Path: blob/devel/fem/tests/Beam_3D_Cantilever_Eigen/case.sif
3206 views
! A reference case where a cantilever is subject to a constant pressure load f. ! ! For parameters EI/(GA) = eps we expect the deflection and the rotation at the ! free end to be w(L) = L^4 f (1 + 4 eps)/(8 EI) and theta(L) = L^3 f/(6 EI). ! Here the SaveScalars module is set to output the variable values at the end. ! ! This modification for eigenmodes ! P.R. 28.8.2023 (initial test case by M.M.) Check Keywords "Warn" Header Mesh DB "." "beam1d" Results Directory "results" End Simulation Max Output Level = 5 Coordinate System = Cartesian 3D Simulation Type = Steady Output Intervals = 1 Steady State Max Iterations = 1 Post File = "timoshenko.vtu" vtu: Eigen Analysis = Logical True End Body 1 Equation = 1 Material = 1 End Material 1 Youngs Modulus = Real 2.0e-1 Shear Modulus = Real 1.0 ! Youngs Modulus = Real 70.0e+9 ! Shear Modulus = Real 26.0e+9 ! Specify basis where the cross section parameters are expressed: Principal Direction 2(3) = Real 0.0 0.0 -1.0 ! Specify I_k: Second Moment of Area 2 = Real 1.0 Second Moment of Area 3 = Real 1.0 ! Specify A: Cross Section Area = Real 1.0 ! Specify J_T: Torsional Constant = Real 1.0 ! The density is used only in transient cases: Density = 2700.0 End Equation 1 :: Active Solvers(1) = 1 Solver 1 Equation = "Timoshenko Beam Equations" Procedure = "BeamSolver3D" "TimoshenkoSolver" Nonlinear System Max Iterations = 1 Linear System Scaling = False Linear System Solver = "Direct" Linear System Direct Method = "umfpack" Eigen Analysis = True Eigen System Values = 12 Eigen System Convergence Tolerance = Real 1.0e-6 End ! ------------------------------------------------------------------------- ! The following can be used to save the deflection and the rotation ! at the end: ! ------------------------------------------------------------------------- Solver 2 Equation = "Save Scalars" Procedure = "SaveData" "SaveScalars" Filename = eigen.dat Save Eigenvalues = True ! Show the 1st eigenvalue as the reference norm Show Norm Index = 1 End Boundary Condition 1 Target Nodes(1) = 1 U 1 = Real 0.0 U 2 = Real 0.0 U 3 = Real 0.0 Theta 1 = Real 0.0 Theta 2 = Real 0.0 Theta 3 = Real 0.0 End Solver 2 :: Reference Norm = 1.50048419E-04 Solver 2 :: Reference Norm Tolerance = 1.0e-5