Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgebd2.f
5191 views
1
SUBROUTINE CGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
2
*
3
* -- LAPACK routine (version 3.0) --
4
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5
* Courant Institute, Argonne National Lab, and Rice University
6
* September 30, 1994
7
*
8
* .. Scalar Arguments ..
9
INTEGER INFO, LDA, M, N
10
* ..
11
* .. Array Arguments ..
12
REAL D( * ), E( * )
13
COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
14
* ..
15
*
16
* Purpose
17
* =======
18
*
19
* CGEBD2 reduces a complex general m by n matrix A to upper or lower
20
* real bidiagonal form B by a unitary transformation: Q' * A * P = B.
21
*
22
* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
23
*
24
* Arguments
25
* =========
26
*
27
* M (input) INTEGER
28
* The number of rows in the matrix A. M >= 0.
29
*
30
* N (input) INTEGER
31
* The number of columns in the matrix A. N >= 0.
32
*
33
* A (input/output) COMPLEX array, dimension (LDA,N)
34
* On entry, the m by n general matrix to be reduced.
35
* On exit,
36
* if m >= n, the diagonal and the first superdiagonal are
37
* overwritten with the upper bidiagonal matrix B; the
38
* elements below the diagonal, with the array TAUQ, represent
39
* the unitary matrix Q as a product of elementary
40
* reflectors, and the elements above the first superdiagonal,
41
* with the array TAUP, represent the unitary matrix P as
42
* a product of elementary reflectors;
43
* if m < n, the diagonal and the first subdiagonal are
44
* overwritten with the lower bidiagonal matrix B; the
45
* elements below the first subdiagonal, with the array TAUQ,
46
* represent the unitary matrix Q as a product of
47
* elementary reflectors, and the elements above the diagonal,
48
* with the array TAUP, represent the unitary matrix P as
49
* a product of elementary reflectors.
50
* See Further Details.
51
*
52
* LDA (input) INTEGER
53
* The leading dimension of the array A. LDA >= max(1,M).
54
*
55
* D (output) REAL array, dimension (min(M,N))
56
* The diagonal elements of the bidiagonal matrix B:
57
* D(i) = A(i,i).
58
*
59
* E (output) REAL array, dimension (min(M,N)-1)
60
* The off-diagonal elements of the bidiagonal matrix B:
61
* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
62
* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
63
*
64
* TAUQ (output) COMPLEX array dimension (min(M,N))
65
* The scalar factors of the elementary reflectors which
66
* represent the unitary matrix Q. See Further Details.
67
*
68
* TAUP (output) COMPLEX array, dimension (min(M,N))
69
* The scalar factors of the elementary reflectors which
70
* represent the unitary matrix P. See Further Details.
71
*
72
* WORK (workspace) COMPLEX array, dimension (max(M,N))
73
*
74
* INFO (output) INTEGER
75
* = 0: successful exit
76
* < 0: if INFO = -i, the i-th argument had an illegal value.
77
*
78
* Further Details
79
* ===============
80
*
81
* The matrices Q and P are represented as products of elementary
82
* reflectors:
83
*
84
* If m >= n,
85
*
86
* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
87
*
88
* Each H(i) and G(i) has the form:
89
*
90
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
91
*
92
* where tauq and taup are complex scalars, and v and u are complex
93
* vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
94
* A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
95
* A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
96
*
97
* If m < n,
98
*
99
* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
100
*
101
* Each H(i) and G(i) has the form:
102
*
103
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
104
*
105
* where tauq and taup are complex scalars, v and u are complex vectors;
106
* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
107
* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
108
* tauq is stored in TAUQ(i) and taup in TAUP(i).
109
*
110
* The contents of A on exit are illustrated by the following examples:
111
*
112
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
113
*
114
* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
115
* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
116
* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
117
* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
118
* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
119
* ( v1 v2 v3 v4 v5 )
120
*
121
* where d and e denote diagonal and off-diagonal elements of B, vi
122
* denotes an element of the vector defining H(i), and ui an element of
123
* the vector defining G(i).
124
*
125
* =====================================================================
126
*
127
* .. Parameters ..
128
COMPLEX ZERO, ONE
129
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
130
$ ONE = ( 1.0E+0, 0.0E+0 ) )
131
* ..
132
* .. Local Scalars ..
133
INTEGER I
134
COMPLEX ALPHA
135
* ..
136
* .. External Subroutines ..
137
EXTERNAL CLACGV, CLARF, CLARFG, XERBLA
138
* ..
139
* .. Intrinsic Functions ..
140
INTRINSIC CONJG, MAX, MIN
141
* ..
142
* .. Executable Statements ..
143
*
144
* Test the input parameters
145
*
146
INFO = 0
147
IF( M.LT.0 ) THEN
148
INFO = -1
149
ELSE IF( N.LT.0 ) THEN
150
INFO = -2
151
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
152
INFO = -4
153
END IF
154
IF( INFO.LT.0 ) THEN
155
CALL XERBLA( 'CGEBD2', -INFO )
156
RETURN
157
END IF
158
*
159
IF( M.GE.N ) THEN
160
*
161
* Reduce to upper bidiagonal form
162
*
163
DO 10 I = 1, N
164
*
165
* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
166
*
167
ALPHA = A( I, I )
168
CALL CLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
169
$ TAUQ( I ) )
170
D( I ) = ALPHA
171
A( I, I ) = ONE
172
*
173
* Apply H(i)' to A(i:m,i+1:n) from the left
174
*
175
CALL CLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
176
$ CONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
177
A( I, I ) = D( I )
178
*
179
IF( I.LT.N ) THEN
180
*
181
* Generate elementary reflector G(i) to annihilate
182
* A(i,i+2:n)
183
*
184
CALL CLACGV( N-I, A( I, I+1 ), LDA )
185
ALPHA = A( I, I+1 )
186
CALL CLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ),
187
$ LDA, TAUP( I ) )
188
E( I ) = ALPHA
189
A( I, I+1 ) = ONE
190
*
191
* Apply G(i) to A(i+1:m,i+1:n) from the right
192
*
193
CALL CLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
194
$ TAUP( I ), A( I+1, I+1 ), LDA, WORK )
195
CALL CLACGV( N-I, A( I, I+1 ), LDA )
196
A( I, I+1 ) = E( I )
197
ELSE
198
TAUP( I ) = ZERO
199
END IF
200
10 CONTINUE
201
ELSE
202
*
203
* Reduce to lower bidiagonal form
204
*
205
DO 20 I = 1, M
206
*
207
* Generate elementary reflector G(i) to annihilate A(i,i+1:n)
208
*
209
CALL CLACGV( N-I+1, A( I, I ), LDA )
210
ALPHA = A( I, I )
211
CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
212
$ TAUP( I ) )
213
D( I ) = ALPHA
214
A( I, I ) = ONE
215
*
216
* Apply G(i) to A(i+1:m,i:n) from the right
217
*
218
CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAUP( I ),
219
$ A( MIN( I+1, M ), I ), LDA, WORK )
220
CALL CLACGV( N-I+1, A( I, I ), LDA )
221
A( I, I ) = D( I )
222
*
223
IF( I.LT.M ) THEN
224
*
225
* Generate elementary reflector H(i) to annihilate
226
* A(i+2:m,i)
227
*
228
ALPHA = A( I+1, I )
229
CALL CLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
230
$ TAUQ( I ) )
231
E( I ) = ALPHA
232
A( I+1, I ) = ONE
233
*
234
* Apply H(i)' to A(i+1:m,i+1:n) from the left
235
*
236
CALL CLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
237
$ CONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
238
$ WORK )
239
A( I+1, I ) = E( I )
240
ELSE
241
TAUQ( I ) = ZERO
242
END IF
243
20 CONTINUE
244
END IF
245
RETURN
246
*
247
* End of CGEBD2
248
*
249
END
250
251