Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/blas/chemm.f
5192 views
1
SUBROUTINE CHEMM ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
2
$ BETA, C, LDC )
3
* .. Scalar Arguments ..
4
CHARACTER*1 SIDE, UPLO
5
INTEGER M, N, LDA, LDB, LDC
6
COMPLEX ALPHA, BETA
7
* .. Array Arguments ..
8
COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
9
* ..
10
*
11
* Purpose
12
* =======
13
*
14
* CHEMM performs one of the matrix-matrix operations
15
*
16
* C := alpha*A*B + beta*C,
17
*
18
* or
19
*
20
* C := alpha*B*A + beta*C,
21
*
22
* where alpha and beta are scalars, A is an hermitian matrix and B and
23
* C are m by n matrices.
24
*
25
* Parameters
26
* ==========
27
*
28
* SIDE - CHARACTER*1.
29
* On entry, SIDE specifies whether the hermitian matrix A
30
* appears on the left or right in the operation as follows:
31
*
32
* SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
33
*
34
* SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
35
*
36
* Unchanged on exit.
37
*
38
* UPLO - CHARACTER*1.
39
* On entry, UPLO specifies whether the upper or lower
40
* triangular part of the hermitian matrix A is to be
41
* referenced as follows:
42
*
43
* UPLO = 'U' or 'u' Only the upper triangular part of the
44
* hermitian matrix is to be referenced.
45
*
46
* UPLO = 'L' or 'l' Only the lower triangular part of the
47
* hermitian matrix is to be referenced.
48
*
49
* Unchanged on exit.
50
*
51
* M - INTEGER.
52
* On entry, M specifies the number of rows of the matrix C.
53
* M must be at least zero.
54
* Unchanged on exit.
55
*
56
* N - INTEGER.
57
* On entry, N specifies the number of columns of the matrix C.
58
* N must be at least zero.
59
* Unchanged on exit.
60
*
61
* ALPHA - COMPLEX .
62
* On entry, ALPHA specifies the scalar alpha.
63
* Unchanged on exit.
64
*
65
* A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
66
* m when SIDE = 'L' or 'l' and is n otherwise.
67
* Before entry with SIDE = 'L' or 'l', the m by m part of
68
* the array A must contain the hermitian matrix, such that
69
* when UPLO = 'U' or 'u', the leading m by m upper triangular
70
* part of the array A must contain the upper triangular part
71
* of the hermitian matrix and the strictly lower triangular
72
* part of A is not referenced, and when UPLO = 'L' or 'l',
73
* the leading m by m lower triangular part of the array A
74
* must contain the lower triangular part of the hermitian
75
* matrix and the strictly upper triangular part of A is not
76
* referenced.
77
* Before entry with SIDE = 'R' or 'r', the n by n part of
78
* the array A must contain the hermitian matrix, such that
79
* when UPLO = 'U' or 'u', the leading n by n upper triangular
80
* part of the array A must contain the upper triangular part
81
* of the hermitian matrix and the strictly lower triangular
82
* part of A is not referenced, and when UPLO = 'L' or 'l',
83
* the leading n by n lower triangular part of the array A
84
* must contain the lower triangular part of the hermitian
85
* matrix and the strictly upper triangular part of A is not
86
* referenced.
87
* Note that the imaginary parts of the diagonal elements need
88
* not be set, they are assumed to be zero.
89
* Unchanged on exit.
90
*
91
* LDA - INTEGER.
92
* On entry, LDA specifies the first dimension of A as declared
93
* in the calling (sub) program. When SIDE = 'L' or 'l' then
94
* LDA must be at least max( 1, m ), otherwise LDA must be at
95
* least max( 1, n ).
96
* Unchanged on exit.
97
*
98
* B - COMPLEX array of DIMENSION ( LDB, n ).
99
* Before entry, the leading m by n part of the array B must
100
* contain the matrix B.
101
* Unchanged on exit.
102
*
103
* LDB - INTEGER.
104
* On entry, LDB specifies the first dimension of B as declared
105
* in the calling (sub) program. LDB must be at least
106
* max( 1, m ).
107
* Unchanged on exit.
108
*
109
* BETA - COMPLEX .
110
* On entry, BETA specifies the scalar beta. When BETA is
111
* supplied as zero then C need not be set on input.
112
* Unchanged on exit.
113
*
114
* C - COMPLEX array of DIMENSION ( LDC, n ).
115
* Before entry, the leading m by n part of the array C must
116
* contain the matrix C, except when beta is zero, in which
117
* case C need not be set on entry.
118
* On exit, the array C is overwritten by the m by n updated
119
* matrix.
120
*
121
* LDC - INTEGER.
122
* On entry, LDC specifies the first dimension of C as declared
123
* in the calling (sub) program. LDC must be at least
124
* max( 1, m ).
125
* Unchanged on exit.
126
*
127
*
128
* Level 3 Blas routine.
129
*
130
* -- Written on 8-February-1989.
131
* Jack Dongarra, Argonne National Laboratory.
132
* Iain Duff, AERE Harwell.
133
* Jeremy Du Croz, Numerical Algorithms Group Ltd.
134
* Sven Hammarling, Numerical Algorithms Group Ltd.
135
*
136
*
137
* .. External Functions ..
138
LOGICAL LSAME
139
EXTERNAL LSAME
140
* .. External Subroutines ..
141
EXTERNAL XERBLA
142
* .. Intrinsic Functions ..
143
INTRINSIC CONJG, MAX, REAL
144
* .. Local Scalars ..
145
LOGICAL UPPER
146
INTEGER I, INFO, J, K, NROWA
147
COMPLEX TEMP1, TEMP2
148
* .. Parameters ..
149
COMPLEX ONE
150
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
151
COMPLEX ZERO
152
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
153
* ..
154
* .. Executable Statements ..
155
*
156
* Set NROWA as the number of rows of A.
157
*
158
IF( LSAME( SIDE, 'L' ) )THEN
159
NROWA = M
160
ELSE
161
NROWA = N
162
END IF
163
UPPER = LSAME( UPLO, 'U' )
164
*
165
* Test the input parameters.
166
*
167
INFO = 0
168
IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
169
$ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
170
INFO = 1
171
ELSE IF( ( .NOT.UPPER ).AND.
172
$ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
173
INFO = 2
174
ELSE IF( M .LT.0 )THEN
175
INFO = 3
176
ELSE IF( N .LT.0 )THEN
177
INFO = 4
178
ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
179
INFO = 7
180
ELSE IF( LDB.LT.MAX( 1, M ) )THEN
181
INFO = 9
182
ELSE IF( LDC.LT.MAX( 1, M ) )THEN
183
INFO = 12
184
END IF
185
IF( INFO.NE.0 )THEN
186
CALL XERBLA( 'CHEMM ', INFO )
187
RETURN
188
END IF
189
*
190
* Quick return if possible.
191
*
192
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
193
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
194
$ RETURN
195
*
196
* And when alpha.eq.zero.
197
*
198
IF( ALPHA.EQ.ZERO )THEN
199
IF( BETA.EQ.ZERO )THEN
200
DO 20, J = 1, N
201
DO 10, I = 1, M
202
C( I, J ) = ZERO
203
10 CONTINUE
204
20 CONTINUE
205
ELSE
206
DO 40, J = 1, N
207
DO 30, I = 1, M
208
C( I, J ) = BETA*C( I, J )
209
30 CONTINUE
210
40 CONTINUE
211
END IF
212
RETURN
213
END IF
214
*
215
* Start the operations.
216
*
217
IF( LSAME( SIDE, 'L' ) )THEN
218
*
219
* Form C := alpha*A*B + beta*C.
220
*
221
IF( UPPER )THEN
222
DO 70, J = 1, N
223
DO 60, I = 1, M
224
TEMP1 = ALPHA*B( I, J )
225
TEMP2 = ZERO
226
DO 50, K = 1, I - 1
227
C( K, J ) = C( K, J ) + TEMP1*A( K, I )
228
TEMP2 = TEMP2 +
229
$ B( K, J )*CONJG( A( K, I ) )
230
50 CONTINUE
231
IF( BETA.EQ.ZERO )THEN
232
C( I, J ) = TEMP1*REAL( A( I, I ) ) +
233
$ ALPHA*TEMP2
234
ELSE
235
C( I, J ) = BETA *C( I, J ) +
236
$ TEMP1*REAL( A( I, I ) ) +
237
$ ALPHA*TEMP2
238
END IF
239
60 CONTINUE
240
70 CONTINUE
241
ELSE
242
DO 100, J = 1, N
243
DO 90, I = M, 1, -1
244
TEMP1 = ALPHA*B( I, J )
245
TEMP2 = ZERO
246
DO 80, K = I + 1, M
247
C( K, J ) = C( K, J ) + TEMP1*A( K, I )
248
TEMP2 = TEMP2 +
249
$ B( K, J )*CONJG( A( K, I ) )
250
80 CONTINUE
251
IF( BETA.EQ.ZERO )THEN
252
C( I, J ) = TEMP1*REAL( A( I, I ) ) +
253
$ ALPHA*TEMP2
254
ELSE
255
C( I, J ) = BETA *C( I, J ) +
256
$ TEMP1*REAL( A( I, I ) ) +
257
$ ALPHA*TEMP2
258
END IF
259
90 CONTINUE
260
100 CONTINUE
261
END IF
262
ELSE
263
*
264
* Form C := alpha*B*A + beta*C.
265
*
266
DO 170, J = 1, N
267
TEMP1 = ALPHA*REAL( A( J, J ) )
268
IF( BETA.EQ.ZERO )THEN
269
DO 110, I = 1, M
270
C( I, J ) = TEMP1*B( I, J )
271
110 CONTINUE
272
ELSE
273
DO 120, I = 1, M
274
C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
275
120 CONTINUE
276
END IF
277
DO 140, K = 1, J - 1
278
IF( UPPER )THEN
279
TEMP1 = ALPHA*A( K, J )
280
ELSE
281
TEMP1 = ALPHA*CONJG( A( J, K ) )
282
END IF
283
DO 130, I = 1, M
284
C( I, J ) = C( I, J ) + TEMP1*B( I, K )
285
130 CONTINUE
286
140 CONTINUE
287
DO 160, K = J + 1, N
288
IF( UPPER )THEN
289
TEMP1 = ALPHA*CONJG( A( J, K ) )
290
ELSE
291
TEMP1 = ALPHA*A( K, J )
292
END IF
293
DO 150, I = 1, M
294
C( I, J ) = C( I, J ) + TEMP1*B( I, K )
295
150 CONTINUE
296
160 CONTINUE
297
170 CONTINUE
298
END IF
299
*
300
RETURN
301
*
302
* End of CHEMM .
303
*
304
END
305
306