#include <AP_Math/AP_Math.h>
#include "AC_PID_2D.h"
#define AC_PID_2D_FILT_D_HZ_MIN 0.005f
const AP_Param::GroupInfo AC_PID_2D::var_info[] = {
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("P", 0, AC_PID_2D, _kp, default_kp),
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("I", 1, AC_PID_2D, _ki, default_ki),
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("IMAX", 2, AC_PID_2D, _kimax, default_kimax),
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FLTE", 3, AC_PID_2D, _filt_E_hz, default_filt_E_hz),
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("D", 4, AC_PID_2D, _kd, default_kd),
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FLTD", 5, AC_PID_2D, _filt_D_hz, default_filt_D_hz),
AP_GROUPINFO_FLAGS_DEFAULT_POINTER("FF", 6, AC_PID_2D, _kff, default_kff),
AP_GROUPEND
};
AC_PID_2D::AC_PID_2D(float initial_kP, float initial_kI, float initial_kD, float initial_kFF, float initial_imax, float initial_filt_E_hz, float initial_filt_D_hz) :
default_kp(initial_kP),
default_ki(initial_kI),
default_kd(initial_kD),
default_kff(initial_kFF),
default_kimax(initial_imax),
default_filt_E_hz(initial_filt_E_hz),
default_filt_D_hz(initial_filt_D_hz)
{
AP_Param::setup_object_defaults(this, var_info);
_reset_filter = true;
}
Vector2f AC_PID_2D::update_all(const Vector2f &target, const Vector2f &measurement, float dt, const Vector2f &limit)
{
if (target.is_nan() || target.is_inf() ||
measurement.is_nan() || measurement.is_inf()) {
return Vector2f{};
}
_target = target;
if (_reset_filter) {
_reset_filter = false;
_error = _target - measurement;
_derivative.zero();
} else {
Vector2f error_last{_error};
_error += ((_target - measurement) - _error) * get_filt_E_alpha(dt);
if (is_positive(dt)) {
const Vector2f derivative{(_error - error_last) / dt};
_derivative += (derivative - _derivative) * get_filt_D_alpha(dt);
}
}
update_i(dt, limit);
_pid_info_x.target = _target.x;
_pid_info_x.actual = measurement.x;
_pid_info_x.error = _error.x;
_pid_info_x.P = _error.x * _kp;
_pid_info_x.I = _integrator.x;
_pid_info_x.D = _derivative.x * _kd;
_pid_info_x.FF = _target.x * _kff;
_pid_info_y.target = _target.y;
_pid_info_y.actual = measurement.y;
_pid_info_y.error = _error.y;
_pid_info_y.P = _error.y * _kp;
_pid_info_y.I = _integrator.y;
_pid_info_y.D = _derivative.y * _kd;
_pid_info_y.FF = _target.y * _kff;
return _error * _kp + _integrator + _derivative * _kd + _target * _kff;
}
Vector2f AC_PID_2D::update_all(const Vector3f &target, const Vector3f &measurement, float dt, const Vector3f &limit)
{
return update_all(Vector2f{target.x, target.y}, Vector2f{measurement.x, measurement.y}, dt, Vector2f{limit.x, limit.y});
}
void AC_PID_2D::update_i(float dt, const Vector2f &limit)
{
_pid_info_x.limit = false;
_pid_info_y.limit = false;
Vector2f delta_integrator = (_error * _ki) * dt;
float integrator_length = _integrator.length();
_integrator += delta_integrator;
if (is_positive(delta_integrator * limit) && _integrator.limit_length(integrator_length)) {
_pid_info_x.limit = true;
_pid_info_y.limit = true;
}
_integrator.limit_length(_kimax);
}
Vector2f AC_PID_2D::get_p() const
{
return _error * _kp;
}
const Vector2f& AC_PID_2D::get_i() const
{
return _integrator;
}
Vector2f AC_PID_2D::get_d() const
{
return _derivative * _kd;
}
Vector2f AC_PID_2D::get_ff()
{
_pid_info_x.FF = _target.x * _kff;
_pid_info_y.FF = _target.y * _kff;
return _target * _kff;
}
void AC_PID_2D::reset_I()
{
_integrator.zero();
}
void AC_PID_2D::save_gains()
{
_kp.save();
_ki.save();
_kd.save();
_kff.save();
_kimax.save();
_filt_E_hz.save();
_filt_D_hz.save();
}
float AC_PID_2D::get_filt_E_alpha(float dt) const
{
return calc_lowpass_alpha_dt(dt, _filt_E_hz);
}
float AC_PID_2D::get_filt_D_alpha(float dt) const
{
return calc_lowpass_alpha_dt(dt, _filt_D_hz);
}
void AC_PID_2D::set_integrator(const Vector2f& target, const Vector2f& measurement, const Vector2f& i)
{
set_integrator(target - measurement, i);
}
void AC_PID_2D::set_integrator(const Vector2f& error, const Vector2f& i)
{
set_integrator(i - error * _kp);
}
void AC_PID_2D::set_integrator(const Vector2f& i)
{
_integrator = i;
_integrator.limit_length(_kimax);
}