Path: blob/main/Lessons/Lesson 13 - RecSys 1/Chapter_Notebooks/Content Based Recommenders.ipynb
871 views
Kernel: Python 3 (system-wide)
Plot Description Based Recommender
In [1]:
Out[1]:
In [2]:
Out[2]:
In [3]:
Out[3]:
(5000, 22304)
In [4]:
In [5]:
In [6]:
In [7]:
Out[7]:
3203 The Waiting Game
2779 Napoleon and Samantha
892 The Wizard of Oz
3293 The Bear
1741 Prince Valiant
2094 Shadow of a Doubt
3695 Pot o' Gold
2960 42 Up
2253 King Kong
1783 A Perfect Murder
Name: title, dtype: object
Metadata Based Recommender
In [8]:
Out[8]:
In [9]:
Out[9]:
In [10]:
In [11]:
In [12]:
In [13]:
Out[13]:
In [15]:
In [16]:
Out[16]:
{'credit_id': '52fe4284c3a36847f8024f49',
'department': 'Directing',
'gender': 2,
'id': 7879,
'job': 'Director',
'name': 'John Lasseter',
'profile_path': '/7EdqiNbr4FRjIhKHyPPdFfEEEFG.jpg'}
In [17]:
In [18]:
Out[18]:
0 John Lasseter
1 Joe Johnston
2 Howard Deutch
3 Forest Whitaker
4 Charles Shyer
Name: director, dtype: object
In [19]:
In [20]:
In [21]:
In [22]:
Out[22]:
In [23]:
In [24]:
In [25]:
In [26]:
In [27]:
Out[27]:
'jealousy toy boy tomhanks timallen donrickles johnlasseter animation comedy family'
In [28]:
In [29]:
In [30]:
In [31]:
Out[31]:
3315 Creature Comforts
3476 Time Masters
3703 Thomas and the Magic Railroad
1004 So Dear to My Heart
2766 Thumbelina
4914 The Flight of Dragons
1634 Ill Gotten Gains
3466 Jails, Hospitals & Hip-Hop
651 James and the Giant Peach
770 The Hunchback of Notre Dame
Name: title, dtype: object