Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgbequ.f
5196 views
1
SUBROUTINE CGBEQU( M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
2
$ AMAX, INFO )
3
*
4
* -- LAPACK routine (version 3.0) --
5
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6
* Courant Institute, Argonne National Lab, and Rice University
7
* June 30, 1992
8
*
9
* .. Scalar Arguments ..
10
INTEGER INFO, KL, KU, LDAB, M, N
11
REAL AMAX, COLCND, ROWCND
12
* ..
13
* .. Array Arguments ..
14
REAL C( * ), R( * )
15
COMPLEX AB( LDAB, * )
16
* ..
17
*
18
* Purpose
19
* =======
20
*
21
* CGBEQU computes row and column scalings intended to equilibrate an
22
* M-by-N band matrix A and reduce its condition number. R returns the
23
* row scale factors and C the column scale factors, chosen to try to
24
* make the largest element in each row and column of the matrix B with
25
* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
26
*
27
* R(i) and C(j) are restricted to be between SMLNUM = smallest safe
28
* number and BIGNUM = largest safe number. Use of these scaling
29
* factors is not guaranteed to reduce the condition number of A but
30
* works well in practice.
31
*
32
* Arguments
33
* =========
34
*
35
* M (input) INTEGER
36
* The number of rows of the matrix A. M >= 0.
37
*
38
* N (input) INTEGER
39
* The number of columns of the matrix A. N >= 0.
40
*
41
* KL (input) INTEGER
42
* The number of subdiagonals within the band of A. KL >= 0.
43
*
44
* KU (input) INTEGER
45
* The number of superdiagonals within the band of A. KU >= 0.
46
*
47
* AB (input) COMPLEX array, dimension (LDAB,N)
48
* The band matrix A, stored in rows 1 to KL+KU+1. The j-th
49
* column of A is stored in the j-th column of the array AB as
50
* follows:
51
* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
52
*
53
* LDAB (input) INTEGER
54
* The leading dimension of the array AB. LDAB >= KL+KU+1.
55
*
56
* R (output) REAL array, dimension (M)
57
* If INFO = 0, or INFO > M, R contains the row scale factors
58
* for A.
59
*
60
* C (output) REAL array, dimension (N)
61
* If INFO = 0, C contains the column scale factors for A.
62
*
63
* ROWCND (output) REAL
64
* If INFO = 0 or INFO > M, ROWCND contains the ratio of the
65
* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
66
* AMAX is neither too large nor too small, it is not worth
67
* scaling by R.
68
*
69
* COLCND (output) REAL
70
* If INFO = 0, COLCND contains the ratio of the smallest
71
* C(i) to the largest C(i). If COLCND >= 0.1, it is not
72
* worth scaling by C.
73
*
74
* AMAX (output) REAL
75
* Absolute value of largest matrix element. If AMAX is very
76
* close to overflow or very close to underflow, the matrix
77
* should be scaled.
78
*
79
* INFO (output) INTEGER
80
* = 0: successful exit
81
* < 0: if INFO = -i, the i-th argument had an illegal value
82
* > 0: if INFO = i, and i is
83
* <= M: the i-th row of A is exactly zero
84
* > M: the (i-M)-th column of A is exactly zero
85
*
86
* =====================================================================
87
*
88
* .. Parameters ..
89
REAL ONE, ZERO
90
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
91
* ..
92
* .. Local Scalars ..
93
INTEGER I, J, KD
94
REAL BIGNUM, RCMAX, RCMIN, SMLNUM
95
COMPLEX ZDUM
96
* ..
97
* .. External Functions ..
98
REAL SLAMCH
99
EXTERNAL SLAMCH
100
* ..
101
* .. External Subroutines ..
102
EXTERNAL XERBLA
103
* ..
104
* .. Intrinsic Functions ..
105
INTRINSIC ABS, AIMAG, MAX, MIN, REAL
106
* ..
107
* .. Statement Functions ..
108
REAL CABS1
109
* ..
110
* .. Statement Function definitions ..
111
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
112
* ..
113
* .. Executable Statements ..
114
*
115
* Test the input parameters
116
*
117
INFO = 0
118
IF( M.LT.0 ) THEN
119
INFO = -1
120
ELSE IF( N.LT.0 ) THEN
121
INFO = -2
122
ELSE IF( KL.LT.0 ) THEN
123
INFO = -3
124
ELSE IF( KU.LT.0 ) THEN
125
INFO = -4
126
ELSE IF( LDAB.LT.KL+KU+1 ) THEN
127
INFO = -6
128
END IF
129
IF( INFO.NE.0 ) THEN
130
CALL XERBLA( 'CGBEQU', -INFO )
131
RETURN
132
END IF
133
*
134
* Quick return if possible
135
*
136
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
137
ROWCND = ONE
138
COLCND = ONE
139
AMAX = ZERO
140
RETURN
141
END IF
142
*
143
* Get machine constants.
144
*
145
SMLNUM = SLAMCH( 'S' )
146
BIGNUM = ONE / SMLNUM
147
*
148
* Compute row scale factors.
149
*
150
DO 10 I = 1, M
151
R( I ) = ZERO
152
10 CONTINUE
153
*
154
* Find the maximum element in each row.
155
*
156
KD = KU + 1
157
DO 30 J = 1, N
158
DO 20 I = MAX( J-KU, 1 ), MIN( J+KL, M )
159
R( I ) = MAX( R( I ), CABS1( AB( KD+I-J, J ) ) )
160
20 CONTINUE
161
30 CONTINUE
162
*
163
* Find the maximum and minimum scale factors.
164
*
165
RCMIN = BIGNUM
166
RCMAX = ZERO
167
DO 40 I = 1, M
168
RCMAX = MAX( RCMAX, R( I ) )
169
RCMIN = MIN( RCMIN, R( I ) )
170
40 CONTINUE
171
AMAX = RCMAX
172
*
173
IF( RCMIN.EQ.ZERO ) THEN
174
*
175
* Find the first zero scale factor and return an error code.
176
*
177
DO 50 I = 1, M
178
IF( R( I ).EQ.ZERO ) THEN
179
INFO = I
180
RETURN
181
END IF
182
50 CONTINUE
183
ELSE
184
*
185
* Invert the scale factors.
186
*
187
DO 60 I = 1, M
188
R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
189
60 CONTINUE
190
*
191
* Compute ROWCND = min(R(I)) / max(R(I))
192
*
193
ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
194
END IF
195
*
196
* Compute column scale factors
197
*
198
DO 70 J = 1, N
199
C( J ) = ZERO
200
70 CONTINUE
201
*
202
* Find the maximum element in each column,
203
* assuming the row scaling computed above.
204
*
205
KD = KU + 1
206
DO 90 J = 1, N
207
DO 80 I = MAX( J-KU, 1 ), MIN( J+KL, M )
208
C( J ) = MAX( C( J ), CABS1( AB( KD+I-J, J ) )*R( I ) )
209
80 CONTINUE
210
90 CONTINUE
211
*
212
* Find the maximum and minimum scale factors.
213
*
214
RCMIN = BIGNUM
215
RCMAX = ZERO
216
DO 100 J = 1, N
217
RCMIN = MIN( RCMIN, C( J ) )
218
RCMAX = MAX( RCMAX, C( J ) )
219
100 CONTINUE
220
*
221
IF( RCMIN.EQ.ZERO ) THEN
222
*
223
* Find the first zero scale factor and return an error code.
224
*
225
DO 110 J = 1, N
226
IF( C( J ).EQ.ZERO ) THEN
227
INFO = M + J
228
RETURN
229
END IF
230
110 CONTINUE
231
ELSE
232
*
233
* Invert the scale factors.
234
*
235
DO 120 J = 1, N
236
C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
237
120 CONTINUE
238
*
239
* Compute COLCND = min(C(J)) / max(C(J))
240
*
241
COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
242
END IF
243
*
244
RETURN
245
*
246
* End of CGBEQU
247
*
248
END
249
250