Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/blas/dgbmv.f
5218 views
1
SUBROUTINE DGBMV ( TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
2
$ BETA, Y, INCY )
3
* .. Scalar Arguments ..
4
DOUBLE PRECISION ALPHA, BETA
5
INTEGER INCX, INCY, KL, KU, LDA, M, N
6
CHARACTER*1 TRANS
7
* .. Array Arguments ..
8
DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
9
* ..
10
*
11
* Purpose
12
* =======
13
*
14
* DGBMV performs one of the matrix-vector operations
15
*
16
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
17
*
18
* where alpha and beta are scalars, x and y are vectors and A is an
19
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
20
*
21
* Parameters
22
* ==========
23
*
24
* TRANS - CHARACTER*1.
25
* On entry, TRANS specifies the operation to be performed as
26
* follows:
27
*
28
* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
29
*
30
* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
31
*
32
* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
33
*
34
* Unchanged on exit.
35
*
36
* M - INTEGER.
37
* On entry, M specifies the number of rows of the matrix A.
38
* M must be at least zero.
39
* Unchanged on exit.
40
*
41
* N - INTEGER.
42
* On entry, N specifies the number of columns of the matrix A.
43
* N must be at least zero.
44
* Unchanged on exit.
45
*
46
* KL - INTEGER.
47
* On entry, KL specifies the number of sub-diagonals of the
48
* matrix A. KL must satisfy 0 .le. KL.
49
* Unchanged on exit.
50
*
51
* KU - INTEGER.
52
* On entry, KU specifies the number of super-diagonals of the
53
* matrix A. KU must satisfy 0 .le. KU.
54
* Unchanged on exit.
55
*
56
* ALPHA - DOUBLE PRECISION.
57
* On entry, ALPHA specifies the scalar alpha.
58
* Unchanged on exit.
59
*
60
* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
61
* Before entry, the leading ( kl + ku + 1 ) by n part of the
62
* array A must contain the matrix of coefficients, supplied
63
* column by column, with the leading diagonal of the matrix in
64
* row ( ku + 1 ) of the array, the first super-diagonal
65
* starting at position 2 in row ku, the first sub-diagonal
66
* starting at position 1 in row ( ku + 2 ), and so on.
67
* Elements in the array A that do not correspond to elements
68
* in the band matrix (such as the top left ku by ku triangle)
69
* are not referenced.
70
* The following program segment will transfer a band matrix
71
* from conventional full matrix storage to band storage:
72
*
73
* DO 20, J = 1, N
74
* K = KU + 1 - J
75
* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
76
* A( K + I, J ) = matrix( I, J )
77
* 10 CONTINUE
78
* 20 CONTINUE
79
*
80
* Unchanged on exit.
81
*
82
* LDA - INTEGER.
83
* On entry, LDA specifies the first dimension of A as declared
84
* in the calling (sub) program. LDA must be at least
85
* ( kl + ku + 1 ).
86
* Unchanged on exit.
87
*
88
* X - DOUBLE PRECISION array of DIMENSION at least
89
* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
90
* and at least
91
* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
92
* Before entry, the incremented array X must contain the
93
* vector x.
94
* Unchanged on exit.
95
*
96
* INCX - INTEGER.
97
* On entry, INCX specifies the increment for the elements of
98
* X. INCX must not be zero.
99
* Unchanged on exit.
100
*
101
* BETA - DOUBLE PRECISION.
102
* On entry, BETA specifies the scalar beta. When BETA is
103
* supplied as zero then Y need not be set on input.
104
* Unchanged on exit.
105
*
106
* Y - DOUBLE PRECISION array of DIMENSION at least
107
* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
108
* and at least
109
* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
110
* Before entry, the incremented array Y must contain the
111
* vector y. On exit, Y is overwritten by the updated vector y.
112
*
113
* INCY - INTEGER.
114
* On entry, INCY specifies the increment for the elements of
115
* Y. INCY must not be zero.
116
* Unchanged on exit.
117
*
118
*
119
* Level 2 Blas routine.
120
*
121
* -- Written on 22-October-1986.
122
* Jack Dongarra, Argonne National Lab.
123
* Jeremy Du Croz, Nag Central Office.
124
* Sven Hammarling, Nag Central Office.
125
* Richard Hanson, Sandia National Labs.
126
*
127
* .. Parameters ..
128
DOUBLE PRECISION ONE , ZERO
129
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
130
* .. Local Scalars ..
131
DOUBLE PRECISION TEMP
132
INTEGER I, INFO, IX, IY, J, JX, JY, K, KUP1, KX, KY,
133
$ LENX, LENY
134
* .. External Functions ..
135
LOGICAL LSAME
136
EXTERNAL LSAME
137
* .. External Subroutines ..
138
EXTERNAL XERBLA
139
* .. Intrinsic Functions ..
140
INTRINSIC MAX, MIN
141
* ..
142
* .. Executable Statements ..
143
*
144
* Test the input parameters.
145
*
146
INFO = 0
147
IF ( .NOT.LSAME( TRANS, 'N' ).AND.
148
$ .NOT.LSAME( TRANS, 'T' ).AND.
149
$ .NOT.LSAME( TRANS, 'C' ) )THEN
150
INFO = 1
151
ELSE IF( M.LT.0 )THEN
152
INFO = 2
153
ELSE IF( N.LT.0 )THEN
154
INFO = 3
155
ELSE IF( KL.LT.0 )THEN
156
INFO = 4
157
ELSE IF( KU.LT.0 )THEN
158
INFO = 5
159
ELSE IF( LDA.LT.( KL + KU + 1 ) )THEN
160
INFO = 8
161
ELSE IF( INCX.EQ.0 )THEN
162
INFO = 10
163
ELSE IF( INCY.EQ.0 )THEN
164
INFO = 13
165
END IF
166
IF( INFO.NE.0 )THEN
167
CALL XERBLA( 'DGBMV ', INFO )
168
RETURN
169
END IF
170
*
171
* Quick return if possible.
172
*
173
IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
174
$ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
175
$ RETURN
176
*
177
* Set LENX and LENY, the lengths of the vectors x and y, and set
178
* up the start points in X and Y.
179
*
180
IF( LSAME( TRANS, 'N' ) )THEN
181
LENX = N
182
LENY = M
183
ELSE
184
LENX = M
185
LENY = N
186
END IF
187
IF( INCX.GT.0 )THEN
188
KX = 1
189
ELSE
190
KX = 1 - ( LENX - 1 )*INCX
191
END IF
192
IF( INCY.GT.0 )THEN
193
KY = 1
194
ELSE
195
KY = 1 - ( LENY - 1 )*INCY
196
END IF
197
*
198
* Start the operations. In this version the elements of A are
199
* accessed sequentially with one pass through the band part of A.
200
*
201
* First form y := beta*y.
202
*
203
IF( BETA.NE.ONE )THEN
204
IF( INCY.EQ.1 )THEN
205
IF( BETA.EQ.ZERO )THEN
206
DO 10, I = 1, LENY
207
Y( I ) = ZERO
208
10 CONTINUE
209
ELSE
210
DO 20, I = 1, LENY
211
Y( I ) = BETA*Y( I )
212
20 CONTINUE
213
END IF
214
ELSE
215
IY = KY
216
IF( BETA.EQ.ZERO )THEN
217
DO 30, I = 1, LENY
218
Y( IY ) = ZERO
219
IY = IY + INCY
220
30 CONTINUE
221
ELSE
222
DO 40, I = 1, LENY
223
Y( IY ) = BETA*Y( IY )
224
IY = IY + INCY
225
40 CONTINUE
226
END IF
227
END IF
228
END IF
229
IF( ALPHA.EQ.ZERO )
230
$ RETURN
231
KUP1 = KU + 1
232
IF( LSAME( TRANS, 'N' ) )THEN
233
*
234
* Form y := alpha*A*x + y.
235
*
236
JX = KX
237
IF( INCY.EQ.1 )THEN
238
DO 60, J = 1, N
239
IF( X( JX ).NE.ZERO )THEN
240
TEMP = ALPHA*X( JX )
241
K = KUP1 - J
242
DO 50, I = MAX( 1, J - KU ), MIN( M, J + KL )
243
Y( I ) = Y( I ) + TEMP*A( K + I, J )
244
50 CONTINUE
245
END IF
246
JX = JX + INCX
247
60 CONTINUE
248
ELSE
249
DO 80, J = 1, N
250
IF( X( JX ).NE.ZERO )THEN
251
TEMP = ALPHA*X( JX )
252
IY = KY
253
K = KUP1 - J
254
DO 70, I = MAX( 1, J - KU ), MIN( M, J + KL )
255
Y( IY ) = Y( IY ) + TEMP*A( K + I, J )
256
IY = IY + INCY
257
70 CONTINUE
258
END IF
259
JX = JX + INCX
260
IF( J.GT.KU )
261
$ KY = KY + INCY
262
80 CONTINUE
263
END IF
264
ELSE
265
*
266
* Form y := alpha*A'*x + y.
267
*
268
JY = KY
269
IF( INCX.EQ.1 )THEN
270
DO 100, J = 1, N
271
TEMP = ZERO
272
K = KUP1 - J
273
DO 90, I = MAX( 1, J - KU ), MIN( M, J + KL )
274
TEMP = TEMP + A( K + I, J )*X( I )
275
90 CONTINUE
276
Y( JY ) = Y( JY ) + ALPHA*TEMP
277
JY = JY + INCY
278
100 CONTINUE
279
ELSE
280
DO 120, J = 1, N
281
TEMP = ZERO
282
IX = KX
283
K = KUP1 - J
284
DO 110, I = MAX( 1, J - KU ), MIN( M, J + KL )
285
TEMP = TEMP + A( K + I, J )*X( IX )
286
IX = IX + INCX
287
110 CONTINUE
288
Y( JY ) = Y( JY ) + ALPHA*TEMP
289
JY = JY + INCY
290
IF( J.GT.KU )
291
$ KX = KX + INCX
292
120 CONTINUE
293
END IF
294
END IF
295
*
296
RETURN
297
*
298
* End of DGBMV .
299
*
300
END
301
302