Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/fem/tests/Beam_3D_Cantilever_Orientation/constant_pressure_load.sif
3206 views
! A reference case where a cantilever is subject to a constant pressure load f.
! This is a variant of the test Beam_3D_Cantilever. Here the beam axis makes
! an angle of 45 degrees with the global coordinate axes.
!
! For parameters EI/(GA) = eps we expect the deflection and the rotation at the 
! free end to be w(L) = L^4 f (1 + 4 eps)/(8 EI) and theta(L) = L^3 f/(6 EI).
! Here the SaveScalars module is set to output the variable values at the end. 

Check Keywords "Warn"

Header
  Mesh DB "." "Mesh"
End

Simulation
  Max Output Level = 5
  Coordinate System = Cartesian 3D
  Simulation Type = Steady
  Output Intervals = 1
  Steady State Max Iterations = 1
!  Post File = "timoshenko.vtu"
End

Body 1
  Equation = 1
  Material = 1
  Body Force = 1
End

Material 1
 Youngs Modulus = Real 2.0e-1
 Shear Modulus = Real 1.0
 ! Youngs Modulus = Real 70.0e+9
 ! Shear Modulus = Real 26.0e+9

 ! Specify basis where the cross section parameters are expressed: 
 Principal Direction 2(3) = Real 0.0 0.0 -1.0

 ! Specify I_k:
 Second Moment of Area 2 = Real 1.0
 Second Moment of Area 3 = Real 1.0
 ! Specify A:
 Cross Section Area = Real 1.0
 ! Specify J_T:
 Torsional Constant = Real 1.0
 ! The density is used only in transient cases:
 Density = 2700.0
End

Body Force 1
  ! The load components are expressed with respect to the global frame
  Body Force 1 = -0.707106781e-2
  Body Force 2 = 0.707106781e-2
  Body Force 3 = 0.0
End

Equation 1 :: Active Solvers(1) = 1

Solver 1
  Equation = "Timoshenko Beam Equations"
  Procedure = "BeamSolver3D" "TimoshenkoSolver"

!  Displace Mesh = False
  Nonlinear System Max Iterations = 1
  Nonlinear System Convergence Tolerance = 1e-7

  Linear System Solver = "Iterative"
  Linear System Preconditioning = Diagonal
  Linear System Max Iterations = 1000
  Linear System Convergence Tolerance = 1e-9
  Linear System Iterative Method = IDRS
!  Linear System Abort Not Converged = False
  Steady State Convergence Tolerance = 1e-9
End

! -------------------------------------------------------------------------
! The following can be used to save the deflection and the rotation
! at the end:
! -------------------------------------------------------------------------
Solver 2
  Equation = "Save Scalars"
!  Exec Solver = After Timestep
  Procedure = "SaveData" "SaveScalars"
!  Filename = cantilever.dat
  Variable 1 = U 1
  Variable 2 = U 2
  Variable 3 = U 3
  Variable 4 = Theta 1
  Variable 5 = Theta 2
  Variable 6 = Theta 3
  Save Points(1) = 2
End

Boundary Condition 1
  Target Nodes(1) = 1
  U 1 = Real 0.0
  U 2 = Real 0.0
  U 3 = Real 0.0
  Theta 1 = Real 0.0
  Theta 2 = Real 0.0
  Theta 3 = Real 0.0
End

Solver 1 :: Reference Norm = Real 3.88782384E-03
Solver 1 :: Reference Norm Tolerance = Real 1.0e-5