Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
BitchX
GitHub Repository: BitchX/BitchX1.3
Path: blob/master/dll/nap/md5.c
1072 views
1
/*
2
* This code implements the MD5 message-digest algorithm.
3
* The algorithm is due to Ron Rivest. This code was
4
* written by Colin Plumb in 1993, no copyright is claimed.
5
* This code is in the public domain; do with it what you wish.
6
*
7
* Equivalent code is available from RSA Data Security, Inc.
8
* This code has been tested against that, and is equivalent,
9
* except that you don't need to include two pages of legalese
10
* with every copy.
11
*
12
* To compute the message digest of a chunk of bytes, declare an
13
* MD5Context structure, pass it to MD5Init, call MD5Update as
14
* needed on buffers full of bytes, and then call MD5Final, which
15
* will fill a supplied 16-byte array with the digest.
16
*/
17
#include <string.h>
18
19
/* for memcpy() */
20
#include "md5.h"
21
22
#ifndef HIGHFIRST
23
#define byteReverse(buf, len)
24
/* Nothing */
25
#else
26
void byteReverse(unsigned char *buf, unsigned longs);
27
28
#ifndef ASM_MD5
29
/*
30
* Note: this code is harmless on little-endian machines.
31
*/
32
void byteReverse(unsigned char *buf, unsigned longs)
33
{
34
uint32 t;
35
do {
36
37
t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
38
39
((unsigned) buf[1] << 8 | buf[0]);
40
41
*(uint32 *) buf = t;
42
43
buf += 4;
44
} while (--longs);
45
}
46
#endif
47
#endif
48
49
/*
50
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
51
* initialization constants.
52
*/
53
void MD5Init(struct MD5Context *ctx)
54
{
55
ctx->buf[0] = 0x67452301;
56
ctx->buf[1] = 0xefcdab89;
57
ctx->buf[2] = 0x98badcfe;
58
ctx->buf[3] = 0x10325476;
59
60
ctx->bits[0] = 0;
61
ctx->bits[1] = 0;
62
}
63
64
/*
65
* Update context to reflect the concatenation of another buffer full
66
* of bytes.
67
*/
68
void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
69
{
70
uint32 t;
71
72
/* Update bitcount */
73
74
t = ctx->bits[0];
75
if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
76
77
ctx->bits[1]++;
78
79
/* Carry from low to high */
80
ctx->bits[1] += len >> 29;
81
82
t = (t >> 3) & 0x3f;
83
/* Bytes already in shsInfo->data */
84
85
/* Handle any leading odd-sized chunks */
86
87
if (t) {
88
89
unsigned char *p = (unsigned char *) ctx->in + t;
90
91
92
t = 64 - t;
93
94
if (len < t) {
95
96
memcpy(p, buf, len);
97
98
return;
99
100
}
101
102
memcpy(p, buf, t);
103
104
byteReverse(ctx->in, 16);
105
106
MD5Transform(ctx->buf, (uint32 *) ctx->in);
107
108
buf += t;
109
110
len -= t;
111
}
112
/* Process data in 64-byte chunks */
113
114
while (len >= 64) {
115
116
memcpy(ctx->in, buf, 64);
117
118
byteReverse(ctx->in, 16);
119
120
MD5Transform(ctx->buf, (uint32 *) ctx->in);
121
122
buf += 64;
123
124
len -= 64;
125
}
126
127
/* Handle any remaining bytes of data. */
128
129
memcpy(ctx->in, buf, len);
130
}
131
132
/*
133
* Final wrapup - pad to 64-byte boundary with the bit pattern
134
* 1 0* (64-bit count of bits processed, MSB-first)
135
*/
136
void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
137
{
138
unsigned count;
139
unsigned char *p;
140
141
/* Compute number of bytes mod 64 */
142
count = (ctx->bits[0] >> 3) & 0x3F;
143
144
/* Set the first char of padding to 0x80. This is safe since there is
145
always at least one byte free */
146
p = ctx->in + count;
147
*p++ = 0x80;
148
149
/* Bytes of padding needed to make 64 bytes */
150
count = 64 - 1 - count;
151
152
/* Pad out to 56 mod 64 */
153
if (count < 8) {
154
155
/* Two lots of padding: Pad the first block to 64 bytes */
156
157
memset(p, 0, count);
158
159
byteReverse(ctx->in, 16);
160
161
MD5Transform(ctx->buf, (uint32 *) ctx->in);
162
163
164
/* Now fill the next block with 56 bytes */
165
166
memset(ctx->in, 0, 56);
167
} else {
168
169
/* Pad block to 56 bytes */
170
171
memset(p, 0, count - 8);
172
}
173
byteReverse(ctx->in, 14);
174
175
/* Append length in bits and transform */
176
((uint32 *) ctx->in)[14] = ctx->bits[0];
177
((uint32 *) ctx->in)[15] = ctx->bits[1];
178
179
MD5Transform(ctx->buf, (uint32 *) ctx->in);
180
byteReverse((unsigned char *) ctx->buf, 4);
181
memcpy(digest, ctx->buf, 16);
182
memset(ctx, 0, sizeof(ctx));
183
/* In case it's sensitive */
184
}
185
186
#ifndef ASM_MD5
187
188
/* The four core functions - F1 is optimized somewhat */
189
190
/* #define F1(x, y, z) (x & y | ~x & z) */
191
#define F1(x, y, z) (z ^ (x & (y ^ z)))
192
#define F2(x, y, z) F1(z, x, y)
193
#define F3(x, y, z) (x ^ y ^ z)
194
#define F4(x, y, z) (y ^ (x | ~z))
195
196
/* This is the central step in the MD5 algorithm. */
197
#define MD5STEP(f, w, x, y, z, data, s) ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
198
199
/*
200
* The core of the MD5 algorithm, this alters an existing MD5 hash to
201
* reflect the addition of 16 longwords of new data. MD5Update blocks
202
* the data and converts bytes into longwords for this routine.
203
*/
204
void MD5Transform(uint32 buf[4], uint32 const in[16])
205
{
206
register uint32 a, b, c, d;
207
208
a = buf[0];
209
b = buf[1];
210
c = buf[2];
211
d = buf[3];
212
213
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
214
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
215
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
216
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
217
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
218
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
219
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
220
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
221
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
222
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
223
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
224
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
225
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
226
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
227
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
228
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
229
230
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
231
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
232
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
233
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
234
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
235
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
236
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
237
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
238
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
239
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
240
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
241
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
242
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
243
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
244
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
245
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
246
247
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
248
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
249
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
250
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
251
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
252
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
253
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
254
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
255
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
256
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
257
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
258
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
259
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
260
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
261
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
262
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
263
264
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
265
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
266
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
267
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
268
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
269
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
270
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
271
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
272
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
273
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
274
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
275
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
276
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
277
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
278
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
279
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
280
281
buf[0] += a;
282
buf[1] += b;
283
buf[2] += c;
284
buf[3] += d;
285
}
286
287
#endif
288
289
290