Path: blob/master/Model-1/WordClassifier-Seq2Seq.ipynb
427 views
Kernel: Python 3
Recurrent Neural Network - Word Classification
Using Seq2Seq model
Implemented in TensorFlow. Using bidirectual RNN as encoder and decoder implemented as tf.nn.raw_rnn
TODO
In [1]:
Out[1]:
Tensorflow 1.4.0
Loading images
In [2]:
In [3]:
Out[3]:
Loading words...
-> Number of words: 5069
Settings
In [4]:
Dataset
In [5]:
Out[5]:
Training images: 4055
Testing images: 1014
Dataset extending
In [6]:
Out[6]:
Transformed train images 12165
In [7]:
In [8]:
Out[8]:
Iterator created.
Iterator created.
Placeholders
In [9]:
Decoder Train Feeds
In [10]:
Embeddings
In [11]:
Encoder
In [12]:
In [13]:
In [14]:
Out[14]:
[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
Decoder
In [15]:
Optimizer
In [16]:
Training
In [17]:
Out[17]:
<IPython.core.display.Javascript object>
batch 0 - loss: 3.9249754
expected > [ 3 28 38 32 1 0 0 0 0 0 0 0 0 0 0]
predicted > [28 28 1 0 0 0 0 0 0 0 0 0 0 0 0]
expected > [35 42 31 41 42 47 28 1 0 0 0 0 0 0 0]
predicted > [28 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
batch 2000 - loss: 1.6534165
expected > [43 48 39 39 1 0 0 0 0]
predicted > [43 28 39 1 0 0 0 0 0]
expected > [20 1 0 0 0 0 0 0 0]
predicted > [12 1 0 0 0 0 0 0 0]
batch 4000 - loss: 1.3383532
expected > [40 36 46 47 42 1 0 0 0 0 0 0 0 0 0]
predicted > [49 28 46 47 42 1 0 0 0 0 0 0 0 0 0]
expected > [38 45 28 1 0 0 0 0 0 0 0 0 0 0 0]
predicted > [47 45 28 40 1 0 0 0 0 0 0 0 0 0 0]
batch 6000 - loss: 1.1780998
expected > [53 39 48 47 28 1 0 0 0 0 0 0 0 0 0]
predicted > [30 39 28 47 28 1 0 0 0 0 0 0 0 0 0]
expected > [47 36 40 32 1 0 0 0 0 0 0 0 0 0 0]
predicted > [38 45 42 49 32 1 0 0 0 0 0 0 0 0 0]
batch 8000 - loss: 1.1226385
expected > [ 3 45 32 47 28 1 0 0 0 0 0 0 0 0 0]
predicted > [ 3 28 30 38 1 0 0 0 0 0 0 0 0 0 0]
expected > [21 49 28 45 48 1 0 0 0 0 0 0 0 0 0]
predicted > [27 28 45 36 1 0 0 0 0 0 0 0 0 0 0]
batch 10000 - loss: 1.3133575
expected > [13 28 31 36 46 39 28 49 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
predicted > [ 3 28 30 35 42 30 39 42 49 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
expected > [16 46 28 40 32 39 28 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
predicted > [16 45 30 41 36 38 36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
batch 12000 - loss: 1.4228649
expected > [12 42 41 47 36 41 32 41 47 28 39 41 36 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0]
predicted > [35 42 47 36 40 28 39 36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0]
expected > [49 52 53 38 48 40 41 32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0]
predicted > [49 52 46 38 48 40 48 41 36 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0]
batch 14000 - loss: 1.8237103
expected > [52 1 0 0 0 0 0 0 0]
predicted > [23 1 0 0 0 0 0 0 0]
expected > [45 32 28 39 39 52 1 0 0]
predicted > [40 28 39 39 52 1 0 0 0]
batch 16000 - loss: 1.9093359
expected > [34 28 34 1 0 0 0 0 0]
predicted > [40 48 52 1 0 0 0 0 0]
expected > [45 52 46 1 0 0 0 0 0]
predicted > [40 52 37 1 0 0 0 0 0]
batch 18000 - loss: 1.6860849
expected > [48 49 32 46 47 1 0 0 0 0 0 0 0]
predicted > [40 42 53 32 47 1 0 0 0 0 0 0 0]
expected > [43 32 41 1 0 0 0 0 0 0 0 0 0]
predicted > [43 28 45 1 0 0 0 0 0 0 0 0 0]
Training interrupted, model saved.
In [18]:
Out[18]:
expected > [4 1 0 0 0 0 0 0 0]
predicted > [4 1 0 0 0 0 0 0 0]
expected > [42 29 32 37 31 32 47 32 1]
predicted > [31 52 47 32 47 1 0 0 0]
expected > [53 28 43 39 28 47 28 1 0 0 0 0 0 0 0]
predicted > [31 28 46 39 48 47 28 1 0 0 0 0 0 0 0]
expected > [40 36 30 1 0 0 0 0 0 0 0 0 0 0 0]
predicted > [41 36 53 1 0 0 0 0 0 0 0 0 0 0 0]
expected > [49 52 53 38 48 40 41 32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
predicted > [49 52 53 38 48 40 48 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
expected > [29 39 36 53 38 42 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
predicted > [29 39 28 30 38 28 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
expected > [45 42 38 1 0 0 0 0 0 0 0 0 0]
predicted > [45 42 38 1 0 0 0 0 0 0 0 0 0]
expected > [45 28 31 1 0 0 0 0 0 0 0 0 0]
predicted > [45 28 31 1 0 0 0 0 0 0 0 0 0]
expected > [47 32 45 30 32 40 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
predicted > [47 45 32 30 32 41 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
expected > [46 36 41 30 32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]
predicted > [48 36 41 30 32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]