Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgbtrs.f
5213 views
1
SUBROUTINE CGBTRS( TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB,
2
$ INFO )
3
*
4
* -- LAPACK routine (version 3.0) --
5
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6
* Courant Institute, Argonne National Lab, and Rice University
7
* September 30, 1994
8
*
9
* .. Scalar Arguments ..
10
CHARACTER TRANS
11
INTEGER INFO, KL, KU, LDAB, LDB, N, NRHS
12
* ..
13
* .. Array Arguments ..
14
INTEGER IPIV( * )
15
COMPLEX AB( LDAB, * ), B( LDB, * )
16
* ..
17
*
18
* Purpose
19
* =======
20
*
21
* CGBTRS solves a system of linear equations
22
* A * X = B, A**T * X = B, or A**H * X = B
23
* with a general band matrix A using the LU factorization computed
24
* by CGBTRF.
25
*
26
* Arguments
27
* =========
28
*
29
* TRANS (input) CHARACTER*1
30
* Specifies the form of the system of equations.
31
* = 'N': A * X = B (No transpose)
32
* = 'T': A**T * X = B (Transpose)
33
* = 'C': A**H * X = B (Conjugate transpose)
34
*
35
* N (input) INTEGER
36
* The order of the matrix A. N >= 0.
37
*
38
* KL (input) INTEGER
39
* The number of subdiagonals within the band of A. KL >= 0.
40
*
41
* KU (input) INTEGER
42
* The number of superdiagonals within the band of A. KU >= 0.
43
*
44
* NRHS (input) INTEGER
45
* The number of right hand sides, i.e., the number of columns
46
* of the matrix B. NRHS >= 0.
47
*
48
* AB (input) COMPLEX array, dimension (LDAB,N)
49
* Details of the LU factorization of the band matrix A, as
50
* computed by CGBTRF. U is stored as an upper triangular band
51
* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
52
* the multipliers used during the factorization are stored in
53
* rows KL+KU+2 to 2*KL+KU+1.
54
*
55
* LDAB (input) INTEGER
56
* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
57
*
58
* IPIV (input) INTEGER array, dimension (N)
59
* The pivot indices; for 1 <= i <= N, row i of the matrix was
60
* interchanged with row IPIV(i).
61
*
62
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
63
* On entry, the right hand side matrix B.
64
* On exit, the solution matrix X.
65
*
66
* LDB (input) INTEGER
67
* The leading dimension of the array B. LDB >= max(1,N).
68
*
69
* INFO (output) INTEGER
70
* = 0: successful exit
71
* < 0: if INFO = -i, the i-th argument had an illegal value
72
*
73
* =====================================================================
74
*
75
* .. Parameters ..
76
COMPLEX ONE
77
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
78
* ..
79
* .. Local Scalars ..
80
LOGICAL LNOTI, NOTRAN
81
INTEGER I, J, KD, L, LM
82
* ..
83
* .. External Functions ..
84
LOGICAL LSAME
85
EXTERNAL LSAME
86
* ..
87
* .. External Subroutines ..
88
EXTERNAL CGEMV, CGERU, CLACGV, CSWAP, CTBSV, XERBLA
89
* ..
90
* .. Intrinsic Functions ..
91
INTRINSIC MAX, MIN
92
* ..
93
* .. Executable Statements ..
94
*
95
* Test the input parameters.
96
*
97
INFO = 0
98
NOTRAN = LSAME( TRANS, 'N' )
99
IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
100
$ LSAME( TRANS, 'C' ) ) THEN
101
INFO = -1
102
ELSE IF( N.LT.0 ) THEN
103
INFO = -2
104
ELSE IF( KL.LT.0 ) THEN
105
INFO = -3
106
ELSE IF( KU.LT.0 ) THEN
107
INFO = -4
108
ELSE IF( NRHS.LT.0 ) THEN
109
INFO = -5
110
ELSE IF( LDAB.LT.( 2*KL+KU+1 ) ) THEN
111
INFO = -7
112
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
113
INFO = -10
114
END IF
115
IF( INFO.NE.0 ) THEN
116
CALL XERBLA( 'CGBTRS', -INFO )
117
RETURN
118
END IF
119
*
120
* Quick return if possible
121
*
122
IF( N.EQ.0 .OR. NRHS.EQ.0 )
123
$ RETURN
124
*
125
KD = KU + KL + 1
126
LNOTI = KL.GT.0
127
*
128
IF( NOTRAN ) THEN
129
*
130
* Solve A*X = B.
131
*
132
* Solve L*X = B, overwriting B with X.
133
*
134
* L is represented as a product of permutations and unit lower
135
* triangular matrices L = P(1) * L(1) * ... * P(n-1) * L(n-1),
136
* where each transformation L(i) is a rank-one modification of
137
* the identity matrix.
138
*
139
IF( LNOTI ) THEN
140
DO 10 J = 1, N - 1
141
LM = MIN( KL, N-J )
142
L = IPIV( J )
143
IF( L.NE.J )
144
$ CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
145
CALL CGERU( LM, NRHS, -ONE, AB( KD+1, J ), 1, B( J, 1 ),
146
$ LDB, B( J+1, 1 ), LDB )
147
10 CONTINUE
148
END IF
149
*
150
DO 20 I = 1, NRHS
151
*
152
* Solve U*X = B, overwriting B with X.
153
*
154
CALL CTBSV( 'Upper', 'No transpose', 'Non-unit', N, KL+KU,
155
$ AB, LDAB, B( 1, I ), 1 )
156
20 CONTINUE
157
*
158
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
159
*
160
* Solve A**T * X = B.
161
*
162
DO 30 I = 1, NRHS
163
*
164
* Solve U**T * X = B, overwriting B with X.
165
*
166
CALL CTBSV( 'Upper', 'Transpose', 'Non-unit', N, KL+KU, AB,
167
$ LDAB, B( 1, I ), 1 )
168
30 CONTINUE
169
*
170
* Solve L**T * X = B, overwriting B with X.
171
*
172
IF( LNOTI ) THEN
173
DO 40 J = N - 1, 1, -1
174
LM = MIN( KL, N-J )
175
CALL CGEMV( 'Transpose', LM, NRHS, -ONE, B( J+1, 1 ),
176
$ LDB, AB( KD+1, J ), 1, ONE, B( J, 1 ), LDB )
177
L = IPIV( J )
178
IF( L.NE.J )
179
$ CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
180
40 CONTINUE
181
END IF
182
*
183
ELSE
184
*
185
* Solve A**H * X = B.
186
*
187
DO 50 I = 1, NRHS
188
*
189
* Solve U**H * X = B, overwriting B with X.
190
*
191
CALL CTBSV( 'Upper', 'Conjugate transpose', 'Non-unit', N,
192
$ KL+KU, AB, LDAB, B( 1, I ), 1 )
193
50 CONTINUE
194
*
195
* Solve L**H * X = B, overwriting B with X.
196
*
197
IF( LNOTI ) THEN
198
DO 60 J = N - 1, 1, -1
199
LM = MIN( KL, N-J )
200
CALL CLACGV( NRHS, B( J, 1 ), LDB )
201
CALL CGEMV( 'Conjugate transpose', LM, NRHS, -ONE,
202
$ B( J+1, 1 ), LDB, AB( KD+1, J ), 1, ONE,
203
$ B( J, 1 ), LDB )
204
CALL CLACGV( NRHS, B( J, 1 ), LDB )
205
L = IPIV( J )
206
IF( L.NE.J )
207
$ CALL CSWAP( NRHS, B( L, 1 ), LDB, B( J, 1 ), LDB )
208
60 CONTINUE
209
END IF
210
END IF
211
RETURN
212
*
213
* End of CGBTRS
214
*
215
END
216
217