Path: blob/master/extensions-builtin/Lora/network_oft.py
2447 views
import torch1import network2from einops import rearrange345class ModuleTypeOFT(network.ModuleType):6def create_module(self, net: network.Network, weights: network.NetworkWeights):7if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]):8return NetworkModuleOFT(net, weights)910return None1112# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py13# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py14class NetworkModuleOFT(network.NetworkModule):15def __init__(self, net: network.Network, weights: network.NetworkWeights):1617super().__init__(net, weights)1819self.lin_module = None20self.org_module: list[torch.Module] = [self.sd_module]2122self.scale = 1.023self.is_R = False24self.is_boft = False2526# kohya-ss/New LyCORIS OFT/BOFT27if "oft_blocks" in weights.w.keys():28self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size)29self.alpha = weights.w.get("alpha", None) # alpha is constraint30self.dim = self.oft_blocks.shape[0] # lora dim31# Old LyCORIS OFT32elif "oft_diag" in weights.w.keys():33self.is_R = True34self.oft_blocks = weights.w["oft_diag"]35# self.alpha is unused36self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size)3738is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear]39is_conv = type(self.sd_module) in [torch.nn.Conv2d]40is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported4142if is_linear:43self.out_dim = self.sd_module.out_features44elif is_conv:45self.out_dim = self.sd_module.out_channels46elif is_other_linear:47self.out_dim = self.sd_module.embed_dim4849# LyCORIS BOFT50if self.oft_blocks.dim() == 4:51self.is_boft = True52self.rescale = weights.w.get('rescale', None)53if self.rescale is not None and not is_other_linear:54self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1))5556self.num_blocks = self.dim57self.block_size = self.out_dim // self.dim58self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim59if self.is_R:60self.constraint = None61self.block_size = self.dim62self.num_blocks = self.out_dim // self.dim63elif self.is_boft:64self.boft_m = self.oft_blocks.shape[0]65self.num_blocks = self.oft_blocks.shape[1]66self.block_size = self.oft_blocks.shape[2]67self.boft_b = self.block_size6869def calc_updown(self, orig_weight):70oft_blocks = self.oft_blocks.to(orig_weight.device)71eye = torch.eye(self.block_size, device=oft_blocks.device)7273if not self.is_R:74block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix75if self.constraint != 0:76norm_Q = torch.norm(block_Q.flatten())77new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device))78block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))79oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())8081R = oft_blocks.to(orig_weight.device)8283if not self.is_boft:84# This errors out for MultiheadAttention, might need to be handled up-stream85merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)86merged_weight = torch.einsum(87'k n m, k n ... -> k m ...',88R,89merged_weight90)91merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')92else:93# TODO: determine correct value for scale94scale = 1.095m = self.boft_m96b = self.boft_b97r_b = b // 298inp = orig_weight99for i in range(m):100bi = R[i] # b_num, b_size, b_size101if i == 0:102# Apply multiplier/scale and rescale into first weight103bi = bi * scale + (1 - scale) * eye104inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b)105inp = rearrange(inp, "(d b) ... -> d b ...", b=b)106inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp)107inp = rearrange(inp, "d b ... -> (d b) ...")108inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b)109merged_weight = inp110111# Rescale mechanism112if self.rescale is not None:113merged_weight = self.rescale.to(merged_weight) * merged_weight114115updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype)116output_shape = orig_weight.shape117return self.finalize_updown(updown, orig_weight, output_shape)118119120