Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/blas/cgbmv.f
5225 views
1
SUBROUTINE CGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
2
$ BETA, Y, INCY )
3
* .. Scalar Arguments ..
4
COMPLEX ALPHA, BETA
5
INTEGER INCX, INCY, KL, KU, LDA, M, N
6
CHARACTER*1 TRANS
7
* .. Array Arguments ..
8
COMPLEX A( LDA, * ), X( * ), Y( * )
9
* ..
10
*
11
* Purpose
12
* =======
13
*
14
* CGBMV performs one of the matrix-vector operations
15
*
16
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
17
*
18
* y := alpha*conjg( A' )*x + beta*y,
19
*
20
* where alpha and beta are scalars, x and y are vectors and A is an
21
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
22
*
23
* Parameters
24
* ==========
25
*
26
* TRANS - CHARACTER*1.
27
* On entry, TRANS specifies the operation to be performed as
28
* follows:
29
*
30
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
31
*
32
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
33
*
34
* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
35
*
36
* Unchanged on exit.
37
*
38
* M - INTEGER.
39
* On entry, M specifies the number of rows of the matrix A.
40
* M must be at least zero.
41
* Unchanged on exit.
42
*
43
* N - INTEGER.
44
* On entry, N specifies the number of columns of the matrix A.
45
* N must be at least zero.
46
* Unchanged on exit.
47
*
48
* KL - INTEGER.
49
* On entry, KL specifies the number of sub-diagonals of the
50
* matrix A. KL must satisfy 0 .le. KL.
51
* Unchanged on exit.
52
*
53
* KU - INTEGER.
54
* On entry, KU specifies the number of super-diagonals of the
55
* matrix A. KU must satisfy 0 .le. KU.
56
* Unchanged on exit.
57
*
58
* ALPHA - COMPLEX .
59
* On entry, ALPHA specifies the scalar alpha.
60
* Unchanged on exit.
61
*
62
* A - COMPLEX array of DIMENSION ( LDA, n ).
63
* Before entry, the leading ( kl + ku + 1 ) by n part of the
64
* array A must contain the matrix of coefficients, supplied
65
* column by column, with the leading diagonal of the matrix in
66
* row ( ku + 1 ) of the array, the first super-diagonal
67
* starting at position 2 in row ku, the first sub-diagonal
68
* starting at position 1 in row ( ku + 2 ), and so on.
69
* Elements in the array A that do not correspond to elements
70
* in the band matrix (such as the top left ku by ku triangle)
71
* are not referenced.
72
* The following program segment will transfer a band matrix
73
* from conventional full matrix storage to band storage:
74
*
75
* DO 20, J = 1, N
76
* K = KU + 1 - J
77
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
78
* A( K + I, J ) = matrix( I, J )
79
* 10 CONTINUE
80
* 20 CONTINUE
81
*
82
* Unchanged on exit.
83
*
84
* LDA - INTEGER.
85
* On entry, LDA specifies the first dimension of A as declared
86
* in the calling (sub) program. LDA must be at least
87
* ( kl + ku + 1 ).
88
* Unchanged on exit.
89
*
90
* X - COMPLEX array of DIMENSION at least
91
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
92
* and at least
93
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
94
* Before entry, the incremented array X must contain the
95
* vector x.
96
* Unchanged on exit.
97
*
98
* INCX - INTEGER.
99
* On entry, INCX specifies the increment for the elements of
100
* X. INCX must not be zero.
101
* Unchanged on exit.
102
*
103
* BETA - COMPLEX .
104
* On entry, BETA specifies the scalar beta. When BETA is
105
* supplied as zero then Y need not be set on input.
106
* Unchanged on exit.
107
*
108
* Y - COMPLEX array of DIMENSION at least
109
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
110
* and at least
111
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
112
* Before entry, the incremented array Y must contain the
113
* vector y. On exit, Y is overwritten by the updated vector y.
114
*
115
*
116
* INCY - INTEGER.
117
* On entry, INCY specifies the increment for the elements of
118
* Y. INCY must not be zero.
119
* Unchanged on exit.
120
*
121
*
122
* Level 2 Blas routine.
123
*
124
* -- Written on 22-October-1986.
125
* Jack Dongarra, Argonne National Lab.
126
* Jeremy Du Croz, Nag Central Office.
127
* Sven Hammarling, Nag Central Office.
128
* Richard Hanson, Sandia National Labs.
129
*
130
*
131
* .. Parameters ..
132
COMPLEX ONE
133
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
134
COMPLEX ZERO
135
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
136
* .. Local Scalars ..
137
COMPLEX TEMP
138
INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
139
$ LENX, LENY
140
LOGICAL NOCONJ
141
* .. External Functions ..
142
LOGICAL LSAME
143
EXTERNAL LSAME
144
* .. External Subroutines ..
145
EXTERNAL XERBLA
146
* .. Intrinsic Functions ..
147
INTRINSIC CONJG, MAX, MIN
148
* ..
149
* .. Executable Statements ..
150
*
151
* Test the input parameters.
152
*
153
INFO = 0
154
IF ( .NOT.LSAME( TRANS, 'N' ).AND.
155
$ .NOT.LSAME( TRANS, 'T' ).AND.
156
$ .NOT.LSAME( TRANS, 'C' ) )THEN
157
INFO = 1
158
ELSE IF( M.LT.0 )THEN
159
INFO = 2
160
ELSE IF( N.LT.0 )THEN
161
INFO = 3
162
ELSE IF( KL.LT.0 )THEN
163
INFO = 4
164
ELSE IF( KU.LT.0 )THEN
165
INFO = 5
166
ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
167
INFO = 8
168
ELSE IF( INCX.EQ.0 )THEN
169
INFO = 10
170
ELSE IF( INCY.EQ.0 )THEN
171
INFO = 13
172
END IF
173
IF( INFO.NE.0 )THEN
174
CALL XERBLA( 'CGBMV ', INFO )
175
RETURN
176
END IF
177
*
178
* Quick return if possible.
179
*
180
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
181
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
182
$ RETURN
183
*
184
NOCONJ = LSAME( TRANS, 'T' )
185
*
186
* Set LENX and LENY, the lengths of the vectors x and y, and set
187
* up the start points in X and Y.
188
*
189
IF( LSAME( TRANS, 'N' ) )THEN
190
LENX = N
191
LENY = M
192
ELSE
193
LENX = M
194
LENY = N
195
END IF
196
IF( INCX.GT.0 )THEN
197
KX = 1
198
ELSE
199
KX = 1 - ( LENX - 1 )*INCX
200
END IF
201
IF( INCY.GT.0 )THEN
202
KY = 1
203
ELSE
204
KY = 1 - ( LENY - 1 )*INCY
205
END IF
206
*
207
* Start the operations. In this version the elements of A are
208
* accessed sequentially with one pass through the band part of A.
209
*
210
* First form y := beta*y.
211
*
212
IF( BETA.NE.ONE )THEN
213
IF( INCY.EQ.1 )THEN
214
IF( BETA.EQ.ZERO )THEN
215
DO 10, I = 1, LENY
216
Y( I ) = ZERO
217
10 CONTINUE
218
ELSE
219
DO 20, I = 1, LENY
220
Y( I ) = BETA*Y( I )
221
20 CONTINUE
222
END IF
223
ELSE
224
IY = KY
225
IF( BETA.EQ.ZERO )THEN
226
DO 30, I = 1, LENY
227
Y( IY ) = ZERO
228
IY = IY + INCY
229
30 CONTINUE
230
ELSE
231
DO 40, I = 1, LENY
232
Y( IY ) = BETA*Y( IY )
233
IY = IY + INCY
234
40 CONTINUE
235
END IF
236
END IF
237
END IF
238
IF( ALPHA.EQ.ZERO )
239
$ RETURN
240
KUP1 = KU + 1
241
IF( LSAME( TRANS, 'N' ) )THEN
242
*
243
* Form y := alpha*A*x + y.
244
*
245
JX = KX
246
IF( INCY.EQ.1 )THEN
247
DO 60, J = 1, N
248
IF( X( JX ).NE.ZERO )THEN
249
TEMP = ALPHA*X( JX )
250
K = KUP1 - J
251
DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
252
Y( I ) = Y( I ) + TEMP*A( K + I, J )
253
50 CONTINUE
254
END IF
255
JX = JX + INCX
256
60 CONTINUE
257
ELSE
258
DO 80, J = 1, N
259
IF( X( JX ).NE.ZERO )THEN
260
TEMP = ALPHA*X( JX )
261
IY = KY
262
K = KUP1 - J
263
DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
264
Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
265
IY = IY + INCY
266
70 CONTINUE
267
END IF
268
JX = JX + INCX
269
IF( J.GT.KU )
270
$ KY = KY + INCY
271
80 CONTINUE
272
END IF
273
ELSE
274
*
275
* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
276
*
277
JY = KY
278
IF( INCX.EQ.1 )THEN
279
DO 110, J = 1, N
280
TEMP = ZERO
281
K = KUP1 - J
282
IF( NOCONJ )THEN
283
DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
284
TEMP = TEMP + A( K + I, J )*X( I )
285
90 CONTINUE
286
ELSE
287
DO 100, I = MAX( 1, J - KU ), MIN( M, J + KL )
288
TEMP = TEMP + CONJG( A( K + I, J ) )*X( I )
289
100 CONTINUE
290
END IF
291
Y( JY ) = Y( JY ) + ALPHA*TEMP
292
JY = JY + INCY
293
110 CONTINUE
294
ELSE
295
DO 140, J = 1, N
296
TEMP = ZERO
297
IX = KX
298
K = KUP1 - J
299
IF( NOCONJ )THEN
300
DO 120, I = MAX( 1, J - KU ), MIN( M, J + KL )
301
TEMP = TEMP + A( K + I, J )*X( IX )
302
IX = IX + INCX
303
120 CONTINUE
304
ELSE
305
DO 130, I = MAX( 1, J - KU ), MIN( M, J + KL )
306
TEMP = TEMP + CONJG( A( K + I, J ) )*X( IX )
307
IX = IX + INCX
308
130 CONTINUE
309
END IF
310
Y( JY ) = Y( JY ) + ALPHA*TEMP
311
JY = JY + INCY
312
IF( J.GT.KU )
313
$ KX = KX + INCX
314
140 CONTINUE
315
END IF
316
END IF
317
*
318
RETURN
319
*
320
* End of CGBMV .
321
*
322
END
323
324