Path: blob/master/Model-1/WordClassifier-CTC.ipynb
427 views
Kernel: Python 3
Connectionist temporal classification - Word Classification
Implemented in Tensorflow
TODO
In [1]:
Out[1]:
Tensorflow 1.4.0
Loading images
In [2]:
In [3]:
Out[3]:
Loading words...
-> Number of words: 5069
Settings
In [4]:
Dataset
In [5]:
Out[5]:
Training images: 4055
Testing images: 1014
In [6]:
Out[6]:
Transformed train images 12165
In [7]:
In [8]:
Out[8]:
Iterator created.
Iterator created.
Placeholders
In [9]:
Graph
In [10]:
CNN
In [11]:
In [12]:
In [13]:
Out[13]:
(5, 9)
Optimizer
In [14]:
Accuracy + Padding
In [15]:
Training
In [16]:
Out[16]:
<IPython.core.display.Javascript object>
batch 0 - loss: 14.03011
expected > [44 31 27 38 38 51]
predicted > []
expected > [10 0 0 0 0 0]
predicted > []
batch 2000 - loss: 7.7040024
expected > [ 3 34 31 31 44 0 0]
predicted > [ 1 46 31 44 0 0]
expected > [30 35 46 31 0 0 0]
predicted > [30 35 27 46 31 0]
batch 4000 - loss: 4.9426394
expected > [29 0 0 0 0]
predicted > [29 35 0 0]
expected > [27 33 31 0 0]
predicted > [45 38 0 0]
batch 6000 - loss: 4.2646828
expected > [15 47 46 0 0 0 0 0]
predicted > [15 27 46 0 0 0 0]
expected > [26 31 39 0 0 0 0 0]
predicted > [ 6 31 40 0 0 0 0]
batch 8000 - loss: 4.3730812
expected > [42 27 44 37 0]
predicted > [42 27 45 37 0]
expected > [34 35 45 0 0]
predicted > [34 35 45 0 0]
batch 10000 - loss: 5.6516752
expected > [38 41 48 31 0 0 0 0]
predicted > [38 41 48 31 0 0 0 0]
expected > [42 41 39 41 29 35 0 0]
predicted > [42 41 48 41 35 0 0 0]
batch 12000 - loss: 3.5471888
expected > [10 35 46 37 27 0]
predicted > [36 35 46 37 27 0]
expected > [52 0 0 0 0 0]
predicted > [52 0 0 0 0 0]
batch 14000 - loss: 3.1041458
expected > [48 51 38 31 46 0]
predicted > [48 51 31 46 0]
expected > [36 35 0 0 0 0]
predicted > [36 35 0 0 0]
batch 16000 - loss: 3.7438998
expected > [48 29 31 44 27 0 0 0]
predicted > [48 29 31 44 27 0 0 0]
expected > [48 45 35 39 40 41 47 46]
predicted > [48 40 27 40 41 27 40 46]
batch 18000 - loss: 2.9463203
expected > [29 34 48 35 38 31 0 0 0]
predicted > [29 37 48 35 34 31 0 0]
expected > [45 37 27 38 27 0 0 0 0]
predicted > [45 37 27 38 27 0 0 0]
batch 20000 - loss: 4.4252157
expected > [52 41 41 0 0 0 0 0 0]
predicted > [29 48 41 0 0 0 0 0 0 0]
expected > [40 35 29 35 0 0 0 0 0]
predicted > [40 35 29 35 0 0 0 0 0 0]
batch 22000 - loss: 3.3735261
expected > [38 35 37 31 0 0]
predicted > [38 35 37 31 0 0 0]
expected > [45 51 29 31 37 0]
predicted > [45 51 29 31 46 27 0]
batch 24000 - loss: 4.7486191
expected > [19 27 30 38 51 0 0]
predicted > [19 27 29 38 51 0]
expected > [52 30 27 0 0 0 0]
predicted > [52 30 27 0 0 0]
batch 26000 - loss: 3.6218534
expected > [49 34 35 38 31 0 0 0]
predicted > [49 34 35 38 31 0 0 0 0]
expected > [29 35 44 29 38 31 0 0]
predicted > [29 35 44 27 38 31 0 0 0]
batch 28000 - loss: 2.8629522
expected > [7 0 0 0]
predicted > [7 0 0 0]
expected > [42 27 37 0]
predicted > [42 27 37 0]
batch 30000 - loss: 3.5273075
expected > [41 38 41 48 41 0 0 0]
predicted > [30 27 48 41 0 0 0]
expected > [16 47 29 34 0 0 0 0]
predicted > [16 47 29 34 0 0 0]
batch 32000 - loss: 5.6210623
expected > [ 7 35 44 38 0 0 0]
predicted > [ 7 35 45 46 0 0]
expected > [31 44 27 0 0 0 0]
predicted > [31 44 27 0 0 0]
batch 34000 - loss: 4.0684881
expected > [ 5 35 46 34 31 44 0 0]
predicted > [ 5 35 46 34 31 44 0 0]
expected > [19 46 35 38 38 0 0 0]
predicted > [19 46 35 38 0 0 0 0]
batch 36000 - loss: 2.9283721
expected > [32 27 46 0 0]
predicted > [28 46 0 0 0 0]
expected > [45 35 42 0 0]
predicted > [45 35 36 0 0 0]
batch 38000 - loss: 5.4859548
expected > [49 41 44 38 30 0 0 0]
predicted > [49 41 44 38 30 0 0 0]
expected > [35 40 0 0 0 0 0 0]
predicted > [35 40 0 0 0 0 0 0]
batch 40000 - loss: 5.6999946
expected > [22 35 46 44 0 0 0 0 0]
predicted > [22 35 46 44 0 0 0 0 0]
expected > [52 37 41 47 39 27 36 35 0]
predicted > [31 34 41 47 44 40 33 36 35]
Training interrupted, model saved.
In [17]:
Out[17]:
expected > [10 47 45 46 0 0 0]
predicted > [10 47 45 46 0 0 0]
expected > [ 3 34 27 46 0 0 0]
predicted > [15 38 27 46 0 0 0]
expected > [38 35 28 44 27 44 51 0 0 0]
predicted > [28 35 46 44 47 44 51 0]
expected > [18 41 41 46 0 0 0 0 0 0]
predicted > [18 41 46 0 0 0 0 0]
expected > [52 48 27 40 0 0 0 0 0 0]
predicted > [52 41 27 40 29 0 0 0 0 0]
expected > [45 46 27 48 28 27 0 0 0 0]
predicted > [45 46 27 48 28 27 0 0 0 0]
expected > [45 38 51 0 0]
predicted > [35 38 51 0 0 0]
expected > [27 28 51 0 0]
predicted > [27 28 41 51 0 0]
expected > [15 30 31 35 27 0 0]
predicted > [ 5 30 31 44 35 27]
expected > [ 4 47 44 27 0 0 0]
predicted > [ 4 47 44 27 0 0]