Path: blob/devel/elmerice/Tests/InvMeth_AdjRobin/README
3206 views
Test Case for the inverse methods I) the control inverse method: Adjoint_Beta.sif Adjoint_Mu.sif (cf Morlighem et al., Spatial patterns of basal drag inferred using control methods from a full‐Stokes and simpler models for Pine Island Glacier, West Antarctica, Geophys. Res. Lett., 37, 2010 Petra et al., An inexact Gauss–Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, J. Glaciol., 58(211), 2012) II) the Robin Inverse Method: Robin_Beta.sif (cf Arthern and Gudmundsson, Initialization of ice-sheet forecasts viewed as an inverse Robin problem, J. Glaciol., 56(197), 2010) ----------------------- The setup is based on Mac Ayeal, D.,"A tutorial on the use of control methods in ice-sheet modeling", J. Glaciol., 39(131), 1993 Synthetic data (for U and V surface velocity, bedrock elevation and surface elevation) used as "perfect" observations are stored under the Data directory and have been generated previously using a slip coefficient defined by $ function betaSquare(tx) {\ Lx = 200.0e3;\ Ly = 50.0e03;\ yearinsec = 365.25*24*60*60;\ F1=sin(3.0*pi*tx(0)/Lx)*sin(pi*tx(1)/Ly);\ F2=sin(pi*tx(0)/(2.0*Lx))*cos(4.0*pi*tx(1)/Ly);\ beta=5.0e3*F1+5.0e03*F2;\ _betaSquare=beta*beta/(1.0e06*yearinsec);\ } and a viscosity defined by $ function MuSquare(tx) {\ Lx = 200.0e3;\ Ly = 50.0e03;\ yearinsec = 365.25*24*60*60;\ F1=sin(3.0*pi*tx(0)/Lx)*sin(pi*tx(1)/Ly);\ F2=sin(pi*tx(0)/(2.0*Lx))*cos(4.0*pi*tx(1)/Ly);\ mu=sqrt(1.8e08)+1.0e03*(F1+F2);\ _MuSquare=mu*mu*1.0e-6*(2.0*yearinsec)^(-1.0/3.0);\ } ----------------------- TO RUN the TEST: elmerf90 ./PROG/USF_Init.f90 -o ./USF_Init ElmerGrid 1 2 mesh2D -metis 4 4 mpirun -n 4 ElmerSolver_mpi Results established: -------------------- 19.03.2015 Laure Tavard,LGGE Froggy cluster (CIMENT: Grenoble University HPC centre) Revision 58f71b4 +------------------ 05.04.2018 Updated F. Gillet-Chaulet. - reduce number of iterations from 5 to 2 - test result from more solvers