Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Path: blob/master/libraries/AP_Declination/AP_Declination.cpp
Views: 1798
/*1This program is free software: you can redistribute it and/or modify2it under the terms of the GNU General Public License as published by3the Free Software Foundation, either version 3 of the License, or4(at your option) any later version.56This program is distributed in the hope that it will be useful,7but WITHOUT ANY WARRANTY; without even the implied warranty of8MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the9GNU General Public License for more details.1011You should have received a copy of the GNU General Public License12along with this program. If not, see <http://www.gnu.org/licenses/>.13*/1415/*16* Adam M Rivera17* With direction from: Andrew Tridgell, Jason Short, Justin Beech18*19* Adapted from: http://www.societyofrobots.com/robotforum/index.php?topic=11855.020* Scott Ferguson21* [email protected]22*23*/24#include "AP_Declination.h"2526#include <cmath>2728#include <AP_Common/AP_Common.h>29#include <AP_Math/AP_Math.h>3031/*32calculate magnetic field intensity and orientation33*/34bool AP_Declination::get_mag_field_ef(float latitude_deg, float longitude_deg, float &intensity_gauss, float &declination_deg, float &inclination_deg)35{36bool valid_input_data = true;3738/* round down to nearest sampling resolution. On some platforms (e.g. clang on macOS),39the behaviour of implicit casts from int32 to float can be undefined thus making it explicit here. */40float min_lat = float(static_cast<int32_t>(static_cast<int32_t>(floorf(latitude_deg / SAMPLING_RES)) * SAMPLING_RES));41float min_lon = float(static_cast<int32_t>(static_cast<int32_t>(floorf(longitude_deg / SAMPLING_RES)) * SAMPLING_RES));4243/* for the rare case of hitting the bounds exactly44* the rounding logic wouldn't fit, so enforce it.45*/4647/* limit to table bounds - required for maxima even when table spans full globe range */48if (latitude_deg <= SAMPLING_MIN_LAT) {49min_lat = float(static_cast<int32_t>(SAMPLING_MIN_LAT));50valid_input_data = false;51}5253if (latitude_deg >= SAMPLING_MAX_LAT) {54min_lat = float(static_cast<int32_t>(static_cast<int32_t>(latitude_deg / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES));55valid_input_data = false;56}5758if (longitude_deg <= SAMPLING_MIN_LON) {59min_lon = float(static_cast<int32_t>(SAMPLING_MIN_LON));60valid_input_data = false;61}6263if (longitude_deg >= SAMPLING_MAX_LON) {64min_lon = float(static_cast<int32_t>(static_cast<int32_t>(longitude_deg / SAMPLING_RES) * SAMPLING_RES - SAMPLING_RES));65valid_input_data = false;66}6768/* find index of nearest low sampling point */69uint32_t min_lat_index = constrain_int32(static_cast<uint32_t>((-(SAMPLING_MIN_LAT) + min_lat) / SAMPLING_RES), 0, LAT_TABLE_SIZE - 2);70uint32_t min_lon_index = constrain_int32(static_cast<uint32_t>((-(SAMPLING_MIN_LON) + min_lon) / SAMPLING_RES), 0, LON_TABLE_SIZE -2);7172/* calculate intensity */7374float data_sw = intensity_table[min_lat_index][min_lon_index];75float data_se = intensity_table[min_lat_index][min_lon_index + 1];76float data_ne = intensity_table[min_lat_index + 1][min_lon_index + 1];77float data_nw = intensity_table[min_lat_index + 1][min_lon_index];7879/* perform bilinear interpolation on the four grid corners */8081float data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw;82float data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw;8384intensity_gauss = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min;8586/* calculate declination */8788data_sw = declination_table[min_lat_index][min_lon_index];89data_se = declination_table[min_lat_index][min_lon_index + 1];90data_ne = declination_table[min_lat_index + 1][min_lon_index + 1];91data_nw = declination_table[min_lat_index + 1][min_lon_index];9293/* perform bilinear interpolation on the four grid corners */9495data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw;96data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw;9798declination_deg = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min;99100/* calculate inclination */101102data_sw = inclination_table[min_lat_index][min_lon_index];103data_se = inclination_table[min_lat_index][min_lon_index + 1];104data_ne = inclination_table[min_lat_index + 1][min_lon_index + 1];105data_nw = inclination_table[min_lat_index + 1][min_lon_index];106107/* perform bilinear interpolation on the four grid corners */108109data_min = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_se - data_sw) + data_sw;110data_max = ((longitude_deg - min_lon) / SAMPLING_RES) * (data_ne - data_nw) + data_nw;111112inclination_deg = ((latitude_deg - min_lat) / SAMPLING_RES) * (data_max - data_min) + data_min;113114return valid_input_data;115}116117118/*119calculate magnetic field intensity and orientation120*/121float AP_Declination::get_declination(float latitude_deg, float longitude_deg)122{123float declination_deg=0, inclination_deg=0, intensity_gauss=0;124125get_mag_field_ef(latitude_deg, longitude_deg, intensity_gauss, declination_deg, inclination_deg);126127return declination_deg;128}129130/*131get earth field as a Vector3f in Gauss given a Location132*/133Vector3f AP_Declination::get_earth_field_ga(const Location &loc)134{135float declination_deg=0, inclination_deg=0, intensity_gauss=0;136get_mag_field_ef(loc.lat*1.0e-7f, loc.lng*1.0e-7f, intensity_gauss, declination_deg, inclination_deg);137138// create earth field139Vector3f mag_ef = Vector3f(intensity_gauss, 0.0, 0.0);140Matrix3f R;141142R.from_euler(0.0f, -ToRad(inclination_deg), ToRad(declination_deg));143mag_ef = R * mag_ef;144return mag_ef;145}146147148