Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
DataScienceUWL
GitHub Repository: DataScienceUWL/DS775
Path: blob/main/Lessons/Lesson 08 - Hyperparameter Optimization (Project)/tpot_optimal_pipeline.py
871 views
1
import numpy as np
2
import pandas as pd
3
from sklearn.ensemble import ExtraTreesRegressor
4
from sklearn.linear_model import RidgeCV
5
from sklearn.model_selection import train_test_split
6
from sklearn.pipeline import make_pipeline, make_union
7
from tpot.builtins import StackingEstimator
8
from tpot.export_utils import set_param_recursive
9
10
# NOTE: Make sure that the outcome column is labeled 'target' in the data file
11
tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)
12
features = tpot_data.drop('target', axis=1)
13
training_features, testing_features, training_target, testing_target = \
14
train_test_split(features, tpot_data['target'], random_state=8675309)
15
16
# Average CV score on the training set was: 0.9733855352987401
17
exported_pipeline = make_pipeline(
18
StackingEstimator(estimator=RidgeCV()),
19
ExtraTreesRegressor(bootstrap=True, max_features=0.6500000000000001, min_samples_leaf=1, min_samples_split=3, n_estimators=100)
20
)
21
# Fix random state for all the steps in exported pipeline
22
set_param_recursive(exported_pipeline.steps, 'random_state', 8675309)
23
24
exported_pipeline.fit(training_features, training_target)
25
results = exported_pipeline.predict(testing_features)
26
27