Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/blas/cgemm.f
5195 views
1
SUBROUTINE CGEMM ( TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
2
$ BETA, C, LDC )
3
* .. Scalar Arguments ..
4
CHARACTER*1 TRANSA, TRANSB
5
INTEGER M, N, K, LDA, LDB, LDC
6
COMPLEX ALPHA, BETA
7
* .. Array Arguments ..
8
COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
9
* ..
10
*
11
* Purpose
12
* =======
13
*
14
* CGEMM performs one of the matrix-matrix operations
15
*
16
* C := alpha*op( A )*op( B ) + beta*C,
17
*
18
* where op( X ) is one of
19
*
20
* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ),
21
*
22
* alpha and beta are scalars, and A, B and C are matrices, with op( A )
23
* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
24
*
25
* Parameters
26
* ==========
27
*
28
* TRANSA - CHARACTER*1.
29
* On entry, TRANSA specifies the form of op( A ) to be used in
30
* the matrix multiplication as follows:
31
*
32
* TRANSA = 'N' or 'n', op( A ) = A.
33
*
34
* TRANSA = 'T' or 't', op( A ) = A'.
35
*
36
* TRANSA = 'C' or 'c', op( A ) = conjg( A' ).
37
*
38
* Unchanged on exit.
39
*
40
* TRANSB - CHARACTER*1.
41
* On entry, TRANSB specifies the form of op( B ) to be used in
42
* the matrix multiplication as follows:
43
*
44
* TRANSB = 'N' or 'n', op( B ) = B.
45
*
46
* TRANSB = 'T' or 't', op( B ) = B'.
47
*
48
* TRANSB = 'C' or 'c', op( B ) = conjg( B' ).
49
*
50
* Unchanged on exit.
51
*
52
* M - INTEGER.
53
* On entry, M specifies the number of rows of the matrix
54
* op( A ) and of the matrix C. M must be at least zero.
55
* Unchanged on exit.
56
*
57
* N - INTEGER.
58
* On entry, N specifies the number of columns of the matrix
59
* op( B ) and the number of columns of the matrix C. N must be
60
* at least zero.
61
* Unchanged on exit.
62
*
63
* K - INTEGER.
64
* On entry, K specifies the number of columns of the matrix
65
* op( A ) and the number of rows of the matrix op( B ). K must
66
* be at least zero.
67
* Unchanged on exit.
68
*
69
* ALPHA - COMPLEX .
70
* On entry, ALPHA specifies the scalar alpha.
71
* Unchanged on exit.
72
*
73
* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
74
* k when TRANSA = 'N' or 'n', and is m otherwise.
75
* Before entry with TRANSA = 'N' or 'n', the leading m by k
76
* part of the array A must contain the matrix A, otherwise
77
* the leading k by m part of the array A must contain the
78
* matrix A.
79
* Unchanged on exit.
80
*
81
* LDA - INTEGER.
82
* On entry, LDA specifies the first dimension of A as declared
83
* in the calling (sub) program. When TRANSA = 'N' or 'n' then
84
* LDA must be at least max( 1, m ), otherwise LDA must be at
85
* least max( 1, k ).
86
* Unchanged on exit.
87
*
88
* B - COMPLEX array of DIMENSION ( LDB, kb ), where kb is
89
* n when TRANSB = 'N' or 'n', and is k otherwise.
90
* Before entry with TRANSB = 'N' or 'n', the leading k by n
91
* part of the array B must contain the matrix B, otherwise
92
* the leading n by k part of the array B must contain the
93
* matrix B.
94
* Unchanged on exit.
95
*
96
* LDB - INTEGER.
97
* On entry, LDB specifies the first dimension of B as declared
98
* in the calling (sub) program. When TRANSB = 'N' or 'n' then
99
* LDB must be at least max( 1, k ), otherwise LDB must be at
100
* least max( 1, n ).
101
* Unchanged on exit.
102
*
103
* BETA - COMPLEX .
104
* On entry, BETA specifies the scalar beta. When BETA is
105
* supplied as zero then C need not be set on input.
106
* Unchanged on exit.
107
*
108
* C - COMPLEX array of DIMENSION ( LDC, n ).
109
* Before entry, the leading m by n part of the array C must
110
* contain the matrix C, except when beta is zero, in which
111
* case C need not be set on entry.
112
* On exit, the array C is overwritten by the m by n matrix
113
* ( alpha*op( A )*op( B ) + beta*C ).
114
*
115
* LDC - INTEGER.
116
* On entry, LDC specifies the first dimension of C as declared
117
* in the calling (sub) program. LDC must be at least
118
* max( 1, m ).
119
* Unchanged on exit.
120
*
121
*
122
* Level 3 Blas routine.
123
*
124
* -- Written on 8-February-1989.
125
* Jack Dongarra, Argonne National Laboratory.
126
* Iain Duff, AERE Harwell.
127
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
128
* Sven Hammarling, Numerical Algorithms Group Ltd.
129
*
130
*
131
* .. External Functions ..
132
LOGICAL LSAME
133
EXTERNAL LSAME
134
* .. External Subroutines ..
135
EXTERNAL XERBLA
136
* .. Intrinsic Functions ..
137
INTRINSIC CONJG, MAX
138
* .. Local Scalars ..
139
LOGICAL CONJA, CONJB, NOTA, NOTB
140
INTEGER I, INFO, J, L, NCOLA, NROWA, NROWB
141
COMPLEX TEMP
142
* .. Parameters ..
143
COMPLEX ONE
144
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
145
COMPLEX ZERO
146
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
147
* ..
148
* .. Executable Statements ..
149
*
150
* Set NOTA and NOTB as true if A and B respectively are not
151
* conjugated or transposed, set CONJA and CONJB as true if A and
152
* B respectively are to be transposed but not conjugated and set
153
* NROWA, NCOLA and NROWB as the number of rows and columns of A
154
* and the number of rows of B respectively.
155
*
156
NOTA = LSAME( TRANSA, 'N' )
157
NOTB = LSAME( TRANSB, 'N' )
158
CONJA = LSAME( TRANSA, 'C' )
159
CONJB = LSAME( TRANSB, 'C' )
160
IF( NOTA )THEN
161
NROWA = M
162
NCOLA = K
163
ELSE
164
NROWA = K
165
NCOLA = M
166
END IF
167
IF( NOTB )THEN
168
NROWB = K
169
ELSE
170
NROWB = N
171
END IF
172
*
173
* Test the input parameters.
174
*
175
INFO = 0
176
IF( ( .NOT.NOTA ).AND.
177
$ ( .NOT.CONJA ).AND.
178
$ ( .NOT.LSAME( TRANSA, 'T' ) ) )THEN
179
INFO = 1
180
ELSE IF( ( .NOT.NOTB ).AND.
181
$ ( .NOT.CONJB ).AND.
182
$ ( .NOT.LSAME( TRANSB, 'T' ) ) )THEN
183
INFO = 2
184
ELSE IF( M .LT.0 )THEN
185
INFO = 3
186
ELSE IF( N .LT.0 )THEN
187
INFO = 4
188
ELSE IF( K .LT.0 )THEN
189
INFO = 5
190
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
191
INFO = 8
192
ELSE IF( LDB.LT.MAX( 1, NROWB ) )THEN
193
INFO = 10
194
ELSE IF( LDC.LT.MAX( 1, M ) )THEN
195
INFO = 13
196
END IF
197
IF( INFO.NE.0 )THEN
198
CALL XERBLA( 'CGEMM ', INFO )
199
RETURN
200
END IF
201
*
202
* Quick return if possible.
203
*
204
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
205
$ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
206
$ RETURN
207
*
208
* And when alpha.eq.zero.
209
*
210
IF( ALPHA.EQ.ZERO )THEN
211
IF( BETA.EQ.ZERO )THEN
212
DO 20, J = 1, N
213
DO 10, I = 1, M
214
C( I, J ) = ZERO
215
10 CONTINUE
216
20 CONTINUE
217
ELSE
218
DO 40, J = 1, N
219
DO 30, I = 1, M
220
C( I, J ) = BETA*C( I, J )
221
30 CONTINUE
222
40 CONTINUE
223
END IF
224
RETURN
225
END IF
226
*
227
* Start the operations.
228
*
229
IF( NOTB )THEN
230
IF( NOTA )THEN
231
*
232
* Form C := alpha*A*B + beta*C.
233
*
234
DO 90, J = 1, N
235
IF( BETA.EQ.ZERO )THEN
236
DO 50, I = 1, M
237
C( I, J ) = ZERO
238
50 CONTINUE
239
ELSE IF( BETA.NE.ONE )THEN
240
DO 60, I = 1, M
241
C( I, J ) = BETA*C( I, J )
242
60 CONTINUE
243
END IF
244
DO 80, L = 1, K
245
IF( B( L, J ).NE.ZERO )THEN
246
TEMP = ALPHA*B( L, J )
247
DO 70, I = 1, M
248
C( I, J ) = C( I, J ) + TEMP*A( I, L )
249
70 CONTINUE
250
END IF
251
80 CONTINUE
252
90 CONTINUE
253
ELSE IF( CONJA )THEN
254
*
255
* Form C := alpha*conjg( A' )*B + beta*C.
256
*
257
DO 120, J = 1, N
258
DO 110, I = 1, M
259
TEMP = ZERO
260
DO 100, L = 1, K
261
TEMP = TEMP + CONJG( A( L, I ) )*B( L, J )
262
100 CONTINUE
263
IF( BETA.EQ.ZERO )THEN
264
C( I, J ) = ALPHA*TEMP
265
ELSE
266
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
267
END IF
268
110 CONTINUE
269
120 CONTINUE
270
ELSE
271
*
272
* Form C := alpha*A'*B + beta*C
273
*
274
DO 150, J = 1, N
275
DO 140, I = 1, M
276
TEMP = ZERO
277
DO 130, L = 1, K
278
TEMP = TEMP + A( L, I )*B( L, J )
279
130 CONTINUE
280
IF( BETA.EQ.ZERO )THEN
281
C( I, J ) = ALPHA*TEMP
282
ELSE
283
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
284
END IF
285
140 CONTINUE
286
150 CONTINUE
287
END IF
288
ELSE IF( NOTA )THEN
289
IF( CONJB )THEN
290
*
291
* Form C := alpha*A*conjg( B' ) + beta*C.
292
*
293
DO 200, J = 1, N
294
IF( BETA.EQ.ZERO )THEN
295
DO 160, I = 1, M
296
C( I, J ) = ZERO
297
160 CONTINUE
298
ELSE IF( BETA.NE.ONE )THEN
299
DO 170, I = 1, M
300
C( I, J ) = BETA*C( I, J )
301
170 CONTINUE
302
END IF
303
DO 190, L = 1, K
304
IF( B( J, L ).NE.ZERO )THEN
305
TEMP = ALPHA*CONJG( B( J, L ) )
306
DO 180, I = 1, M
307
C( I, J ) = C( I, J ) + TEMP*A( I, L )
308
180 CONTINUE
309
END IF
310
190 CONTINUE
311
200 CONTINUE
312
ELSE
313
*
314
* Form C := alpha*A*B' + beta*C
315
*
316
DO 250, J = 1, N
317
IF( BETA.EQ.ZERO )THEN
318
DO 210, I = 1, M
319
C( I, J ) = ZERO
320
210 CONTINUE
321
ELSE IF( BETA.NE.ONE )THEN
322
DO 220, I = 1, M
323
C( I, J ) = BETA*C( I, J )
324
220 CONTINUE
325
END IF
326
DO 240, L = 1, K
327
IF( B( J, L ).NE.ZERO )THEN
328
TEMP = ALPHA*B( J, L )
329
DO 230, I = 1, M
330
C( I, J ) = C( I, J ) + TEMP*A( I, L )
331
230 CONTINUE
332
END IF
333
240 CONTINUE
334
250 CONTINUE
335
END IF
336
ELSE IF( CONJA )THEN
337
IF( CONJB )THEN
338
*
339
* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C.
340
*
341
DO 280, J = 1, N
342
DO 270, I = 1, M
343
TEMP = ZERO
344
DO 260, L = 1, K
345
TEMP = TEMP + CONJG( A( L, I ) )*CONJG( B( J, L ) )
346
260 CONTINUE
347
IF( BETA.EQ.ZERO )THEN
348
C( I, J ) = ALPHA*TEMP
349
ELSE
350
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
351
END IF
352
270 CONTINUE
353
280 CONTINUE
354
ELSE
355
*
356
* Form C := alpha*conjg( A' )*B' + beta*C
357
*
358
DO 310, J = 1, N
359
DO 300, I = 1, M
360
TEMP = ZERO
361
DO 290, L = 1, K
362
TEMP = TEMP + CONJG( A( L, I ) )*B( J, L )
363
290 CONTINUE
364
IF( BETA.EQ.ZERO )THEN
365
C( I, J ) = ALPHA*TEMP
366
ELSE
367
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
368
END IF
369
300 CONTINUE
370
310 CONTINUE
371
END IF
372
ELSE
373
IF( CONJB )THEN
374
*
375
* Form C := alpha*A'*conjg( B' ) + beta*C
376
*
377
DO 340, J = 1, N
378
DO 330, I = 1, M
379
TEMP = ZERO
380
DO 320, L = 1, K
381
TEMP = TEMP + A( L, I )*CONJG( B( J, L ) )
382
320 CONTINUE
383
IF( BETA.EQ.ZERO )THEN
384
C( I, J ) = ALPHA*TEMP
385
ELSE
386
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
387
END IF
388
330 CONTINUE
389
340 CONTINUE
390
ELSE
391
*
392
* Form C := alpha*A'*B' + beta*C
393
*
394
DO 370, J = 1, N
395
DO 360, I = 1, M
396
TEMP = ZERO
397
DO 350, L = 1, K
398
TEMP = TEMP + A( L, I )*B( J, L )
399
350 CONTINUE
400
IF( BETA.EQ.ZERO )THEN
401
C( I, J ) = ALPHA*TEMP
402
ELSE
403
C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
404
END IF
405
360 CONTINUE
406
370 CONTINUE
407
END IF
408
END IF
409
*
410
RETURN
411
*
412
* End of CGEMM .
413
*
414
END
415
416