Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/blas/chemv.f
5215 views
1
SUBROUTINE CHEMV ( UPLO, N, ALPHA, A, LDA, X, INCX,
2
$ BETA, Y, INCY )
3
* .. Scalar Arguments ..
4
COMPLEX ALPHA, BETA
5
INTEGER INCX, INCY, LDA, N
6
CHARACTER*1 UPLO
7
* .. Array Arguments ..
8
COMPLEX A( LDA, * ), X( * ), Y( * )
9
* ..
10
*
11
* Purpose
12
* =======
13
*
14
* CHEMV performs the matrix-vector operation
15
*
16
* y := alpha*A*x + beta*y,
17
*
18
* where alpha and beta are scalars, x and y are n element vectors and
19
* A is an n by n hermitian matrix.
20
*
21
* Parameters
22
* ==========
23
*
24
* UPLO - CHARACTER*1.
25
* On entry, UPLO specifies whether the upper or lower
26
* triangular part of the array A is to be referenced as
27
* follows:
28
*
29
* UPLO = 'U' or 'u' Only the upper triangular part of A
30
* is to be referenced.
31
*
32
* UPLO = 'L' or 'l' Only the lower triangular part of A
33
* is to be referenced.
34
*
35
* Unchanged on exit.
36
*
37
* N - INTEGER.
38
* On entry, N specifies the order of the matrix A.
39
* N must be at least zero.
40
* Unchanged on exit.
41
*
42
* ALPHA - COMPLEX .
43
* On entry, ALPHA specifies the scalar alpha.
44
* Unchanged on exit.
45
*
46
* A - COMPLEX array of DIMENSION ( LDA, n ).
47
* Before entry with UPLO = 'U' or 'u', the leading n by n
48
* upper triangular part of the array A must contain the upper
49
* triangular part of the hermitian matrix and the strictly
50
* lower triangular part of A is not referenced.
51
* Before entry with UPLO = 'L' or 'l', the leading n by n
52
* lower triangular part of the array A must contain the lower
53
* triangular part of the hermitian matrix and the strictly
54
* upper triangular part of A is not referenced.
55
* Note that the imaginary parts of the diagonal elements need
56
* not be set and are assumed to be zero.
57
* Unchanged on exit.
58
*
59
* LDA - INTEGER.
60
* On entry, LDA specifies the first dimension of A as declared
61
* in the calling (sub) program. LDA must be at least
62
* max( 1, n ).
63
* Unchanged on exit.
64
*
65
* X - COMPLEX array of dimension at least
66
* ( 1 + ( n - 1 )*abs( INCX ) ).
67
* Before entry, the incremented array X must contain the n
68
* element vector x.
69
* Unchanged on exit.
70
*
71
* INCX - INTEGER.
72
* On entry, INCX specifies the increment for the elements of
73
* X. INCX must not be zero.
74
* Unchanged on exit.
75
*
76
* BETA - COMPLEX .
77
* On entry, BETA specifies the scalar beta. When BETA is
78
* supplied as zero then Y need not be set on input.
79
* Unchanged on exit.
80
*
81
* Y - COMPLEX array of dimension at least
82
* ( 1 + ( n - 1 )*abs( INCY ) ).
83
* Before entry, the incremented array Y must contain the n
84
* element vector y. On exit, Y is overwritten by the updated
85
* vector y.
86
*
87
* INCY - INTEGER.
88
* On entry, INCY specifies the increment for the elements of
89
* Y. INCY must not be zero.
90
* Unchanged on exit.
91
*
92
*
93
* Level 2 Blas routine.
94
*
95
* -- Written on 22-October-1986.
96
* Jack Dongarra, Argonne National Lab.
97
* Jeremy Du Croz, Nag Central Office.
98
* Sven Hammarling, Nag Central Office.
99
* Richard Hanson, Sandia National Labs.
100
*
101
*
102
* .. Parameters ..
103
COMPLEX ONE
104
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
105
COMPLEX ZERO
106
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
107
* .. Local Scalars ..
108
COMPLEX TEMP1, TEMP2
109
INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
110
* .. External Functions ..
111
LOGICAL LSAME
112
EXTERNAL LSAME
113
* .. External Subroutines ..
114
EXTERNAL XERBLA
115
* .. Intrinsic Functions ..
116
INTRINSIC CONJG, MAX, REAL
117
* ..
118
* .. Executable Statements ..
119
*
120
* Test the input parameters.
121
*
122
INFO = 0
123
IF ( .NOT.LSAME( UPLO, 'U' ).AND.
124
$ .NOT.LSAME( UPLO, 'L' ) )THEN
125
INFO = 1
126
ELSE IF( N.LT.0 )THEN
127
INFO = 2
128
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
129
INFO = 5
130
ELSE IF( INCX.EQ.0 )THEN
131
INFO = 7
132
ELSE IF( INCY.EQ.0 )THEN
133
INFO = 10
134
END IF
135
IF( INFO.NE.0 )THEN
136
CALL XERBLA( 'CHEMV ', INFO )
137
RETURN
138
END IF
139
*
140
* Quick return if possible.
141
*
142
IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
143
$ RETURN
144
*
145
* Set up the start points in X and Y.
146
*
147
IF( INCX.GT.0 )THEN
148
KX = 1
149
ELSE
150
KX = 1 - ( N - 1 )*INCX
151
END IF
152
IF( INCY.GT.0 )THEN
153
KY = 1
154
ELSE
155
KY = 1 - ( N - 1 )*INCY
156
END IF
157
*
158
* Start the operations. In this version the elements of A are
159
* accessed sequentially with one pass through the triangular part
160
* of A.
161
*
162
* First form y := beta*y.
163
*
164
IF( BETA.NE.ONE )THEN
165
IF( INCY.EQ.1 )THEN
166
IF( BETA.EQ.ZERO )THEN
167
DO 10, I = 1, N
168
Y( I ) = ZERO
169
10 CONTINUE
170
ELSE
171
DO 20, I = 1, N
172
Y( I ) = BETA*Y( I )
173
20 CONTINUE
174
END IF
175
ELSE
176
IY = KY
177
IF( BETA.EQ.ZERO )THEN
178
DO 30, I = 1, N
179
Y( IY ) = ZERO
180
IY = IY + INCY
181
30 CONTINUE
182
ELSE
183
DO 40, I = 1, N
184
Y( IY ) = BETA*Y( IY )
185
IY = IY + INCY
186
40 CONTINUE
187
END IF
188
END IF
189
END IF
190
IF( ALPHA.EQ.ZERO )
191
$ RETURN
192
IF( LSAME( UPLO, 'U' ) )THEN
193
*
194
* Form y when A is stored in upper triangle.
195
*
196
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
197
DO 60, J = 1, N
198
TEMP1 = ALPHA*X( J )
199
TEMP2 = ZERO
200
DO 50, I = 1, J - 1
201
Y( I ) = Y( I ) + TEMP1*A( I, J )
202
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
203
50 CONTINUE
204
Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
205
60 CONTINUE
206
ELSE
207
JX = KX
208
JY = KY
209
DO 80, J = 1, N
210
TEMP1 = ALPHA*X( JX )
211
TEMP2 = ZERO
212
IX = KX
213
IY = KY
214
DO 70, I = 1, J - 1
215
Y( IY ) = Y( IY ) + TEMP1*A( I, J )
216
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
217
IX = IX + INCX
218
IY = IY + INCY
219
70 CONTINUE
220
Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) ) + ALPHA*TEMP2
221
JX = JX + INCX
222
JY = JY + INCY
223
80 CONTINUE
224
END IF
225
ELSE
226
*
227
* Form y when A is stored in lower triangle.
228
*
229
IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
230
DO 100, J = 1, N
231
TEMP1 = ALPHA*X( J )
232
TEMP2 = ZERO
233
Y( J ) = Y( J ) + TEMP1*REAL( A( J, J ) )
234
DO 90, I = J + 1, N
235
Y( I ) = Y( I ) + TEMP1*A( I, J )
236
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( I )
237
90 CONTINUE
238
Y( J ) = Y( J ) + ALPHA*TEMP2
239
100 CONTINUE
240
ELSE
241
JX = KX
242
JY = KY
243
DO 120, J = 1, N
244
TEMP1 = ALPHA*X( JX )
245
TEMP2 = ZERO
246
Y( JY ) = Y( JY ) + TEMP1*REAL( A( J, J ) )
247
IX = JX
248
IY = JY
249
DO 110, I = J + 1, N
250
IX = IX + INCX
251
IY = IY + INCY
252
Y( IY ) = Y( IY ) + TEMP1*A( I, J )
253
TEMP2 = TEMP2 + CONJG( A( I, J ) )*X( IX )
254
110 CONTINUE
255
Y( JY ) = Y( JY ) + ALPHA*TEMP2
256
JX = JX + INCX
257
JY = JY + INCY
258
120 CONTINUE
259
END IF
260
END IF
261
*
262
RETURN
263
*
264
* End of CHEMV .
265
*
266
END
267
268