Path: blob/devel/fem/tests/AdvReactDBmaster/AdvReactDB.sif
3206 views
! This is a test case for the reduced dg basis in the case ! when Master and Slave groups are used. ! ! P.R. 8.11.2018 Header CHECK KEYWORDS Warn Mesh DB "." "square" End ! equation coefficients (g*r+ux*dx+uy*dy=f) ! ----------------------------------------- $ function g(c) { _g = 1+8*c(0)*c(1)^2 } $ function ux(c) { _ux = 2-(2*c(1)-1)^2 } $ function uy(c) { _uy = 3-2*c(0) } ! analytical result and its spatial derivatives: ! ---------------------------------------------- $ function r(c) { _r = 1+sin(pi*c(0)*c(1)^2) } $ function dx(c) { x=c(0); y=c(1); _dx = pi*y^2*cos(pi*x*y^2) } $ function dy(c) { x=c(0); y=c(1); _dy = pi*x*2*y*cos(pi*x*y^2) } Simulation Max Output Level = 5 Coordinate System = "Cartesian" Coordinate Mapping(3) = 1 2 3 Simulation Type = Steady Steady State Max Iterations = 1 Output Intervals = 1 Post File = "DBsolution.vtu" ! vtu: Discontinuous Galerkin = Logical True Coordinate Scaling = $1.0/3.0 End Constants End Body 1 Equation = 1 Material = 1 Body force = 1 End Body 2 Equation = 1 Material = 1 Body force = 1 End Body 3 Equation = 1 Material = 1 Body force = 1 End Body 4 Equation = 1 Material = 1 Body force = 1 End Body 5 Equation = 1 Material = 1 Body force = 1 End Body 6 Equation = 1 Material = 1 Body force = 1 End Body 7 Equation = 1 Material = 1 Body force = 1 End Body 8 Equation = 1 Material = 1 Body force = 1 End Body 9 Equation = 1 Material = 1 Body force = 1 End Equation 1 Active Solvers(1) = 1 Convection = constant End Material 1 Convection Velocity 1 = Variable Coordinate Real MATC "ux(tx)" Convection Velocity 2 = Variable Coordinate Real MATC "uy(tx)" Potential Gamma = Variable Coordinate Real MATC "g(tx)" End Solver 1 Equation = "AdvReact" Procedure = File "AdvectionReaction" "AdvectionReactionSolver" Variable = "Potential" Exported Variable 1 = "Nodal Result" Discontinuous Galerkin = Logical TRUE DG Reduced Basis = Logical True ! DG Reduced Basis Mapping(9) = Integer 1 1 1 1 2 3 3 2 3 DG Reduced Basis Master Bodies(4) = Integer 1 2 3 4 ! When slave bodies is different than (.NOT. Master bodies) ! then we have potential challenges in parallel! DG Reduced Basis Slave Bodies(4) = Integer 5 6 7 8 Optimize Bandwidth = False ! Linear System Save = True Linear System Solver = Direct Linear System Direct Method = MUMPS ! Linear System Solver = Iterative Linear System Iterative Method = GCR !BiCGStabl Linear System Max Iterations = 500 Linear System Preconditioning = ILU0 Linear System Convergence Tolerance = 1.0e-6 Linear System Residual Output = 10 BiCGStabl Polynomial Degree = 6 Nonlinear System Max Iterations = 1 Nonlinear System Consistent Norm = True End Body Force 1 Potential Source = Variable Coordinate Real MATC "r(tx)*g(tx)+ux(tx)*dx(tx)+uy(tx)*dy(tx)" End Boundary Condition 1 Target Boundaries(8) = 1 2 3 4 5 6 7 8 Potential = Variable Coordinate Real MATC "r(tx)" End Solver 1 :: Reference Norm = Real 1.41279568E+00 Solver 1 :: Reference Norm Tolerance = Real 1.0e-3