#include "Blimp.h"
bool AP_Arming_Blimp::pre_arm_checks(bool display_failure)
{
const bool passed = run_pre_arm_checks(display_failure);
set_pre_arm_check(passed);
return passed;
}
bool AP_Arming_Blimp::run_pre_arm_checks(bool display_failure)
{
if (blimp.motors->armed()) {
return true;
}
if (!hal.scheduler->is_system_initialized()) {
check_failed(display_failure, "System not initialised");
return false;
}
if (rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_INTERLOCK) &&
rc().find_channel_for_option(RC_Channel::AUX_FUNC::MOTOR_ESTOP)) {
check_failed(display_failure, "Interlock/E-Stop Conflict");
return false;
}
if (checks_to_perform == 0) {
return mandatory_checks(display_failure);
}
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wbitwise-instead-of-logical"
return parameter_checks(display_failure)
#if AP_FENCE_ENABLED
& fence_checks(display_failure)
#endif
& motor_checks(display_failure)
& gcs_failsafe_check(display_failure)
& alt_checks(display_failure)
& AP_Arming::pre_arm_checks(display_failure);
#pragma clang diagnostic pop
}
bool AP_Arming_Blimp::barometer_checks(bool display_failure)
{
if (!AP_Arming::barometer_checks(display_failure)) {
return false;
}
bool ret = true;
if (check_enabled(Check::BARO)) {
const auto &ahrs = AP::ahrs();
const bool using_baro_ref = !ahrs.has_status(AP_AHRS::Status::PRED_HORIZ_POS_REL) && ahrs.has_status(AP_AHRS::Status::PRED_HORIZ_POS_ABS);
if (using_baro_ref) {
if (fabsf(blimp.inertial_nav.get_position_z_up_cm() - blimp.baro_alt) > PREARM_MAX_ALT_DISPARITY_CM) {
check_failed(Check::BARO, display_failure, "Altitude disparity");
ret = false;
}
}
}
return ret;
}
bool AP_Arming_Blimp::ins_checks(bool display_failure)
{
bool ret = AP_Arming::ins_checks(display_failure);
if (check_enabled(Check::INS)) {
if (!pre_arm_ekf_attitude_check()) {
check_failed(Check::INS, display_failure, "EKF attitude is bad");
ret = false;
}
}
return ret;
}
bool AP_Arming_Blimp::board_voltage_checks(bool display_failure)
{
if (!AP_Arming::board_voltage_checks(display_failure)) {
return false;
}
if (check_enabled(Check::VOLTAGE)) {
if (blimp.battery.has_failsafed()) {
check_failed(Check::VOLTAGE, display_failure, "Battery failsafe");
return false;
}
if (!AP_Arming::battery_checks(display_failure)) {
return false;
}
}
return true;
}
bool AP_Arming_Blimp::parameter_checks(bool display_failure)
{
if (check_enabled(Check::PARAMETERS)) {
if (blimp.g.failsafe_throttle) {
if (blimp.channel_up->get_radio_min() <= blimp.g.failsafe_throttle_value+10 || blimp.g.failsafe_throttle_value < 910) {
check_failed(Check::PARAMETERS, display_failure, "Check FS_THR_VALUE");
return false;
}
}
}
return true;
}
bool AP_Arming_Blimp::motor_checks(bool display_failure)
{
if (!blimp.motors->initialised_ok()) {
check_failed(display_failure, "Check firmware or FRAME_CLASS");
return false;
}
if (!check_enabled(Check::PARAMETERS)) {
return true;
}
return true;
}
bool AP_Arming_Blimp::rc_calibration_checks(bool display_failure)
{
return true;
}
bool AP_Arming_Blimp::gps_checks(bool display_failure)
{
if (!mandatory_gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
bool mode_requires_gps = blimp.flightmode->requires_GPS();
if (!mode_requires_gps) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
if (!check_enabled(Check::GPS)) {
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
if (blimp.gps.get_hdop() > blimp.g.gps_hdop_good) {
check_failed(Check::GPS, display_failure, "High GPS HDOP");
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
if (!AP_Arming::gps_checks(display_failure)) {
AP_Notify::flags.pre_arm_gps_check = false;
return false;
}
AP_Notify::flags.pre_arm_gps_check = true;
return true;
}
bool AP_Arming_Blimp::pre_arm_ekf_attitude_check()
{
return AP::ahrs().has_status(AP_AHRS::Status::ATTITUDE_VALID);
}
bool AP_Arming_Blimp::mandatory_gps_checks(bool display_failure)
{
const auto &ahrs = AP::ahrs();
char failure_msg[50] = {};
if (!ahrs.pre_arm_check(false, failure_msg, sizeof(failure_msg))) {
check_failed(display_failure, "AHRS: %s", failure_msg);
return false;
}
bool mode_requires_gps = blimp.flightmode->requires_GPS();
if (mode_requires_gps) {
if (!blimp.position_ok()) {
check_failed(display_failure, "Need Position Estimate");
return false;
}
} else {
return true;
}
nav_filter_status filt_status;
if (ahrs.get_filter_status(filt_status)) {
if (filt_status.flags.gps_glitching) {
check_failed(display_failure, "GPS glitching");
return false;
}
}
return true;
}
bool AP_Arming_Blimp::gcs_failsafe_check(bool display_failure)
{
if (blimp.failsafe.gcs) {
check_failed(display_failure, "GCS failsafe on");
return false;
}
return true;
}
bool AP_Arming_Blimp::alt_checks(bool display_failure)
{
if (!blimp.flightmode->has_manual_throttle() && !blimp.ekf_alt_ok()) {
check_failed(display_failure, "Need Alt Estimate");
return false;
}
return true;
}
bool AP_Arming_Blimp::arm_checks(AP_Arming::Method method)
{
return AP_Arming::arm_checks(method);
}
bool AP_Arming_Blimp::mandatory_checks(bool display_failure)
{
bool result = mandatory_gps_checks(display_failure);
AP_Notify::flags.pre_arm_gps_check = result;
if (!alt_checks(display_failure)) {
result = false;
}
return result & AP_Arming::mandatory_checks(display_failure);
}
void AP_Arming_Blimp::set_pre_arm_check(bool b)
{
blimp.ap.pre_arm_check = b;
AP_Notify::flags.pre_arm_check = b;
}
bool AP_Arming_Blimp::arm(const AP_Arming::Method method, const bool do_arming_checks)
{
static bool in_arm_motors = false;
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
if (blimp.motors->armed()) {
in_arm_motors = false;
return true;
}
if (!AP_Arming::arm(method, do_arming_checks)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
#if HAL_LOGGING_ENABLED
AP::logger().set_vehicle_armed(true);
#endif
AP_Notify::flags.armed = true;
for (uint8_t i=0; i<=10; i++) {
AP::notify().update();
}
send_arm_disarm_statustext("Arming motors");
auto &ahrs = AP::ahrs();
blimp.initial_armed_bearing = ahrs.yaw_sensor;
if (!ahrs.home_is_set()) {
ahrs.resetHeightDatum();
LOGGER_WRITE_EVENT(LogEvent::EKF_ALT_RESET);
blimp.arming_altitude_m = 0;
} else if (!ahrs.home_is_locked()) {
if (!blimp.set_home_to_current_location(false)) {
}
blimp.arming_altitude_m = blimp.inertial_nav.get_position_z_up_cm() * 0.01;
}
hal.util->set_soft_armed(true);
blimp.motors->armed(true);
#if HAL_LOGGING_ENABLED
AP::logger().Write_Mode((uint8_t)blimp.control_mode, blimp.control_mode_reason);
#endif
AP::scheduler().perf_info.ignore_this_loop();
in_arm_motors = false;
blimp.arm_time_ms = millis();
blimp.ap.in_arming_delay = true;
return true;
}
bool AP_Arming_Blimp::disarm(const AP_Arming::Method method, bool do_disarm_checks)
{
if (!blimp.motors->armed()) {
return true;
}
if (method == AP_Arming::Method::RUDDER) {
if (!blimp.flightmode->has_manual_throttle() && !blimp.ap.land_complete) {
return false;
}
}
if (!AP_Arming::disarm(method, do_disarm_checks)) {
return false;
}
send_arm_disarm_statustext("Disarming motors");
auto &ahrs = AP::ahrs();
Compass &compass = AP::compass();
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LearnType::COPY_FROM_EKF) {
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
Vector3f magOffsets;
if (ahrs.getMagOffsets(i, magOffsets)) {
compass.set_and_save_offsets(i, magOffsets);
}
}
}
blimp.motors->armed(false);
#if HAL_LOGGING_ENABLED
AP::logger().set_vehicle_armed(false);
#endif
hal.util->set_soft_armed(false);
blimp.ap.in_arming_delay = false;
return true;
}