Path: blob/master/extensions-builtin/LDSR/sd_hijack_ddpm_v1.py
2447 views
# This script is copied from the compvis/stable-diffusion repo (aka the SD V1 repo)1# Original filename: ldm/models/diffusion/ddpm.py2# The purpose to reinstate the old DDPM logic which works with VQ, whereas the V2 one doesn't3# Some models such as LDSR require VQ to work correctly4# The classes are suffixed with "V1" and added back to the "ldm.models.diffusion.ddpm" module56import torch7import torch.nn as nn8import numpy as np9import pytorch_lightning as pl10from torch.optim.lr_scheduler import LambdaLR11from einops import rearrange, repeat12from contextlib import contextmanager13from functools import partial14from tqdm import tqdm15from torchvision.utils import make_grid16from pytorch_lightning.utilities.distributed import rank_zero_only1718from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config19from ldm.modules.ema import LitEma20from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution21from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL22from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like23from ldm.models.diffusion.ddim import DDIMSampler2425import ldm.models.diffusion.ddpm2627__conditioning_keys__ = {'concat': 'c_concat',28'crossattn': 'c_crossattn',29'adm': 'y'}303132def disabled_train(self, mode=True):33"""Overwrite model.train with this function to make sure train/eval mode34does not change anymore."""35return self363738def uniform_on_device(r1, r2, shape, device):39return (r1 - r2) * torch.rand(*shape, device=device) + r2404142class DDPMV1(pl.LightningModule):43# classic DDPM with Gaussian diffusion, in image space44def __init__(self,45unet_config,46timesteps=1000,47beta_schedule="linear",48loss_type="l2",49ckpt_path=None,50ignore_keys=None,51load_only_unet=False,52monitor="val/loss",53use_ema=True,54first_stage_key="image",55image_size=256,56channels=3,57log_every_t=100,58clip_denoised=True,59linear_start=1e-4,60linear_end=2e-2,61cosine_s=8e-3,62given_betas=None,63original_elbo_weight=0.,64v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta65l_simple_weight=1.,66conditioning_key=None,67parameterization="eps", # all assuming fixed variance schedules68scheduler_config=None,69use_positional_encodings=False,70learn_logvar=False,71logvar_init=0.,72):73super().__init__()74assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'75self.parameterization = parameterization76print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")77self.cond_stage_model = None78self.clip_denoised = clip_denoised79self.log_every_t = log_every_t80self.first_stage_key = first_stage_key81self.image_size = image_size # try conv?82self.channels = channels83self.use_positional_encodings = use_positional_encodings84self.model = DiffusionWrapperV1(unet_config, conditioning_key)85count_params(self.model, verbose=True)86self.use_ema = use_ema87if self.use_ema:88self.model_ema = LitEma(self.model)89print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")9091self.use_scheduler = scheduler_config is not None92if self.use_scheduler:93self.scheduler_config = scheduler_config9495self.v_posterior = v_posterior96self.original_elbo_weight = original_elbo_weight97self.l_simple_weight = l_simple_weight9899if monitor is not None:100self.monitor = monitor101if ckpt_path is not None:102self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet)103104self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,105linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)106107self.loss_type = loss_type108109self.learn_logvar = learn_logvar110self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))111if self.learn_logvar:112self.logvar = nn.Parameter(self.logvar, requires_grad=True)113114115def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,116linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):117if exists(given_betas):118betas = given_betas119else:120betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,121cosine_s=cosine_s)122alphas = 1. - betas123alphas_cumprod = np.cumprod(alphas, axis=0)124alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])125126timesteps, = betas.shape127self.num_timesteps = int(timesteps)128self.linear_start = linear_start129self.linear_end = linear_end130assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'131132to_torch = partial(torch.tensor, dtype=torch.float32)133134self.register_buffer('betas', to_torch(betas))135self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))136self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))137138# calculations for diffusion q(x_t | x_{t-1}) and others139self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))140self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))141self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))142self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))143self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))144145# calculations for posterior q(x_{t-1} | x_t, x_0)146posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (1471. - alphas_cumprod) + self.v_posterior * betas148# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)149self.register_buffer('posterior_variance', to_torch(posterior_variance))150# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain151self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))152self.register_buffer('posterior_mean_coef1', to_torch(153betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))154self.register_buffer('posterior_mean_coef2', to_torch(155(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))156157if self.parameterization == "eps":158lvlb_weights = self.betas ** 2 / (1592 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))160elif self.parameterization == "x0":161lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))162else:163raise NotImplementedError("mu not supported")164# TODO how to choose this term165lvlb_weights[0] = lvlb_weights[1]166self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)167assert not torch.isnan(self.lvlb_weights).all()168169@contextmanager170def ema_scope(self, context=None):171if self.use_ema:172self.model_ema.store(self.model.parameters())173self.model_ema.copy_to(self.model)174if context is not None:175print(f"{context}: Switched to EMA weights")176try:177yield None178finally:179if self.use_ema:180self.model_ema.restore(self.model.parameters())181if context is not None:182print(f"{context}: Restored training weights")183184def init_from_ckpt(self, path, ignore_keys=None, only_model=False):185sd = torch.load(path, map_location="cpu")186if "state_dict" in list(sd.keys()):187sd = sd["state_dict"]188keys = list(sd.keys())189for k in keys:190for ik in ignore_keys or []:191if k.startswith(ik):192print("Deleting key {} from state_dict.".format(k))193del sd[k]194missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(195sd, strict=False)196print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")197if missing:198print(f"Missing Keys: {missing}")199if unexpected:200print(f"Unexpected Keys: {unexpected}")201202def q_mean_variance(self, x_start, t):203"""204Get the distribution q(x_t | x_0).205:param x_start: the [N x C x ...] tensor of noiseless inputs.206:param t: the number of diffusion steps (minus 1). Here, 0 means one step.207:return: A tuple (mean, variance, log_variance), all of x_start's shape.208"""209mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)210variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)211log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)212return mean, variance, log_variance213214def predict_start_from_noise(self, x_t, t, noise):215return (216extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -217extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise218)219220def q_posterior(self, x_start, x_t, t):221posterior_mean = (222extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +223extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t224)225posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)226posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)227return posterior_mean, posterior_variance, posterior_log_variance_clipped228229def p_mean_variance(self, x, t, clip_denoised: bool):230model_out = self.model(x, t)231if self.parameterization == "eps":232x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)233elif self.parameterization == "x0":234x_recon = model_out235if clip_denoised:236x_recon.clamp_(-1., 1.)237238model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)239return model_mean, posterior_variance, posterior_log_variance240241@torch.no_grad()242def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):243b, *_, device = *x.shape, x.device244model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)245noise = noise_like(x.shape, device, repeat_noise)246# no noise when t == 0247nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))248return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise249250@torch.no_grad()251def p_sample_loop(self, shape, return_intermediates=False):252device = self.betas.device253b = shape[0]254img = torch.randn(shape, device=device)255intermediates = [img]256for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):257img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),258clip_denoised=self.clip_denoised)259if i % self.log_every_t == 0 or i == self.num_timesteps - 1:260intermediates.append(img)261if return_intermediates:262return img, intermediates263return img264265@torch.no_grad()266def sample(self, batch_size=16, return_intermediates=False):267image_size = self.image_size268channels = self.channels269return self.p_sample_loop((batch_size, channels, image_size, image_size),270return_intermediates=return_intermediates)271272def q_sample(self, x_start, t, noise=None):273noise = default(noise, lambda: torch.randn_like(x_start))274return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +275extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)276277def get_loss(self, pred, target, mean=True):278if self.loss_type == 'l1':279loss = (target - pred).abs()280if mean:281loss = loss.mean()282elif self.loss_type == 'l2':283if mean:284loss = torch.nn.functional.mse_loss(target, pred)285else:286loss = torch.nn.functional.mse_loss(target, pred, reduction='none')287else:288raise NotImplementedError("unknown loss type '{loss_type}'")289290return loss291292def p_losses(self, x_start, t, noise=None):293noise = default(noise, lambda: torch.randn_like(x_start))294x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)295model_out = self.model(x_noisy, t)296297loss_dict = {}298if self.parameterization == "eps":299target = noise300elif self.parameterization == "x0":301target = x_start302else:303raise NotImplementedError(f"Parameterization {self.parameterization} not yet supported")304305loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])306307log_prefix = 'train' if self.training else 'val'308309loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})310loss_simple = loss.mean() * self.l_simple_weight311312loss_vlb = (self.lvlb_weights[t] * loss).mean()313loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})314315loss = loss_simple + self.original_elbo_weight * loss_vlb316317loss_dict.update({f'{log_prefix}/loss': loss})318319return loss, loss_dict320321def forward(self, x, *args, **kwargs):322# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size323# assert h == img_size and w == img_size, f'height and width of image must be {img_size}'324t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()325return self.p_losses(x, t, *args, **kwargs)326327def get_input(self, batch, k):328x = batch[k]329if len(x.shape) == 3:330x = x[..., None]331x = rearrange(x, 'b h w c -> b c h w')332x = x.to(memory_format=torch.contiguous_format).float()333return x334335def shared_step(self, batch):336x = self.get_input(batch, self.first_stage_key)337loss, loss_dict = self(x)338return loss, loss_dict339340def training_step(self, batch, batch_idx):341loss, loss_dict = self.shared_step(batch)342343self.log_dict(loss_dict, prog_bar=True,344logger=True, on_step=True, on_epoch=True)345346self.log("global_step", self.global_step,347prog_bar=True, logger=True, on_step=True, on_epoch=False)348349if self.use_scheduler:350lr = self.optimizers().param_groups[0]['lr']351self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)352353return loss354355@torch.no_grad()356def validation_step(self, batch, batch_idx):357_, loss_dict_no_ema = self.shared_step(batch)358with self.ema_scope():359_, loss_dict_ema = self.shared_step(batch)360loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}361self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)362self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)363364def on_train_batch_end(self, *args, **kwargs):365if self.use_ema:366self.model_ema(self.model)367368def _get_rows_from_list(self, samples):369n_imgs_per_row = len(samples)370denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')371denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')372denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)373return denoise_grid374375@torch.no_grad()376def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):377log = {}378x = self.get_input(batch, self.first_stage_key)379N = min(x.shape[0], N)380n_row = min(x.shape[0], n_row)381x = x.to(self.device)[:N]382log["inputs"] = x383384# get diffusion row385diffusion_row = []386x_start = x[:n_row]387388for t in range(self.num_timesteps):389if t % self.log_every_t == 0 or t == self.num_timesteps - 1:390t = repeat(torch.tensor([t]), '1 -> b', b=n_row)391t = t.to(self.device).long()392noise = torch.randn_like(x_start)393x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)394diffusion_row.append(x_noisy)395396log["diffusion_row"] = self._get_rows_from_list(diffusion_row)397398if sample:399# get denoise row400with self.ema_scope("Plotting"):401samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)402403log["samples"] = samples404log["denoise_row"] = self._get_rows_from_list(denoise_row)405406if return_keys:407if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:408return log409else:410return {key: log[key] for key in return_keys}411return log412413def configure_optimizers(self):414lr = self.learning_rate415params = list(self.model.parameters())416if self.learn_logvar:417params = params + [self.logvar]418opt = torch.optim.AdamW(params, lr=lr)419return opt420421422class LatentDiffusionV1(DDPMV1):423"""main class"""424def __init__(self,425first_stage_config,426cond_stage_config,427num_timesteps_cond=None,428cond_stage_key="image",429cond_stage_trainable=False,430concat_mode=True,431cond_stage_forward=None,432conditioning_key=None,433scale_factor=1.0,434scale_by_std=False,435*args, **kwargs):436self.num_timesteps_cond = default(num_timesteps_cond, 1)437self.scale_by_std = scale_by_std438assert self.num_timesteps_cond <= kwargs['timesteps']439# for backwards compatibility after implementation of DiffusionWrapper440if conditioning_key is None:441conditioning_key = 'concat' if concat_mode else 'crossattn'442if cond_stage_config == '__is_unconditional__':443conditioning_key = None444ckpt_path = kwargs.pop("ckpt_path", None)445ignore_keys = kwargs.pop("ignore_keys", [])446super().__init__(*args, conditioning_key=conditioning_key, **kwargs)447self.concat_mode = concat_mode448self.cond_stage_trainable = cond_stage_trainable449self.cond_stage_key = cond_stage_key450try:451self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1452except Exception:453self.num_downs = 0454if not scale_by_std:455self.scale_factor = scale_factor456else:457self.register_buffer('scale_factor', torch.tensor(scale_factor))458self.instantiate_first_stage(first_stage_config)459self.instantiate_cond_stage(cond_stage_config)460self.cond_stage_forward = cond_stage_forward461self.clip_denoised = False462self.bbox_tokenizer = None463464self.restarted_from_ckpt = False465if ckpt_path is not None:466self.init_from_ckpt(ckpt_path, ignore_keys)467self.restarted_from_ckpt = True468469def make_cond_schedule(self, ):470self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)471ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()472self.cond_ids[:self.num_timesteps_cond] = ids473474@rank_zero_only475@torch.no_grad()476def on_train_batch_start(self, batch, batch_idx, dataloader_idx):477# only for very first batch478if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:479assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'480# set rescale weight to 1./std of encodings481print("### USING STD-RESCALING ###")482x = super().get_input(batch, self.first_stage_key)483x = x.to(self.device)484encoder_posterior = self.encode_first_stage(x)485z = self.get_first_stage_encoding(encoder_posterior).detach()486del self.scale_factor487self.register_buffer('scale_factor', 1. / z.flatten().std())488print(f"setting self.scale_factor to {self.scale_factor}")489print("### USING STD-RESCALING ###")490491def register_schedule(self,492given_betas=None, beta_schedule="linear", timesteps=1000,493linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):494super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)495496self.shorten_cond_schedule = self.num_timesteps_cond > 1497if self.shorten_cond_schedule:498self.make_cond_schedule()499500def instantiate_first_stage(self, config):501model = instantiate_from_config(config)502self.first_stage_model = model.eval()503self.first_stage_model.train = disabled_train504for param in self.first_stage_model.parameters():505param.requires_grad = False506507def instantiate_cond_stage(self, config):508if not self.cond_stage_trainable:509if config == "__is_first_stage__":510print("Using first stage also as cond stage.")511self.cond_stage_model = self.first_stage_model512elif config == "__is_unconditional__":513print(f"Training {self.__class__.__name__} as an unconditional model.")514self.cond_stage_model = None515# self.be_unconditional = True516else:517model = instantiate_from_config(config)518self.cond_stage_model = model.eval()519self.cond_stage_model.train = disabled_train520for param in self.cond_stage_model.parameters():521param.requires_grad = False522else:523assert config != '__is_first_stage__'524assert config != '__is_unconditional__'525model = instantiate_from_config(config)526self.cond_stage_model = model527528def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):529denoise_row = []530for zd in tqdm(samples, desc=desc):531denoise_row.append(self.decode_first_stage(zd.to(self.device),532force_not_quantize=force_no_decoder_quantization))533n_imgs_per_row = len(denoise_row)534denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W535denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')536denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')537denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)538return denoise_grid539540def get_first_stage_encoding(self, encoder_posterior):541if isinstance(encoder_posterior, DiagonalGaussianDistribution):542z = encoder_posterior.sample()543elif isinstance(encoder_posterior, torch.Tensor):544z = encoder_posterior545else:546raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")547return self.scale_factor * z548549def get_learned_conditioning(self, c):550if self.cond_stage_forward is None:551if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):552c = self.cond_stage_model.encode(c)553if isinstance(c, DiagonalGaussianDistribution):554c = c.mode()555else:556c = self.cond_stage_model(c)557else:558assert hasattr(self.cond_stage_model, self.cond_stage_forward)559c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)560return c561562def meshgrid(self, h, w):563y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)564x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)565566arr = torch.cat([y, x], dim=-1)567return arr568569def delta_border(self, h, w):570"""571:param h: height572:param w: width573:return: normalized distance to image border,574with min distance = 0 at border and max dist = 0.5 at image center575"""576lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)577arr = self.meshgrid(h, w) / lower_right_corner578dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]579dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]580edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]581return edge_dist582583def get_weighting(self, h, w, Ly, Lx, device):584weighting = self.delta_border(h, w)585weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],586self.split_input_params["clip_max_weight"], )587weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)588589if self.split_input_params["tie_braker"]:590L_weighting = self.delta_border(Ly, Lx)591L_weighting = torch.clip(L_weighting,592self.split_input_params["clip_min_tie_weight"],593self.split_input_params["clip_max_tie_weight"])594595L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)596weighting = weighting * L_weighting597return weighting598599def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code600"""601:param x: img of size (bs, c, h, w)602:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])603"""604bs, nc, h, w = x.shape605606# number of crops in image607Ly = (h - kernel_size[0]) // stride[0] + 1608Lx = (w - kernel_size[1]) // stride[1] + 1609610if uf == 1 and df == 1:611fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)612unfold = torch.nn.Unfold(**fold_params)613614fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)615616weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)617normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap618weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))619620elif uf > 1 and df == 1:621fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)622unfold = torch.nn.Unfold(**fold_params)623624fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),625dilation=1, padding=0,626stride=(stride[0] * uf, stride[1] * uf))627fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)628629weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)630normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap631weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))632633elif df > 1 and uf == 1:634fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)635unfold = torch.nn.Unfold(**fold_params)636637fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),638dilation=1, padding=0,639stride=(stride[0] // df, stride[1] // df))640fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)641642weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)643normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap644weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))645646else:647raise NotImplementedError648649return fold, unfold, normalization, weighting650651@torch.no_grad()652def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,653cond_key=None, return_original_cond=False, bs=None):654x = super().get_input(batch, k)655if bs is not None:656x = x[:bs]657x = x.to(self.device)658encoder_posterior = self.encode_first_stage(x)659z = self.get_first_stage_encoding(encoder_posterior).detach()660661if self.model.conditioning_key is not None:662if cond_key is None:663cond_key = self.cond_stage_key664if cond_key != self.first_stage_key:665if cond_key in ['caption', 'coordinates_bbox']:666xc = batch[cond_key]667elif cond_key == 'class_label':668xc = batch669else:670xc = super().get_input(batch, cond_key).to(self.device)671else:672xc = x673if not self.cond_stage_trainable or force_c_encode:674if isinstance(xc, dict) or isinstance(xc, list):675# import pudb; pudb.set_trace()676c = self.get_learned_conditioning(xc)677else:678c = self.get_learned_conditioning(xc.to(self.device))679else:680c = xc681if bs is not None:682c = c[:bs]683684if self.use_positional_encodings:685pos_x, pos_y = self.compute_latent_shifts(batch)686ckey = __conditioning_keys__[self.model.conditioning_key]687c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}688689else:690c = None691xc = None692if self.use_positional_encodings:693pos_x, pos_y = self.compute_latent_shifts(batch)694c = {'pos_x': pos_x, 'pos_y': pos_y}695out = [z, c]696if return_first_stage_outputs:697xrec = self.decode_first_stage(z)698out.extend([x, xrec])699if return_original_cond:700out.append(xc)701return out702703@torch.no_grad()704def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):705if predict_cids:706if z.dim() == 4:707z = torch.argmax(z.exp(), dim=1).long()708z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)709z = rearrange(z, 'b h w c -> b c h w').contiguous()710711z = 1. / self.scale_factor * z712713if hasattr(self, "split_input_params"):714if self.split_input_params["patch_distributed_vq"]:715ks = self.split_input_params["ks"] # eg. (128, 128)716stride = self.split_input_params["stride"] # eg. (64, 64)717uf = self.split_input_params["vqf"]718bs, nc, h, w = z.shape719if ks[0] > h or ks[1] > w:720ks = (min(ks[0], h), min(ks[1], w))721print("reducing Kernel")722723if stride[0] > h or stride[1] > w:724stride = (min(stride[0], h), min(stride[1], w))725print("reducing stride")726727fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)728729z = unfold(z) # (bn, nc * prod(**ks), L)730# 1. Reshape to img shape731z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )732733# 2. apply model loop over last dim734if isinstance(self.first_stage_model, VQModelInterface):735output_list = [self.first_stage_model.decode(z[:, :, :, :, i],736force_not_quantize=predict_cids or force_not_quantize)737for i in range(z.shape[-1])]738else:739740output_list = [self.first_stage_model.decode(z[:, :, :, :, i])741for i in range(z.shape[-1])]742743o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)744o = o * weighting745# Reverse 1. reshape to img shape746o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)747# stitch crops together748decoded = fold(o)749decoded = decoded / normalization # norm is shape (1, 1, h, w)750return decoded751else:752if isinstance(self.first_stage_model, VQModelInterface):753return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)754else:755return self.first_stage_model.decode(z)756757else:758if isinstance(self.first_stage_model, VQModelInterface):759return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)760else:761return self.first_stage_model.decode(z)762763# same as above but without decorator764def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):765if predict_cids:766if z.dim() == 4:767z = torch.argmax(z.exp(), dim=1).long()768z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)769z = rearrange(z, 'b h w c -> b c h w').contiguous()770771z = 1. / self.scale_factor * z772773if hasattr(self, "split_input_params"):774if self.split_input_params["patch_distributed_vq"]:775ks = self.split_input_params["ks"] # eg. (128, 128)776stride = self.split_input_params["stride"] # eg. (64, 64)777uf = self.split_input_params["vqf"]778bs, nc, h, w = z.shape779if ks[0] > h or ks[1] > w:780ks = (min(ks[0], h), min(ks[1], w))781print("reducing Kernel")782783if stride[0] > h or stride[1] > w:784stride = (min(stride[0], h), min(stride[1], w))785print("reducing stride")786787fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)788789z = unfold(z) # (bn, nc * prod(**ks), L)790# 1. Reshape to img shape791z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )792793# 2. apply model loop over last dim794if isinstance(self.first_stage_model, VQModelInterface):795output_list = [self.first_stage_model.decode(z[:, :, :, :, i],796force_not_quantize=predict_cids or force_not_quantize)797for i in range(z.shape[-1])]798else:799800output_list = [self.first_stage_model.decode(z[:, :, :, :, i])801for i in range(z.shape[-1])]802803o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)804o = o * weighting805# Reverse 1. reshape to img shape806o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)807# stitch crops together808decoded = fold(o)809decoded = decoded / normalization # norm is shape (1, 1, h, w)810return decoded811else:812if isinstance(self.first_stage_model, VQModelInterface):813return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)814else:815return self.first_stage_model.decode(z)816817else:818if isinstance(self.first_stage_model, VQModelInterface):819return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)820else:821return self.first_stage_model.decode(z)822823@torch.no_grad()824def encode_first_stage(self, x):825if hasattr(self, "split_input_params"):826if self.split_input_params["patch_distributed_vq"]:827ks = self.split_input_params["ks"] # eg. (128, 128)828stride = self.split_input_params["stride"] # eg. (64, 64)829df = self.split_input_params["vqf"]830self.split_input_params['original_image_size'] = x.shape[-2:]831bs, nc, h, w = x.shape832if ks[0] > h or ks[1] > w:833ks = (min(ks[0], h), min(ks[1], w))834print("reducing Kernel")835836if stride[0] > h or stride[1] > w:837stride = (min(stride[0], h), min(stride[1], w))838print("reducing stride")839840fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)841z = unfold(x) # (bn, nc * prod(**ks), L)842# Reshape to img shape843z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )844845output_list = [self.first_stage_model.encode(z[:, :, :, :, i])846for i in range(z.shape[-1])]847848o = torch.stack(output_list, axis=-1)849o = o * weighting850851# Reverse reshape to img shape852o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)853# stitch crops together854decoded = fold(o)855decoded = decoded / normalization856return decoded857858else:859return self.first_stage_model.encode(x)860else:861return self.first_stage_model.encode(x)862863def shared_step(self, batch, **kwargs):864x, c = self.get_input(batch, self.first_stage_key)865loss = self(x, c)866return loss867868def forward(self, x, c, *args, **kwargs):869t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()870if self.model.conditioning_key is not None:871assert c is not None872if self.cond_stage_trainable:873c = self.get_learned_conditioning(c)874if self.shorten_cond_schedule: # TODO: drop this option875tc = self.cond_ids[t].to(self.device)876c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))877return self.p_losses(x, c, t, *args, **kwargs)878879def apply_model(self, x_noisy, t, cond, return_ids=False):880881if isinstance(cond, dict):882# hybrid case, cond is expected to be a dict883pass884else:885if not isinstance(cond, list):886cond = [cond]887key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'888cond = {key: cond}889890if hasattr(self, "split_input_params"):891assert len(cond) == 1 # todo can only deal with one conditioning atm892assert not return_ids893ks = self.split_input_params["ks"] # eg. (128, 128)894stride = self.split_input_params["stride"] # eg. (64, 64)895896h, w = x_noisy.shape[-2:]897898fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)899900z = unfold(x_noisy) # (bn, nc * prod(**ks), L)901# Reshape to img shape902z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )903z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]904905if self.cond_stage_key in ["image", "LR_image", "segmentation",906'bbox_img'] and self.model.conditioning_key: # todo check for completeness907c_key = next(iter(cond.keys())) # get key908c = next(iter(cond.values())) # get value909assert (len(c) == 1) # todo extend to list with more than one elem910c = c[0] # get element911912c = unfold(c)913c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )914915cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]916917elif self.cond_stage_key == 'coordinates_bbox':918assert 'original_image_size' in self.split_input_params, 'BoundingBoxRescaling is missing original_image_size'919920# assuming padding of unfold is always 0 and its dilation is always 1921n_patches_per_row = int((w - ks[0]) / stride[0] + 1)922full_img_h, full_img_w = self.split_input_params['original_image_size']923# as we are operating on latents, we need the factor from the original image size to the924# spatial latent size to properly rescale the crops for regenerating the bbox annotations925num_downs = self.first_stage_model.encoder.num_resolutions - 1926rescale_latent = 2 ** (num_downs)927928# get top left positions of patches as conforming for the bbbox tokenizer, therefore we929# need to rescale the tl patch coordinates to be in between (0,1)930tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,931rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)932for patch_nr in range(z.shape[-1])]933934# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)935patch_limits = [(x_tl, y_tl,936rescale_latent * ks[0] / full_img_w,937rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]938# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]939940# tokenize crop coordinates for the bounding boxes of the respective patches941patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)942for bbox in patch_limits] # list of length l with tensors of shape (1, 2)943print(patch_limits_tknzd[0].shape)944# cut tknzd crop position from conditioning945assert isinstance(cond, dict), 'cond must be dict to be fed into model'946cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)947print(cut_cond.shape)948949adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])950adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')951print(adapted_cond.shape)952adapted_cond = self.get_learned_conditioning(adapted_cond)953print(adapted_cond.shape)954adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])955print(adapted_cond.shape)956957cond_list = [{'c_crossattn': [e]} for e in adapted_cond]958959else:960cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient961962# apply model by loop over crops963output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]964assert not isinstance(output_list[0],965tuple) # todo cant deal with multiple model outputs check this never happens966967o = torch.stack(output_list, axis=-1)968o = o * weighting969# Reverse reshape to img shape970o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)971# stitch crops together972x_recon = fold(o) / normalization973974else:975x_recon = self.model(x_noisy, t, **cond)976977if isinstance(x_recon, tuple) and not return_ids:978return x_recon[0]979else:980return x_recon981982def _predict_eps_from_xstart(self, x_t, t, pred_xstart):983return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \984extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)985986def _prior_bpd(self, x_start):987"""988Get the prior KL term for the variational lower-bound, measured in989bits-per-dim.990This term can't be optimized, as it only depends on the encoder.991:param x_start: the [N x C x ...] tensor of inputs.992:return: a batch of [N] KL values (in bits), one per batch element.993"""994batch_size = x_start.shape[0]995t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)996qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)997kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)998return mean_flat(kl_prior) / np.log(2.0)9991000def p_losses(self, x_start, cond, t, noise=None):1001noise = default(noise, lambda: torch.randn_like(x_start))1002x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)1003model_output = self.apply_model(x_noisy, t, cond)10041005loss_dict = {}1006prefix = 'train' if self.training else 'val'10071008if self.parameterization == "x0":1009target = x_start1010elif self.parameterization == "eps":1011target = noise1012else:1013raise NotImplementedError()10141015loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])1016loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})10171018logvar_t = self.logvar[t].to(self.device)1019loss = loss_simple / torch.exp(logvar_t) + logvar_t1020# loss = loss_simple / torch.exp(self.logvar) + self.logvar1021if self.learn_logvar:1022loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})1023loss_dict.update({'logvar': self.logvar.data.mean()})10241025loss = self.l_simple_weight * loss.mean()10261027loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))1028loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()1029loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})1030loss += (self.original_elbo_weight * loss_vlb)1031loss_dict.update({f'{prefix}/loss': loss})10321033return loss, loss_dict10341035def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,1036return_x0=False, score_corrector=None, corrector_kwargs=None):1037t_in = t1038model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)10391040if score_corrector is not None:1041assert self.parameterization == "eps"1042model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)10431044if return_codebook_ids:1045model_out, logits = model_out10461047if self.parameterization == "eps":1048x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)1049elif self.parameterization == "x0":1050x_recon = model_out1051else:1052raise NotImplementedError()10531054if clip_denoised:1055x_recon.clamp_(-1., 1.)1056if quantize_denoised:1057x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)1058model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)1059if return_codebook_ids:1060return model_mean, posterior_variance, posterior_log_variance, logits1061elif return_x0:1062return model_mean, posterior_variance, posterior_log_variance, x_recon1063else:1064return model_mean, posterior_variance, posterior_log_variance10651066@torch.no_grad()1067def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,1068return_codebook_ids=False, quantize_denoised=False, return_x0=False,1069temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):1070b, *_, device = *x.shape, x.device1071outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,1072return_codebook_ids=return_codebook_ids,1073quantize_denoised=quantize_denoised,1074return_x0=return_x0,1075score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)1076if return_codebook_ids:1077raise DeprecationWarning("Support dropped.")1078model_mean, _, model_log_variance, logits = outputs1079elif return_x0:1080model_mean, _, model_log_variance, x0 = outputs1081else:1082model_mean, _, model_log_variance = outputs10831084noise = noise_like(x.shape, device, repeat_noise) * temperature1085if noise_dropout > 0.:1086noise = torch.nn.functional.dropout(noise, p=noise_dropout)1087# no noise when t == 01088nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))10891090if return_codebook_ids:1091return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)1092if return_x0:1093return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x01094else:1095return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise10961097@torch.no_grad()1098def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,1099img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,1100score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,1101log_every_t=None):1102if not log_every_t:1103log_every_t = self.log_every_t1104timesteps = self.num_timesteps1105if batch_size is not None:1106b = batch_size if batch_size is not None else shape[0]1107shape = [batch_size] + list(shape)1108else:1109b = batch_size = shape[0]1110if x_T is None:1111img = torch.randn(shape, device=self.device)1112else:1113img = x_T1114intermediates = []1115if cond is not None:1116if isinstance(cond, dict):1117cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else1118[x[:batch_size] for x in cond[key]] for key in cond}1119else:1120cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]11211122if start_T is not None:1123timesteps = min(timesteps, start_T)1124iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',1125total=timesteps) if verbose else reversed(1126range(0, timesteps))1127if type(temperature) == float:1128temperature = [temperature] * timesteps11291130for i in iterator:1131ts = torch.full((b,), i, device=self.device, dtype=torch.long)1132if self.shorten_cond_schedule:1133assert self.model.conditioning_key != 'hybrid'1134tc = self.cond_ids[ts].to(cond.device)1135cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))11361137img, x0_partial = self.p_sample(img, cond, ts,1138clip_denoised=self.clip_denoised,1139quantize_denoised=quantize_denoised, return_x0=True,1140temperature=temperature[i], noise_dropout=noise_dropout,1141score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)1142if mask is not None:1143assert x0 is not None1144img_orig = self.q_sample(x0, ts)1145img = img_orig * mask + (1. - mask) * img11461147if i % log_every_t == 0 or i == timesteps - 1:1148intermediates.append(x0_partial)1149if callback:1150callback(i)1151if img_callback:1152img_callback(img, i)1153return img, intermediates11541155@torch.no_grad()1156def p_sample_loop(self, cond, shape, return_intermediates=False,1157x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,1158mask=None, x0=None, img_callback=None, start_T=None,1159log_every_t=None):11601161if not log_every_t:1162log_every_t = self.log_every_t1163device = self.betas.device1164b = shape[0]1165if x_T is None:1166img = torch.randn(shape, device=device)1167else:1168img = x_T11691170intermediates = [img]1171if timesteps is None:1172timesteps = self.num_timesteps11731174if start_T is not None:1175timesteps = min(timesteps, start_T)1176iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(1177range(0, timesteps))11781179if mask is not None:1180assert x0 is not None1181assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match11821183for i in iterator:1184ts = torch.full((b,), i, device=device, dtype=torch.long)1185if self.shorten_cond_schedule:1186assert self.model.conditioning_key != 'hybrid'1187tc = self.cond_ids[ts].to(cond.device)1188cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))11891190img = self.p_sample(img, cond, ts,1191clip_denoised=self.clip_denoised,1192quantize_denoised=quantize_denoised)1193if mask is not None:1194img_orig = self.q_sample(x0, ts)1195img = img_orig * mask + (1. - mask) * img11961197if i % log_every_t == 0 or i == timesteps - 1:1198intermediates.append(img)1199if callback:1200callback(i)1201if img_callback:1202img_callback(img, i)12031204if return_intermediates:1205return img, intermediates1206return img12071208@torch.no_grad()1209def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,1210verbose=True, timesteps=None, quantize_denoised=False,1211mask=None, x0=None, shape=None,**kwargs):1212if shape is None:1213shape = (batch_size, self.channels, self.image_size, self.image_size)1214if cond is not None:1215if isinstance(cond, dict):1216cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else1217[x[:batch_size] for x in cond[key]] for key in cond}1218else:1219cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]1220return self.p_sample_loop(cond,1221shape,1222return_intermediates=return_intermediates, x_T=x_T,1223verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,1224mask=mask, x0=x0)12251226@torch.no_grad()1227def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):12281229if ddim:1230ddim_sampler = DDIMSampler(self)1231shape = (self.channels, self.image_size, self.image_size)1232samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,1233shape,cond,verbose=False,**kwargs)12341235else:1236samples, intermediates = self.sample(cond=cond, batch_size=batch_size,1237return_intermediates=True,**kwargs)12381239return samples, intermediates124012411242@torch.no_grad()1243def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,1244quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,1245plot_diffusion_rows=True, **kwargs):12461247use_ddim = ddim_steps is not None12481249log = {}1250z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,1251return_first_stage_outputs=True,1252force_c_encode=True,1253return_original_cond=True,1254bs=N)1255N = min(x.shape[0], N)1256n_row = min(x.shape[0], n_row)1257log["inputs"] = x1258log["reconstruction"] = xrec1259if self.model.conditioning_key is not None:1260if hasattr(self.cond_stage_model, "decode"):1261xc = self.cond_stage_model.decode(c)1262log["conditioning"] = xc1263elif self.cond_stage_key in ["caption"]:1264xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])1265log["conditioning"] = xc1266elif self.cond_stage_key == 'class_label':1267xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])1268log['conditioning'] = xc1269elif isimage(xc):1270log["conditioning"] = xc1271if ismap(xc):1272log["original_conditioning"] = self.to_rgb(xc)12731274if plot_diffusion_rows:1275# get diffusion row1276diffusion_row = []1277z_start = z[:n_row]1278for t in range(self.num_timesteps):1279if t % self.log_every_t == 0 or t == self.num_timesteps - 1:1280t = repeat(torch.tensor([t]), '1 -> b', b=n_row)1281t = t.to(self.device).long()1282noise = torch.randn_like(z_start)1283z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)1284diffusion_row.append(self.decode_first_stage(z_noisy))12851286diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W1287diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')1288diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')1289diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])1290log["diffusion_row"] = diffusion_grid12911292if sample:1293# get denoise row1294with self.ema_scope("Plotting"):1295samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,1296ddim_steps=ddim_steps,eta=ddim_eta)1297# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)1298x_samples = self.decode_first_stage(samples)1299log["samples"] = x_samples1300if plot_denoise_rows:1301denoise_grid = self._get_denoise_row_from_list(z_denoise_row)1302log["denoise_row"] = denoise_grid13031304if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(1305self.first_stage_model, IdentityFirstStage):1306# also display when quantizing x0 while sampling1307with self.ema_scope("Plotting Quantized Denoised"):1308samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,1309ddim_steps=ddim_steps,eta=ddim_eta,1310quantize_denoised=True)1311# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,1312# quantize_denoised=True)1313x_samples = self.decode_first_stage(samples.to(self.device))1314log["samples_x0_quantized"] = x_samples13151316if inpaint:1317# make a simple center square1318h, w = z.shape[2], z.shape[3]1319mask = torch.ones(N, h, w).to(self.device)1320# zeros will be filled in1321mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.1322mask = mask[:, None, ...]1323with self.ema_scope("Plotting Inpaint"):13241325samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,1326ddim_steps=ddim_steps, x0=z[:N], mask=mask)1327x_samples = self.decode_first_stage(samples.to(self.device))1328log["samples_inpainting"] = x_samples1329log["mask"] = mask13301331# outpaint1332with self.ema_scope("Plotting Outpaint"):1333samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,1334ddim_steps=ddim_steps, x0=z[:N], mask=mask)1335x_samples = self.decode_first_stage(samples.to(self.device))1336log["samples_outpainting"] = x_samples13371338if plot_progressive_rows:1339with self.ema_scope("Plotting Progressives"):1340img, progressives = self.progressive_denoising(c,1341shape=(self.channels, self.image_size, self.image_size),1342batch_size=N)1343prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")1344log["progressive_row"] = prog_row13451346if return_keys:1347if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:1348return log1349else:1350return {key: log[key] for key in return_keys}1351return log13521353def configure_optimizers(self):1354lr = self.learning_rate1355params = list(self.model.parameters())1356if self.cond_stage_trainable:1357print(f"{self.__class__.__name__}: Also optimizing conditioner params!")1358params = params + list(self.cond_stage_model.parameters())1359if self.learn_logvar:1360print('Diffusion model optimizing logvar')1361params.append(self.logvar)1362opt = torch.optim.AdamW(params, lr=lr)1363if self.use_scheduler:1364assert 'target' in self.scheduler_config1365scheduler = instantiate_from_config(self.scheduler_config)13661367print("Setting up LambdaLR scheduler...")1368scheduler = [1369{1370'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),1371'interval': 'step',1372'frequency': 11373}]1374return [opt], scheduler1375return opt13761377@torch.no_grad()1378def to_rgb(self, x):1379x = x.float()1380if not hasattr(self, "colorize"):1381self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)1382x = nn.functional.conv2d(x, weight=self.colorize)1383x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.1384return x138513861387class DiffusionWrapperV1(pl.LightningModule):1388def __init__(self, diff_model_config, conditioning_key):1389super().__init__()1390self.diffusion_model = instantiate_from_config(diff_model_config)1391self.conditioning_key = conditioning_key1392assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']13931394def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):1395if self.conditioning_key is None:1396out = self.diffusion_model(x, t)1397elif self.conditioning_key == 'concat':1398xc = torch.cat([x] + c_concat, dim=1)1399out = self.diffusion_model(xc, t)1400elif self.conditioning_key == 'crossattn':1401cc = torch.cat(c_crossattn, 1)1402out = self.diffusion_model(x, t, context=cc)1403elif self.conditioning_key == 'hybrid':1404xc = torch.cat([x] + c_concat, dim=1)1405cc = torch.cat(c_crossattn, 1)1406out = self.diffusion_model(xc, t, context=cc)1407elif self.conditioning_key == 'adm':1408cc = c_crossattn[0]1409out = self.diffusion_model(x, t, y=cc)1410else:1411raise NotImplementedError()14121413return out141414151416class Layout2ImgDiffusionV1(LatentDiffusionV1):1417# TODO: move all layout-specific hacks to this class1418def __init__(self, cond_stage_key, *args, **kwargs):1419assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'1420super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs)14211422def log_images(self, batch, N=8, *args, **kwargs):1423logs = super().log_images(*args, batch=batch, N=N, **kwargs)14241425key = 'train' if self.training else 'validation'1426dset = self.trainer.datamodule.datasets[key]1427mapper = dset.conditional_builders[self.cond_stage_key]14281429bbox_imgs = []1430map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))1431for tknzd_bbox in batch[self.cond_stage_key][:N]:1432bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))1433bbox_imgs.append(bboximg)14341435cond_img = torch.stack(bbox_imgs, dim=0)1436logs['bbox_image'] = cond_img1437return logs14381439ldm.models.diffusion.ddpm.DDPMV1 = DDPMV11440ldm.models.diffusion.ddpm.LatentDiffusionV1 = LatentDiffusionV11441ldm.models.diffusion.ddpm.DiffusionWrapperV1 = DiffusionWrapperV11442ldm.models.diffusion.ddpm.Layout2ImgDiffusionV1 = Layout2ImgDiffusionV1144314441445