 |
| reward | -1.5929188 |
| std | 1.04 |
| value_loss | 0.672 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8400 |
| time_elapsed | 701 |
| total_timesteps | 42000 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8399 |
| policy_loss | -54.2 |
| reward | -0.53150016 |
| std | 1.05 |
| value_loss | 9.5 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8500 |
| time_elapsed | 711 |
| total_timesteps | 42500 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8499 |
| policy_loss | 237 |
| reward | 2.7706447 |
| std | 1.05 |
| value_loss | 42.1 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8600 |
| time_elapsed | 719 |
| total_timesteps | 43000 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8599 |
| policy_loss | -188 |
| reward | 1.1153419 |
| std | 1.05 |
| value_loss | 21.7 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8700 |
| time_elapsed | 730 |
| total_timesteps | 43500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 8699 |
| policy_loss | -17.4 |
| reward | -0.5148427 |
| std | 1.05 |
| value_loss | 0.297 |
--------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8800 |
| time_elapsed | 740 |
| total_timesteps | 44000 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 8799 |
| policy_loss | 41.4 |
| reward | 0.32814896 |
| std | 1.05 |
| value_loss | 1.6 |
--------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 8900 |
| time_elapsed | 746 |
| total_timesteps | 44500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8899 |
| policy_loss | -47.2 |
| reward | -0.17413093 |
| std | 1.05 |
| value_loss | 1.75 |
---------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9000 |
| time_elapsed | 755 |
| total_timesteps | 45000 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 8999 |
| policy_loss | 65.1 |
| reward | 0.38266626 |
| std | 1.05 |
| value_loss | 6.64 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9100 |
| time_elapsed | 764 |
| total_timesteps | 45500 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 9099 |
| policy_loss | 31.2 |
| reward | 1.3317974 |
| std | 1.05 |
| value_loss | 0.927 |
-------------------------------------
---------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9200 |
| time_elapsed | 770 |
| total_timesteps | 46000 |
| train/ | |
| entropy_loss | -42.4 |
| explained_variance | -0.0927 |
| learning_rate | 0.0007 |
| n_updates | 9199 |
| policy_loss | 181 |
| reward | -0.49035767 |
| std | 1.05 |
| value_loss | 21.3 |
---------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9300 |
| time_elapsed | 780 |
| total_timesteps | 46500 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | 1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 9299 |
| policy_loss | 148 |
| reward | -8.756936 |
| std | 1.05 |
| value_loss | 30.5 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9400 |
| time_elapsed | 788 |
| total_timesteps | 47000 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | -0.066 |
| learning_rate | 0.0007 |
| n_updates | 9399 |
| policy_loss | 40.5 |
| reward | 0.5117786 |
| std | 1.05 |
| value_loss | 1.51 |
-------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9500 |
| time_elapsed | 794 |
| total_timesteps | 47500 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 9499 |
| policy_loss | 46.4 |
| reward | 1.5631902 |
| std | 1.05 |
| value_loss | 1.37 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9600 |
| time_elapsed | 804 |
| total_timesteps | 48000 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | 5.96e-08 |
| learning_rate | 0.0007 |
| n_updates | 9599 |
| policy_loss | 4.73 |
| reward | -0.8106855 |
| std | 1.05 |
| value_loss | 0.346 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9700 |
| time_elapsed | 811 |
| total_timesteps | 48500 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | -1.19e-07 |
| learning_rate | 0.0007 |
| n_updates | 9699 |
| policy_loss | 60.8 |
| reward | 1.219504 |
| std | 1.05 |
| value_loss | 3.44 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9800 |
| time_elapsed | 818 |
| total_timesteps | 49000 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | 0.00147 |
| learning_rate | 0.0007 |
| n_updates | 9799 |
| policy_loss | -19 |
| reward | 0.36547118 |
| std | 1.05 |
| value_loss | 6.68 |
--------------------------------------
-------------------------------------
| time/ | |
| fps | 59 |
| iterations | 9900 |
| time_elapsed | 829 |
| total_timesteps | 49500 |
| train/ | |
| entropy_loss | -42.5 |
| explained_variance | -0.0611 |
| learning_rate | 0.0007 |
| n_updates | 9899 |
| policy_loss | -14 |
| reward | 1.2229353 |
| std | 1.05 |
| value_loss | 2.29 |
-------------------------------------
--------------------------------------
| time/ | |
| fps | 59 |
| iterations | 10000 |
| time_elapsed | 835 |
| total_timesteps | 50000 |
| train/ | |
| entropy_loss | -42.6 |
| explained_variance | 0 |
| learning_rate | 0.0007 |
| n_updates | 9999 |
| policy_loss | -15.6 |
| reward | 0.31784078 |
| std | 1.05 |
| value_loss | 0.296 |
--------------------------------------
{'batch_size': 128, 'buffer_size': 50000, 'learning_rate': 0.001}
Using cpu device
Logging to results/ddpg
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 23 |
| time_elapsed | 556 |
| total_timesteps | 13324 |
| train/ | |
| actor_loss | 20.3 |
| critic_loss | 66.8 |
| learning_rate | 0.001 |
| n_updates | 9993 |
| reward | -4.5011277 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 21 |
| time_elapsed | 1250 |
| total_timesteps | 26648 |
| train/ | |
| actor_loss | 2.62 |
| critic_loss | 9.79 |
| learning_rate | 0.001 |
| n_updates | 23317 |
| reward | -4.5011277 |
-----------------------------------
day: 3330, episode: 10
begin_total_asset: 965326.95
end_total_asset: 3940368.63
total_reward: 2975041.68
total_cost: 964.36
total_trades: 53280
Sharpe: 0.657
=================================
-----------------------------------
| time/ | |
| episodes | 12 |
| fps | 20 |
| time_elapsed | 1944 |
| total_timesteps | 39972 |
| train/ | |
| actor_loss | -3.63 |
| critic_loss | 2.39 |
| learning_rate | 0.001 |
| n_updates | 36641 |
| reward | -4.5011277 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 16 |
| fps | 20 |
| time_elapsed | 2656 |
| total_timesteps | 53296 |
| train/ | |
| actor_loss | -6.92 |
| critic_loss | 1.51 |
| learning_rate | 0.001 |
| n_updates | 49965 |
| reward | -4.5011277 |
-----------------------------------
{'n_steps': 2048, 'ent_coef': 0.01, 'learning_rate': 0.00025, 'batch_size': 128}
Using cpu device
Logging to results/ppo
-----------------------------------
| time/ | |
| fps | 70 |
| iterations | 1 |
| time_elapsed | 29 |
| total_timesteps | 2048 |
| train/ | |
| reward | -0.3290882 |
-----------------------------------
-----------------------------------------
| time/ | |
| fps | 67 |
| iterations | 2 |
| time_elapsed | 60 |
| total_timesteps | 4096 |
| train/ | |
| approx_kl | 0.019916927 |
| clip_fraction | 0.207 |
| clip_range | 0.2 |
| entropy_loss | -41.2 |
| explained_variance | -0.00611 |
| learning_rate | 0.00025 |
| loss | 6.42 |
| n_updates | 10 |
| policy_gradient_loss | -0.0268 |
| reward | 0.84259444 |
| std | 1 |
| value_loss | 15 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 65 |
| iterations | 3 |
| time_elapsed | 93 |
| total_timesteps | 6144 |
| train/ | |
| approx_kl | 0.016416349 |
| clip_fraction | 0.211 |
| clip_range | 0.2 |
| entropy_loss | -41.3 |
| explained_variance | 0.00243 |
| learning_rate | 0.00025 |
| loss | 71.4 |
| n_updates | 20 |
| policy_gradient_loss | -0.0189 |
| reward | -22.102169 |
| std | 1.01 |
| value_loss | 95.2 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 65 |
| iterations | 4 |
| time_elapsed | 125 |
| total_timesteps | 8192 |
| train/ | |
| approx_kl | 0.016711425 |
| clip_fraction | 0.152 |
| clip_range | 0.2 |
| entropy_loss | -41.3 |
| explained_variance | -0.0235 |
| learning_rate | 0.00025 |
| loss | 19.2 |
| n_updates | 30 |
| policy_gradient_loss | -0.0181 |
| reward | 0.8641611 |
| std | 1.01 |
| value_loss | 51 |
-----------------------------------------
----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 5 |
| time_elapsed | 158 |
| total_timesteps | 10240 |
| train/ | |
| approx_kl | 0.02179965 |
| clip_fraction | 0.258 |
| clip_range | 0.2 |
| entropy_loss | -41.3 |
| explained_variance | -0.00376 |
| learning_rate | 0.00025 |
| loss | 24.8 |
| n_updates | 40 |
| policy_gradient_loss | -0.0161 |
| reward | 0.7124557 |
| std | 1.01 |
| value_loss | 37.7 |
----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 6 |
| time_elapsed | 189 |
| total_timesteps | 12288 |
| train/ | |
| approx_kl | 0.020254686 |
| clip_fraction | 0.206 |
| clip_range | 0.2 |
| entropy_loss | -41.4 |
| explained_variance | -0.02 |
| learning_rate | 0.00025 |
| loss | 15.9 |
| n_updates | 50 |
| policy_gradient_loss | -0.0192 |
| reward | 2.9676142 |
| std | 1.01 |
| value_loss | 56 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 7 |
| time_elapsed | 221 |
| total_timesteps | 14336 |
| train/ | |
| approx_kl | 0.015349641 |
| clip_fraction | 0.182 |
| clip_range | 0.2 |
| entropy_loss | -41.5 |
| explained_variance | 0.00714 |
| learning_rate | 0.00025 |
| loss | 7.18 |
| n_updates | 60 |
| policy_gradient_loss | -0.0222 |
| reward | -1.0227845 |
| std | 1.01 |
| value_loss | 12.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 8 |
| time_elapsed | 254 |
| total_timesteps | 16384 |
| train/ | |
| approx_kl | 0.020761559 |
| clip_fraction | 0.231 |
| clip_range | 0.2 |
| entropy_loss | -41.5 |
| explained_variance | -0.00857 |
| learning_rate | 0.00025 |
| loss | 25.2 |
| n_updates | 70 |
| policy_gradient_loss | -0.0199 |
| reward | 0.80425155 |
| std | 1.01 |
| value_loss | 57.8 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 9 |
| time_elapsed | 283 |
| total_timesteps | 18432 |
| train/ | |
| approx_kl | 0.018122694 |
| clip_fraction | 0.236 |
| clip_range | 0.2 |
| entropy_loss | -41.5 |
| explained_variance | 0.00296 |
| learning_rate | 0.00025 |
| loss | 28.1 |
| n_updates | 80 |
| policy_gradient_loss | -0.0166 |
| reward | -1.42386 |
| std | 1.01 |
| value_loss | 57.8 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 10 |
| time_elapsed | 318 |
| total_timesteps | 20480 |
| train/ | |
| approx_kl | 0.022673171 |
| clip_fraction | 0.205 |
| clip_range | 0.2 |
| entropy_loss | -41.6 |
| explained_variance | -0.013 |
| learning_rate | 0.00025 |
| loss | 17.3 |
| n_updates | 90 |
| policy_gradient_loss | -0.0191 |
| reward | 0.8197509 |
| std | 1.02 |
| value_loss | 44.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 11 |
| time_elapsed | 352 |
| total_timesteps | 22528 |
| train/ | |
| approx_kl | 0.020850785 |
| clip_fraction | 0.214 |
| clip_range | 0.2 |
| entropy_loss | -41.6 |
| explained_variance | -0.00669 |
| learning_rate | 0.00025 |
| loss | 48.4 |
| n_updates | 100 |
| policy_gradient_loss | -0.0161 |
| reward | 1.2033767 |
| std | 1.02 |
| value_loss | 99.1 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 12 |
| time_elapsed | 384 |
| total_timesteps | 24576 |
| train/ | |
| approx_kl | 0.024814304 |
| clip_fraction | 0.251 |
| clip_range | 0.2 |
| entropy_loss | -41.6 |
| explained_variance | -0.0225 |
| learning_rate | 0.00025 |
| loss | 10.8 |
| n_updates | 110 |
| policy_gradient_loss | -0.018 |
| reward | 1.610058 |
| std | 1.02 |
| value_loss | 22.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 13 |
| time_elapsed | 416 |
| total_timesteps | 26624 |
| train/ | |
| approx_kl | 0.017855735 |
| clip_fraction | 0.173 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | 0.00501 |
| learning_rate | 0.00025 |
| loss | 34.5 |
| n_updates | 120 |
| policy_gradient_loss | -0.0189 |
| reward | 7.162905 |
| std | 1.02 |
| value_loss | 112 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 14 |
| time_elapsed | 446 |
| total_timesteps | 28672 |
| train/ | |
| approx_kl | 0.018644353 |
| clip_fraction | 0.153 |
| clip_range | 0.2 |
| entropy_loss | -41.7 |
| explained_variance | 0.0117 |
| learning_rate | 0.00025 |
| loss | 16.7 |
| n_updates | 130 |
| policy_gradient_loss | -0.0172 |
| reward | 2.0473788 |
| std | 1.02 |
| value_loss | 53.3 |
-----------------------------------------
day: 3330, episode: 10
begin_total_asset: 994554.41
end_total_asset: 4699503.39
total_reward: 3704948.98
total_cost: 439274.68
total_trades: 90096
Sharpe: 0.806
=================================
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 15 |
| time_elapsed | 480 |
| total_timesteps | 30720 |
| train/ | |
| approx_kl | 0.02508668 |
| clip_fraction | 0.25 |
| clip_range | 0.2 |
| entropy_loss | -41.8 |
| explained_variance | -0.0505 |
| learning_rate | 0.00025 |
| loss | 4.42 |
| n_updates | 140 |
| policy_gradient_loss | -0.0173 |
| reward | -0.36127353 |
| std | 1.02 |
| value_loss | 14.8 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 16 |
| time_elapsed | 510 |
| total_timesteps | 32768 |
| train/ | |
| approx_kl | 0.021448491 |
| clip_fraction | 0.211 |
| clip_range | 0.2 |
| entropy_loss | -41.8 |
| explained_variance | 0.00132 |
| learning_rate | 0.00025 |
| loss | 38 |
| n_updates | 150 |
| policy_gradient_loss | -0.00894 |
| reward | -2.4289682 |
| std | 1.02 |
| value_loss | 88 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 17 |
| time_elapsed | 542 |
| total_timesteps | 34816 |
| train/ | |
| approx_kl | 0.02103462 |
| clip_fraction | 0.208 |
| clip_range | 0.2 |
| entropy_loss | -41.8 |
| explained_variance | -0.0246 |
| learning_rate | 0.00025 |
| loss | 35.3 |
| n_updates | 160 |
| policy_gradient_loss | -0.0134 |
| reward | -0.71985894 |
| std | 1.02 |
| value_loss | 54.5 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 18 |
| time_elapsed | 577 |
| total_timesteps | 36864 |
| train/ | |
| approx_kl | 0.022089712 |
| clip_fraction | 0.213 |
| clip_range | 0.2 |
| entropy_loss | -41.9 |
| explained_variance | -0.0028 |
| learning_rate | 0.00025 |
| loss | 27.9 |
| n_updates | 170 |
| policy_gradient_loss | -0.0207 |
| reward | 0.11034006 |
| std | 1.03 |
| value_loss | 39.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 19 |
| time_elapsed | 609 |
| total_timesteps | 38912 |
| train/ | |
| approx_kl | 0.014264661 |
| clip_fraction | 0.126 |
| clip_range | 0.2 |
| entropy_loss | -41.9 |
| explained_variance | -0.00283 |
| learning_rate | 0.00025 |
| loss | 58.6 |
| n_updates | 180 |
| policy_gradient_loss | -0.0135 |
| reward | 6.176509 |
| std | 1.03 |
| value_loss | 119 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 20 |
| time_elapsed | 642 |
| total_timesteps | 40960 |
| train/ | |
| approx_kl | 0.027180977 |
| clip_fraction | 0.292 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | 0.0421 |
| learning_rate | 0.00025 |
| loss | 8.9 |
| n_updates | 190 |
| policy_gradient_loss | -0.0156 |
| reward | 0.20096779 |
| std | 1.03 |
| value_loss | 19.8 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 21 |
| time_elapsed | 671 |
| total_timesteps | 43008 |
| train/ | |
| approx_kl | 0.021884244 |
| clip_fraction | 0.205 |
| clip_range | 0.2 |
| entropy_loss | -42 |
| explained_variance | -0.00219 |
| learning_rate | 0.00025 |
| loss | 53.4 |
| n_updates | 200 |
| policy_gradient_loss | -0.0145 |
| reward | -0.839949 |
| std | 1.03 |
| value_loss | 94.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 22 |
| time_elapsed | 706 |
| total_timesteps | 45056 |
| train/ | |
| approx_kl | 0.024635753 |
| clip_fraction | 0.235 |
| clip_range | 0.2 |
| entropy_loss | -42.1 |
| explained_variance | -0.00329 |
| learning_rate | 0.00025 |
| loss | 27.6 |
| n_updates | 210 |
| policy_gradient_loss | -0.0148 |
| reward | -0.21918707 |
| std | 1.04 |
| value_loss | 61.8 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 64 |
| iterations | 23 |
| time_elapsed | 735 |
| total_timesteps | 47104 |
| train/ | |
| approx_kl | 0.038902897 |
| clip_fraction | 0.28 |
| clip_range | 0.2 |
| entropy_loss | -42.2 |
| explained_variance | -0.0241 |
| learning_rate | 0.00025 |
| loss | 21.9 |
| n_updates | 220 |
| policy_gradient_loss | -0.0178 |
| reward | -0.12725857 |
| std | 1.04 |
| value_loss | 34.3 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 24 |
| time_elapsed | 768 |
| total_timesteps | 49152 |
| train/ | |
| approx_kl | 0.017998032 |
| clip_fraction | 0.174 |
| clip_range | 0.2 |
| entropy_loss | -42.2 |
| explained_variance | 0.0111 |
| learning_rate | 0.00025 |
| loss | 27.9 |
| n_updates | 230 |
| policy_gradient_loss | -0.0148 |
| reward | 1.7231001 |
| std | 1.04 |
| value_loss | 65.2 |
-----------------------------------------
-----------------------------------------
| time/ | |
| fps | 63 |
| iterations | 25 |
| time_elapsed | 804 |
| total_timesteps | 51200 |
| train/ | |
| approx_kl | 0.017844416 |
| clip_fraction | 0.186 |
| clip_range | 0.2 |
| entropy_loss | -42.3 |
| explained_variance | 0.0211 |
| learning_rate | 0.00025 |
| loss | 13.5 |
| n_updates | 240 |
| policy_gradient_loss | -0.0149 |
| reward | -1.0208522 |
| std | 1.04 |
| value_loss | 35.2 |
-----------------------------------------
{'batch_size': 128, 'buffer_size': 100000, 'learning_rate': 0.0001, 'learning_starts': 100, 'ent_coef': 'auto_0.1'}
Using cpu device
Logging to results/sac
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 18 |
| time_elapsed | 704 |
| total_timesteps | 13324 |
| train/ | |
| actor_loss | 1.1e+03 |
| critic_loss | 642 |
| ent_coef | 0.169 |
| ent_coef_loss | -83.1 |
| learning_rate | 0.0001 |
| n_updates | 13223 |
| reward | -4.2128644 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 18 |
| time_elapsed | 1433 |
| total_timesteps | 26648 |
| train/ | |
| actor_loss | 451 |
| critic_loss | 27.5 |
| ent_coef | 0.046 |
| ent_coef_loss | -109 |
| learning_rate | 0.0001 |
| n_updates | 26547 |
| reward | -4.2404695 |
-----------------------------------
day: 3330, episode: 10
begin_total_asset: 953106.81
end_total_asset: 7458866.64
total_reward: 6505759.83
total_cost: 8648.15
total_trades: 59083
Sharpe: 0.842
=================================
----------------------------------
| time/ | |
| episodes | 12 |
| fps | 18 |
| time_elapsed | 2152 |
| total_timesteps | 39972 |
| train/ | |
| actor_loss | 216 |
| critic_loss | 38.6 |
| ent_coef | 0.0127 |
| ent_coef_loss | -102 |
| learning_rate | 0.0001 |
| n_updates | 39871 |
| reward | -3.931381 |
----------------------------------
{'batch_size': 100, 'buffer_size': 1000000, 'learning_rate': 0.001}
Using cpu device
Logging to results/td3
-----------------------------------
| time/ | |
| episodes | 4 |
| fps | 25 |
| time_elapsed | 526 |
| total_timesteps | 13324 |
| train/ | |
| actor_loss | 91.6 |
| critic_loss | 1.45e+03 |
| learning_rate | 0.001 |
| n_updates | 9993 |
| reward | -3.5290053 |
-----------------------------------
-----------------------------------
| time/ | |
| episodes | 8 |
| fps | 22 |
| time_elapsed | 1191 |
| total_timesteps | 26648 |
| train/ | |
| actor_loss | 43.8 |
| critic_loss | 317 |
| learning_rate | 0.001 |
| n_updates | 23317 |
| reward | -3.5290053 |
-----------------------------------
day: 3330, episode: 10
begin_total_asset: 972865.93
end_total_asset: 3563567.55
total_reward: 2590701.62
total_cost: 971.89
total_trades: 46620
Sharpe: 0.648
=================================
-----------------------------------
| time/ | |
| episodes | 12 |
| fps | 21 |
| time_elapsed | 1862 |
| total_timesteps | 39972 |
| train/ | |
| actor_loss | 34.3 |
| critic_loss | 54.4 |
| learning_rate | 0.001 |
| n_updates | 36641 |
| reward | -3.5290053 |
-----------------------------------