Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/blas/ctrsv.f
5218 views
1
SUBROUTINE CTRSV ( UPLO, TRANS, DIAG, N, A, LDA, X, INCX )
2
* .. Scalar Arguments ..
3
INTEGER INCX, LDA, N
4
CHARACTER*1 DIAG, TRANS, UPLO
5
* .. Array Arguments ..
6
COMPLEX A( LDA, * ), X( * )
7
* ..
8
*
9
* Purpose
10
* =======
11
*
12
* CTRSV solves one of the systems of equations
13
*
14
* A*x = b, or A'*x = b, or conjg( A' )*x = b,
15
*
16
* where b and x are n element vectors and A is an n by n unit, or
17
* non-unit, upper or lower triangular matrix.
18
*
19
* No test for singularity or near-singularity is included in this
20
* routine. Such tests must be performed before calling this routine.
21
*
22
* Parameters
23
* ==========
24
*
25
* UPLO - CHARACTER*1.
26
* On entry, UPLO specifies whether the matrix is an upper or
27
* lower triangular matrix as follows:
28
*
29
* UPLO = 'U' or 'u' A is an upper triangular matrix.
30
*
31
* UPLO = 'L' or 'l' A is a lower triangular matrix.
32
*
33
* Unchanged on exit.
34
*
35
* TRANS - CHARACTER*1.
36
* On entry, TRANS specifies the equations to be solved as
37
* follows:
38
*
39
* TRANS = 'N' or 'n' A*x = b.
40
*
41
* TRANS = 'T' or 't' A'*x = b.
42
*
43
* TRANS = 'C' or 'c' conjg( A' )*x = b.
44
*
45
* Unchanged on exit.
46
*
47
* DIAG - CHARACTER*1.
48
* On entry, DIAG specifies whether or not A is unit
49
* triangular as follows:
50
*
51
* DIAG = 'U' or 'u' A is assumed to be unit triangular.
52
*
53
* DIAG = 'N' or 'n' A is not assumed to be unit
54
* triangular.
55
*
56
* Unchanged on exit.
57
*
58
* N - INTEGER.
59
* On entry, N specifies the order of the matrix A.
60
* N must be at least zero.
61
* Unchanged on exit.
62
*
63
* A - COMPLEX array of DIMENSION ( LDA, n ).
64
* Before entry with UPLO = 'U' or 'u', the leading n by n
65
* upper triangular part of the array A must contain the upper
66
* triangular matrix and the strictly lower triangular part of
67
* A is not referenced.
68
* Before entry with UPLO = 'L' or 'l', the leading n by n
69
* lower triangular part of the array A must contain the lower
70
* triangular matrix and the strictly upper triangular part of
71
* A is not referenced.
72
* Note that when DIAG = 'U' or 'u', the diagonal elements of
73
* A are not referenced either, but are assumed to be unity.
74
* Unchanged on exit.
75
*
76
* LDA - INTEGER.
77
* On entry, LDA specifies the first dimension of A as declared
78
* in the calling (sub) program. LDA must be at least
79
* max( 1, n ).
80
* Unchanged on exit.
81
*
82
* X - COMPLEX array of dimension at least
83
* ( 1 + ( n - 1 )*abs( INCX ) ).
84
* Before entry, the incremented array X must contain the n
85
* element right-hand side vector b. On exit, X is overwritten
86
* with the solution vector x.
87
*
88
* INCX - INTEGER.
89
* On entry, INCX specifies the increment for the elements of
90
* X. INCX must not be zero.
91
* Unchanged on exit.
92
*
93
*
94
* Level 2 Blas routine.
95
*
96
* -- Written on 22-October-1986.
97
* Jack Dongarra, Argonne National Lab.
98
* Jeremy Du Croz, Nag Central Office.
99
* Sven Hammarling, Nag Central Office.
100
* Richard Hanson, Sandia National Labs.
101
*
102
*
103
* .. Parameters ..
104
COMPLEX ZERO
105
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
106
* .. Local Scalars ..
107
COMPLEX TEMP
108
INTEGER I, INFO, IX, J, JX, KX
109
LOGICAL NOCONJ, NOUNIT
110
* .. External Functions ..
111
LOGICAL LSAME
112
EXTERNAL LSAME
113
* .. External Subroutines ..
114
EXTERNAL XERBLA
115
* .. Intrinsic Functions ..
116
INTRINSIC CONJG, MAX
117
* ..
118
* .. Executable Statements ..
119
*
120
* Test the input parameters.
121
*
122
INFO = 0
123
IF ( .NOT.LSAME( UPLO , 'U' ).AND.
124
$ .NOT.LSAME( UPLO , 'L' ) )THEN
125
INFO = 1
126
ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
127
$ .NOT.LSAME( TRANS, 'T' ).AND.
128
$ .NOT.LSAME( TRANS, 'C' ) )THEN
129
INFO = 2
130
ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
131
$ .NOT.LSAME( DIAG , 'N' ) )THEN
132
INFO = 3
133
ELSE IF( N.LT.0 )THEN
134
INFO = 4
135
ELSE IF( LDA.LT.MAX( 1, N ) )THEN
136
INFO = 6
137
ELSE IF( INCX.EQ.0 )THEN
138
INFO = 8
139
END IF
140
IF( INFO.NE.0 )THEN
141
CALL XERBLA( 'CTRSV ', INFO )
142
RETURN
143
END IF
144
*
145
* Quick return if possible.
146
*
147
IF( N.EQ.0 )
148
$ RETURN
149
*
150
NOCONJ = LSAME( TRANS, 'T' )
151
NOUNIT = LSAME( DIAG , 'N' )
152
*
153
* Set up the start point in X if the increment is not unity. This
154
* will be ( N - 1 )*INCX too small for descending loops.
155
*
156
IF( INCX.LE.0 )THEN
157
KX = 1 - ( N - 1 )*INCX
158
ELSE IF( INCX.NE.1 )THEN
159
KX = 1
160
END IF
161
*
162
* Start the operations. In this version the elements of A are
163
* accessed sequentially with one pass through A.
164
*
165
IF( LSAME( TRANS, 'N' ) )THEN
166
*
167
* Form x := inv( A )*x.
168
*
169
IF( LSAME( UPLO, 'U' ) )THEN
170
IF( INCX.EQ.1 )THEN
171
DO 20, J = N, 1, -1
172
IF( X( J ).NE.ZERO )THEN
173
IF( NOUNIT )
174
$ X( J ) = X( J )/A( J, J )
175
TEMP = X( J )
176
DO 10, I = J - 1, 1, -1
177
X( I ) = X( I ) - TEMP*A( I, J )
178
10 CONTINUE
179
END IF
180
20 CONTINUE
181
ELSE
182
JX = KX + ( N - 1 )*INCX
183
DO 40, J = N, 1, -1
184
IF( X( JX ).NE.ZERO )THEN
185
IF( NOUNIT )
186
$ X( JX ) = X( JX )/A( J, J )
187
TEMP = X( JX )
188
IX = JX
189
DO 30, I = J - 1, 1, -1
190
IX = IX - INCX
191
X( IX ) = X( IX ) - TEMP*A( I, J )
192
30 CONTINUE
193
END IF
194
JX = JX - INCX
195
40 CONTINUE
196
END IF
197
ELSE
198
IF( INCX.EQ.1 )THEN
199
DO 60, J = 1, N
200
IF( X( J ).NE.ZERO )THEN
201
IF( NOUNIT )
202
$ X( J ) = X( J )/A( J, J )
203
TEMP = X( J )
204
DO 50, I = J + 1, N
205
X( I ) = X( I ) - TEMP*A( I, J )
206
50 CONTINUE
207
END IF
208
60 CONTINUE
209
ELSE
210
JX = KX
211
DO 80, J = 1, N
212
IF( X( JX ).NE.ZERO )THEN
213
IF( NOUNIT )
214
$ X( JX ) = X( JX )/A( J, J )
215
TEMP = X( JX )
216
IX = JX
217
DO 70, I = J + 1, N
218
IX = IX + INCX
219
X( IX ) = X( IX ) - TEMP*A( I, J )
220
70 CONTINUE
221
END IF
222
JX = JX + INCX
223
80 CONTINUE
224
END IF
225
END IF
226
ELSE
227
*
228
* Form x := inv( A' )*x or x := inv( conjg( A' ) )*x.
229
*
230
IF( LSAME( UPLO, 'U' ) )THEN
231
IF( INCX.EQ.1 )THEN
232
DO 110, J = 1, N
233
TEMP = X( J )
234
IF( NOCONJ )THEN
235
DO 90, I = 1, J - 1
236
TEMP = TEMP - A( I, J )*X( I )
237
90 CONTINUE
238
IF( NOUNIT )
239
$ TEMP = TEMP/A( J, J )
240
ELSE
241
DO 100, I = 1, J - 1
242
TEMP = TEMP - CONJG( A( I, J ) )*X( I )
243
100 CONTINUE
244
IF( NOUNIT )
245
$ TEMP = TEMP/CONJG( A( J, J ) )
246
END IF
247
X( J ) = TEMP
248
110 CONTINUE
249
ELSE
250
JX = KX
251
DO 140, J = 1, N
252
IX = KX
253
TEMP = X( JX )
254
IF( NOCONJ )THEN
255
DO 120, I = 1, J - 1
256
TEMP = TEMP - A( I, J )*X( IX )
257
IX = IX + INCX
258
120 CONTINUE
259
IF( NOUNIT )
260
$ TEMP = TEMP/A( J, J )
261
ELSE
262
DO 130, I = 1, J - 1
263
TEMP = TEMP - CONJG( A( I, J ) )*X( IX )
264
IX = IX + INCX
265
130 CONTINUE
266
IF( NOUNIT )
267
$ TEMP = TEMP/CONJG( A( J, J ) )
268
END IF
269
X( JX ) = TEMP
270
JX = JX + INCX
271
140 CONTINUE
272
END IF
273
ELSE
274
IF( INCX.EQ.1 )THEN
275
DO 170, J = N, 1, -1
276
TEMP = X( J )
277
IF( NOCONJ )THEN
278
DO 150, I = N, J + 1, -1
279
TEMP = TEMP - A( I, J )*X( I )
280
150 CONTINUE
281
IF( NOUNIT )
282
$ TEMP = TEMP/A( J, J )
283
ELSE
284
DO 160, I = N, J + 1, -1
285
TEMP = TEMP - CONJG( A( I, J ) )*X( I )
286
160 CONTINUE
287
IF( NOUNIT )
288
$ TEMP = TEMP/CONJG( A( J, J ) )
289
END IF
290
X( J ) = TEMP
291
170 CONTINUE
292
ELSE
293
KX = KX + ( N - 1 )*INCX
294
JX = KX
295
DO 200, J = N, 1, -1
296
IX = KX
297
TEMP = X( JX )
298
IF( NOCONJ )THEN
299
DO 180, I = N, J + 1, -1
300
TEMP = TEMP - A( I, J )*X( IX )
301
IX = IX - INCX
302
180 CONTINUE
303
IF( NOUNIT )
304
$ TEMP = TEMP/A( J, J )
305
ELSE
306
DO 190, I = N, J + 1, -1
307
TEMP = TEMP - CONJG( A( I, J ) )*X( IX )
308
IX = IX - INCX
309
190 CONTINUE
310
IF( NOUNIT )
311
$ TEMP = TEMP/CONJG( A( J, J ) )
312
END IF
313
X( JX ) = TEMP
314
JX = JX - INCX
315
200 CONTINUE
316
END IF
317
END IF
318
END IF
319
*
320
RETURN
321
*
322
* End of CTRSV .
323
*
324
END
325
326