Path: blob/devel/fem/tests/AdvReactDBmaster/AdvReactDB.sif
5260 views
! This is a test case for the reduced dg basis in the case
! when Master and Slave groups are used.
!
! P.R. 8.11.2018
Header
CHECK KEYWORDS Warn
Mesh DB "." "square"
End
! equation coefficients (g*r+ux*dx+uy*dy=f)
! -----------------------------------------
$ function g(c) { _g = 1+8*c(0)*c(1)^2 }
$ function ux(c) { _ux = 2-(2*c(1)-1)^2 }
$ function uy(c) { _uy = 3-2*c(0) }
! analytical result and its spatial derivatives:
! ----------------------------------------------
$ function r(c) { _r = 1+sin(pi*c(0)*c(1)^2) }
$ function dx(c) { x=c(0); y=c(1); _dx = pi*y^2*cos(pi*x*y^2) }
$ function dy(c) { x=c(0); y=c(1); _dy = pi*x*2*y*cos(pi*x*y^2) }
Simulation
Max Output Level = 5
Coordinate System = "Cartesian"
Coordinate Mapping(3) = 1 2 3
Simulation Type = Steady
Steady State Max Iterations = 1
Output Intervals = 1
Post File = "DBsolution.vtu"
! vtu: Discontinuous Galerkin = Logical True
Coordinate Scaling = $1.0/3.0
End
Constants
End
Body 1
Equation = 1
Material = 1
Body force = 1
End
Body 2
Equation = 1
Material = 1
Body force = 1
End
Body 3
Equation = 1
Material = 1
Body force = 1
End
Body 4
Equation = 1
Material = 1
Body force = 1
End
Body 5
Equation = 1
Material = 1
Body force = 1
End
Body 6
Equation = 1
Material = 1
Body force = 1
End
Body 7
Equation = 1
Material = 1
Body force = 1
End
Body 8
Equation = 1
Material = 1
Body force = 1
End
Body 9
Equation = 1
Material = 1
Body force = 1
End
Equation 1
Active Solvers(1) = 1
Convection = constant
End
Material 1
Convection Velocity 1 = Variable Coordinate
Real MATC "ux(tx)"
Convection Velocity 2 = Variable Coordinate
Real MATC "uy(tx)"
Potential Gamma = Variable Coordinate
Real MATC "g(tx)"
End
Solver 1
Equation = "AdvReact"
Procedure = File "AdvectionReaction" "AdvectionReactionSolver"
Variable = "Potential"
Exported Variable 1 = "Nodal Result"
Discontinuous Galerkin = Logical TRUE
DG Reduced Basis = Logical True
! DG Reduced Basis Mapping(9) = Integer 1 1 1 1 2 3 3 2 3
DG Reduced Basis Master Bodies(4) = Integer 1 2 3 4
! When slave bodies is different than (.NOT. Master bodies)
! then we have potential challenges in parallel!
DG Reduced Basis Slave Bodies(4) = Integer 5 6 7 8
Optimize Bandwidth = False
! Linear System Save = True
Linear System Solver = Direct
Linear System Direct Method = MUMPS
! Linear System Solver = Iterative
Linear System Iterative Method = GCR !BiCGStabl
Linear System Max Iterations = 500
Linear System Preconditioning = ILU0
Linear System Convergence Tolerance = 1.0e-6
Linear System Residual Output = 10
BiCGStabl Polynomial Degree = 6
Nonlinear System Max Iterations = 1
Nonlinear System Consistent Norm = True
End
Body Force 1
Potential Source = Variable Coordinate
Real MATC "r(tx)*g(tx)+ux(tx)*dx(tx)+uy(tx)*dy(tx)"
End
Boundary Condition 1
Target Boundaries(8) = 1 2 3 4 5 6 7 8
Potential = Variable Coordinate
Real MATC "r(tx)"
End
Solver 1 :: Reference Norm = Real 1.41279568E+00
Solver 1 :: Reference Norm Tolerance = Real 1.0e-3