Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/blas/ctpmv.f
5213 views
1
SUBROUTINE CTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX )
2
* .. Scalar Arguments ..
3
INTEGER INCX, N
4
CHARACTER*1 DIAG, TRANS, UPLO
5
* .. Array Arguments ..
6
COMPLEX AP( * ), X( * )
7
* ..
8
*
9
* Purpose
10
* =======
11
*
12
* CTPMV performs one of the matrix-vector operations
13
*
14
* x := A*x, or x := A'*x, or x := conjg( A' )*x,
15
*
16
* where x is an n element vector and A is an n by n unit, or non-unit,
17
* upper or lower triangular matrix, supplied in packed form.
18
*
19
* Parameters
20
* ==========
21
*
22
* UPLO - CHARACTER*1.
23
* On entry, UPLO specifies whether the matrix is an upper or
24
* lower triangular matrix as follows:
25
*
26
* UPLO = 'U' or 'u' A is an upper triangular matrix.
27
*
28
* UPLO = 'L' or 'l' A is a lower triangular matrix.
29
*
30
* Unchanged on exit.
31
*
32
* TRANS - CHARACTER*1.
33
* On entry, TRANS specifies the operation to be performed as
34
* follows:
35
*
36
* TRANS = 'N' or 'n' x := A*x.
37
*
38
* TRANS = 'T' or 't' x := A'*x.
39
*
40
* TRANS = 'C' or 'c' x := conjg( A' )*x.
41
*
42
* Unchanged on exit.
43
*
44
* DIAG - CHARACTER*1.
45
* On entry, DIAG specifies whether or not A is unit
46
* triangular as follows:
47
*
48
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
49
*
50
* DIAG = 'N' or 'n' A is not assumed to be unit
51
* triangular.
52
*
53
* Unchanged on exit.
54
*
55
* N - INTEGER.
56
* On entry, N specifies the order of the matrix A.
57
* N must be at least zero.
58
* Unchanged on exit.
59
*
60
* AP - COMPLEX array of DIMENSION at least
61
* ( ( n*( n + 1 ) )/2 ).
62
* Before entry with UPLO = 'U' or 'u', the array AP must
63
* contain the upper triangular matrix packed sequentially,
64
* column by column, so that AP( 1 ) contains a( 1, 1 ),
65
* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
66
* respectively, and so on.
67
* Before entry with UPLO = 'L' or 'l', the array AP must
68
* contain the lower triangular matrix packed sequentially,
69
* column by column, so that AP( 1 ) contains a( 1, 1 ),
70
* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
71
* respectively, and so on.
72
* Note that when DIAG = 'U' or 'u', the diagonal elements of
73
* A are not referenced, but are assumed to be unity.
74
* Unchanged on exit.
75
*
76
* X - COMPLEX array of dimension at least
77
* ( 1 + ( n - 1 )*abs( INCX ) ).
78
* Before entry, the incremented array X must contain the n
79
* element vector x. On exit, X is overwritten with the
80
* tranformed vector x.
81
*
82
* INCX - INTEGER.
83
* On entry, INCX specifies the increment for the elements of
84
* X. INCX must not be zero.
85
* Unchanged on exit.
86
*
87
*
88
* Level 2 Blas routine.
89
*
90
* -- Written on 22-October-1986.
91
* Jack Dongarra, Argonne National Lab.
92
* Jeremy Du Croz, Nag Central Office.
93
* Sven Hammarling, Nag Central Office.
94
* Richard Hanson, Sandia National Labs.
95
*
96
*
97
* .. Parameters ..
98
COMPLEX ZERO
99
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
100
* .. Local Scalars ..
101
COMPLEX TEMP
102
INTEGER I, INFO, IX, J, JX, K, KK, KX
103
LOGICAL NOCONJ, NOUNIT
104
* .. External Functions ..
105
LOGICAL LSAME
106
EXTERNAL LSAME
107
* .. External Subroutines ..
108
EXTERNAL XERBLA
109
* .. Intrinsic Functions ..
110
INTRINSIC CONJG
111
* ..
112
* .. Executable Statements ..
113
*
114
* Test the input parameters.
115
*
116
INFO = 0
117
IF ( .NOT.LSAME( UPLO , 'U' ).AND.
118
$ .NOT.LSAME( UPLO , 'L' ) )THEN
119
INFO = 1
120
ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
121
$ .NOT.LSAME( TRANS, 'T' ).AND.
122
$ .NOT.LSAME( TRANS, 'C' ) )THEN
123
INFO = 2
124
ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
125
$ .NOT.LSAME( DIAG , 'N' ) )THEN
126
INFO = 3
127
ELSE IF( N.LT.0 )THEN
128
INFO = 4
129
ELSE IF( INCX.EQ.0 )THEN
130
INFO = 7
131
END IF
132
IF( INFO.NE.0 )THEN
133
CALL XERBLA( 'CTPMV ', INFO )
134
RETURN
135
END IF
136
*
137
* Quick return if possible.
138
*
139
IF( N.EQ.0 )
140
$ RETURN
141
*
142
NOCONJ = LSAME( TRANS, 'T' )
143
NOUNIT = LSAME( DIAG , 'N' )
144
*
145
* Set up the start point in X if the increment is not unity. This
146
* will be ( N - 1 )*INCX too small for descending loops.
147
*
148
IF( INCX.LE.0 )THEN
149
KX = 1 - ( N - 1 )*INCX
150
ELSE IF( INCX.NE.1 )THEN
151
KX = 1
152
END IF
153
*
154
* Start the operations. In this version the elements of AP are
155
* accessed sequentially with one pass through AP.
156
*
157
IF( LSAME( TRANS, 'N' ) )THEN
158
*
159
* Form x:= A*x.
160
*
161
IF( LSAME( UPLO, 'U' ) )THEN
162
KK = 1
163
IF( INCX.EQ.1 )THEN
164
DO 20, J = 1, N
165
IF( X( J ).NE.ZERO )THEN
166
TEMP = X( J )
167
K = KK
168
DO 10, I = 1, J - 1
169
X( I ) = X( I ) + TEMP*AP( K )
170
K = K + 1
171
10 CONTINUE
172
IF( NOUNIT )
173
$ X( J ) = X( J )*AP( KK + J - 1 )
174
END IF
175
KK = KK + J
176
20 CONTINUE
177
ELSE
178
JX = KX
179
DO 40, J = 1, N
180
IF( X( JX ).NE.ZERO )THEN
181
TEMP = X( JX )
182
IX = KX
183
DO 30, K = KK, KK + J - 2
184
X( IX ) = X( IX ) + TEMP*AP( K )
185
IX = IX + INCX
186
30 CONTINUE
187
IF( NOUNIT )
188
$ X( JX ) = X( JX )*AP( KK + J - 1 )
189
END IF
190
JX = JX + INCX
191
KK = KK + J
192
40 CONTINUE
193
END IF
194
ELSE
195
KK = ( N*( N + 1 ) )/2
196
IF( INCX.EQ.1 )THEN
197
DO 60, J = N, 1, -1
198
IF( X( J ).NE.ZERO )THEN
199
TEMP = X( J )
200
K = KK
201
DO 50, I = N, J + 1, -1
202
X( I ) = X( I ) + TEMP*AP( K )
203
K = K - 1
204
50 CONTINUE
205
IF( NOUNIT )
206
$ X( J ) = X( J )*AP( KK - N + J )
207
END IF
208
KK = KK - ( N - J + 1 )
209
60 CONTINUE
210
ELSE
211
KX = KX + ( N - 1 )*INCX
212
JX = KX
213
DO 80, J = N, 1, -1
214
IF( X( JX ).NE.ZERO )THEN
215
TEMP = X( JX )
216
IX = KX
217
DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1
218
X( IX ) = X( IX ) + TEMP*AP( K )
219
IX = IX - INCX
220
70 CONTINUE
221
IF( NOUNIT )
222
$ X( JX ) = X( JX )*AP( KK - N + J )
223
END IF
224
JX = JX - INCX
225
KK = KK - ( N - J + 1 )
226
80 CONTINUE
227
END IF
228
END IF
229
ELSE
230
*
231
* Form x := A'*x or x := conjg( A' )*x.
232
*
233
IF( LSAME( UPLO, 'U' ) )THEN
234
KK = ( N*( N + 1 ) )/2
235
IF( INCX.EQ.1 )THEN
236
DO 110, J = N, 1, -1
237
TEMP = X( J )
238
K = KK - 1
239
IF( NOCONJ )THEN
240
IF( NOUNIT )
241
$ TEMP = TEMP*AP( KK )
242
DO 90, I = J - 1, 1, -1
243
TEMP = TEMP + AP( K )*X( I )
244
K = K - 1
245
90 CONTINUE
246
ELSE
247
IF( NOUNIT )
248
$ TEMP = TEMP*CONJG( AP( KK ) )
249
DO 100, I = J - 1, 1, -1
250
TEMP = TEMP + CONJG( AP( K ) )*X( I )
251
K = K - 1
252
100 CONTINUE
253
END IF
254
X( J ) = TEMP
255
KK = KK - J
256
110 CONTINUE
257
ELSE
258
JX = KX + ( N - 1 )*INCX
259
DO 140, J = N, 1, -1
260
TEMP = X( JX )
261
IX = JX
262
IF( NOCONJ )THEN
263
IF( NOUNIT )
264
$ TEMP = TEMP*AP( KK )
265
DO 120, K = KK - 1, KK - J + 1, -1
266
IX = IX - INCX
267
TEMP = TEMP + AP( K )*X( IX )
268
120 CONTINUE
269
ELSE
270
IF( NOUNIT )
271
$ TEMP = TEMP*CONJG( AP( KK ) )
272
DO 130, K = KK - 1, KK - J + 1, -1
273
IX = IX - INCX
274
TEMP = TEMP + CONJG( AP( K ) )*X( IX )
275
130 CONTINUE
276
END IF
277
X( JX ) = TEMP
278
JX = JX - INCX
279
KK = KK - J
280
140 CONTINUE
281
END IF
282
ELSE
283
KK = 1
284
IF( INCX.EQ.1 )THEN
285
DO 170, J = 1, N
286
TEMP = X( J )
287
K = KK + 1
288
IF( NOCONJ )THEN
289
IF( NOUNIT )
290
$ TEMP = TEMP*AP( KK )
291
DO 150, I = J + 1, N
292
TEMP = TEMP + AP( K )*X( I )
293
K = K + 1
294
150 CONTINUE
295
ELSE
296
IF( NOUNIT )
297
$ TEMP = TEMP*CONJG( AP( KK ) )
298
DO 160, I = J + 1, N
299
TEMP = TEMP + CONJG( AP( K ) )*X( I )
300
K = K + 1
301
160 CONTINUE
302
END IF
303
X( J ) = TEMP
304
KK = KK + ( N - J + 1 )
305
170 CONTINUE
306
ELSE
307
JX = KX
308
DO 200, J = 1, N
309
TEMP = X( JX )
310
IX = JX
311
IF( NOCONJ )THEN
312
IF( NOUNIT )
313
$ TEMP = TEMP*AP( KK )
314
DO 180, K = KK + 1, KK + N - J
315
IX = IX + INCX
316
TEMP = TEMP + AP( K )*X( IX )
317
180 CONTINUE
318
ELSE
319
IF( NOUNIT )
320
$ TEMP = TEMP*CONJG( AP( KK ) )
321
DO 190, K = KK + 1, KK + N - J
322
IX = IX + INCX
323
TEMP = TEMP + CONJG( AP( K ) )*X( IX )
324
190 CONTINUE
325
END IF
326
X( JX ) = TEMP
327
JX = JX + INCX
328
KK = KK + ( N - J + 1 )
329
200 CONTINUE
330
END IF
331
END IF
332
END IF
333
*
334
RETURN
335
*
336
* End of CTPMV .
337
*
338
END
339
340