CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In
AllenDowney

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place.

GitHub Repository: AllenDowney/ModSimPy
Path: blob/master/notebooks/chap13.ipynb
Views: 531
Kernel: Python 3

Modeling and Simulation in Python

Chapter 13

Copyright 2017 Allen Downey

License: Creative Commons Attribution 4.0 International

# Configure Jupyter so figures appear in the notebook %matplotlib inline # Configure Jupyter to display the assigned value after an assignment %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' # import functions from the modsim.py module from modsim import *

Code from previous chapters

make_system, plot_results, and calc_total_infected are unchanged.

def make_system(beta, gamma): """Make a system object for the SIR model. beta: contact rate in days gamma: recovery rate in days returns: System object """ init = State(S=89, I=1, R=0) init /= np.sum(init) t0 = 0 t_end = 7 * 14 return System(init=init, t0=t0, t_end=t_end, beta=beta, gamma=gamma)
def plot_results(S, I, R): """Plot the results of a SIR model. S: TimeSeries I: TimeSeries R: TimeSeries """ plot(S, '--', label='Susceptible') plot(I, '-', label='Infected') plot(R, ':', label='Recovered') decorate(xlabel='Time (days)', ylabel='Fraction of population')
def calc_total_infected(results): """Fraction of population infected during the simulation. results: DataFrame with columns S, I, R returns: fraction of population """ return get_first_value(results.S) - get_last_value(results.S)
def run_simulation(system, update_func): """Runs a simulation of the system. system: System object update_func: function that updates state returns: TimeFrame """ init, t0, t_end = system.init, system.t0, system.t_end frame = TimeFrame(columns=init.index) frame.row[t0] = init for t in linrange(t0, t_end): frame.row[t+1] = update_func(frame.row[t], t, system) return frame
def update_func(state, t, system): """Update the SIR model. state: State (s, i, r) t: time system: System object returns: State (sir) """ beta, gamma = system.beta, system.gamma s, i, r = state infected = beta * i * s recovered = gamma * i s -= infected i += infected - recovered r += recovered return State(S=s, I=i, R=r)

Sweeping beta

Make a range of values for beta, with constant gamma.

beta_array = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 , 1.1] gamma = 0.2

Run the simulation once for each value of beta and print total infections.

for beta in beta_array: system = make_system(beta, gamma) results = run_simulation(system, update_func) print(system.beta, calc_total_infected(results))

Wrap that loop in a function and return a SweepSeries object.

def sweep_beta(beta_array, gamma): """Sweep a range of values for beta. beta_array: array of beta values gamma: recovery rate returns: SweepSeries that maps from beta to total infected """ sweep = SweepSeries() for beta in beta_array: system = make_system(beta, gamma) results = run_simulation(system, update_func) sweep[system.beta] = calc_total_infected(results) return sweep

Sweep beta and plot the results.

infected_sweep = sweep_beta(beta_array, gamma)
label = 'gamma = ' + str(gamma) plot(infected_sweep, label=label) decorate(xlabel='Contact rate (beta)', ylabel='Fraction infected') savefig('figs/chap13-fig01.pdf')

Sweeping gamma

Using the same array of values for beta

beta_array

And now an array of values for gamma

gamma_array = [0.2, 0.4, 0.6, 0.8]

For each value of gamma, sweep beta and plot the results.

plt.figure(figsize=(7, 4)) for gamma in gamma_array: infected_sweep = sweep_beta(beta_array, gamma) label = 'gamma = ' + str(gamma) plot(infected_sweep, label=label) decorate(xlabel='Contact rate (beta)', ylabel='Fraction infected', loc='upper left') plt.legend(bbox_to_anchor=(1.02, 1.02)) plt.tight_layout() savefig('figs/chap13-fig02.pdf')

Exercise: Suppose the infectious period for the Freshman Plague is known to be 2 days on average, and suppose during one particularly bad year, 40% of the class is infected at some point. Estimate the time between contacts.

# Solution goes here
# Solution goes here
# Solution goes here

SweepFrame

The following sweeps two parameters and stores the results in a SweepFrame

def sweep_parameters(beta_array, gamma_array): """Sweep a range of values for beta and gamma. beta_array: array of infection rates gamma_array: array of recovery rates returns: SweepFrame with one row for each beta and one column for each gamma """ frame = SweepFrame(columns=gamma_array) for gamma in gamma_array: frame[gamma] = sweep_beta(beta_array, gamma) return frame

Here's what the SweepFrame look like.

frame = sweep_parameters(beta_array, gamma_array) frame.head()

And here's how we can plot the results.

for gamma in gamma_array: label = 'gamma = ' + str(gamma) plot(frame[gamma], label=label) decorate(xlabel='Contact rate (beta)', ylabel='Fraction infected', title='', loc='upper left')

We can also plot one line for each value of beta, although there are a lot of them.

plt.figure(figsize=(7, 4)) for beta in [1.1, 0.9, 0.7, 0.5, 0.3]: label = 'beta = ' + str(beta) plot(frame.row[beta], label=label) decorate(xlabel='Recovery rate (gamma)', ylabel='Fraction infected') plt.legend(bbox_to_anchor=(1.02, 1.02)) plt.tight_layout() savefig('figs/chap13-fig03.pdf')

It's often useful to separate the code that generates results from the code that plots the results, so we can run the simulations once, save the results, and then use them for different analysis, visualization, etc.

After running sweep_parameters, we have a SweepFrame with one row for each value of beta and one column for each value of gamma.

contour(frame) decorate(xlabel='Recovery rate (gamma)', ylabel='Contact rate (beta)', title='Fraction infected, contour plot') savefig('figs/chap13-fig04.pdf')