Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
AUTOMATIC1111
GitHub Repository: AUTOMATIC1111/stable-diffusion-webui
Path: blob/master/configs/instruct-pix2pix.yaml
2447 views
1
# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
2
# See more details in LICENSE.
3
4
model:
5
base_learning_rate: 1.0e-04
6
target: modules.models.diffusion.ddpm_edit.LatentDiffusion
7
params:
8
linear_start: 0.00085
9
linear_end: 0.0120
10
num_timesteps_cond: 1
11
log_every_t: 200
12
timesteps: 1000
13
first_stage_key: edited
14
cond_stage_key: edit
15
# image_size: 64
16
# image_size: 32
17
image_size: 16
18
channels: 4
19
cond_stage_trainable: false # Note: different from the one we trained before
20
conditioning_key: hybrid
21
monitor: val/loss_simple_ema
22
scale_factor: 0.18215
23
use_ema: false
24
25
scheduler_config: # 10000 warmup steps
26
target: ldm.lr_scheduler.LambdaLinearScheduler
27
params:
28
warm_up_steps: [ 0 ]
29
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
30
f_start: [ 1.e-6 ]
31
f_max: [ 1. ]
32
f_min: [ 1. ]
33
34
unet_config:
35
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
36
params:
37
image_size: 32 # unused
38
in_channels: 8
39
out_channels: 4
40
model_channels: 320
41
attention_resolutions: [ 4, 2, 1 ]
42
num_res_blocks: 2
43
channel_mult: [ 1, 2, 4, 4 ]
44
num_heads: 8
45
use_spatial_transformer: True
46
transformer_depth: 1
47
context_dim: 768
48
use_checkpoint: False
49
legacy: False
50
51
first_stage_config:
52
target: ldm.models.autoencoder.AutoencoderKL
53
params:
54
embed_dim: 4
55
monitor: val/rec_loss
56
ddconfig:
57
double_z: true
58
z_channels: 4
59
resolution: 256
60
in_channels: 3
61
out_ch: 3
62
ch: 128
63
ch_mult:
64
- 1
65
- 2
66
- 4
67
- 4
68
num_res_blocks: 2
69
attn_resolutions: []
70
dropout: 0.0
71
lossconfig:
72
target: torch.nn.Identity
73
74
cond_stage_config:
75
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
76
77
data:
78
target: main.DataModuleFromConfig
79
params:
80
batch_size: 128
81
num_workers: 1
82
wrap: false
83
validation:
84
target: edit_dataset.EditDataset
85
params:
86
path: data/clip-filtered-dataset
87
cache_dir: data/
88
cache_name: data_10k
89
split: val
90
min_text_sim: 0.2
91
min_image_sim: 0.75
92
min_direction_sim: 0.2
93
max_samples_per_prompt: 1
94
min_resize_res: 512
95
max_resize_res: 512
96
crop_res: 512
97
output_as_edit: False
98
real_input: True
99
100