Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgeequ.f
5191 views
1
SUBROUTINE CGEEQU( M, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
2
$ INFO )
3
*
4
* -- LAPACK routine (version 3.0) --
5
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6
* Courant Institute, Argonne National Lab, and Rice University
7
* March 31, 1993
8
*
9
* .. Scalar Arguments ..
10
INTEGER INFO, LDA, M, N
11
REAL AMAX, COLCND, ROWCND
12
* ..
13
* .. Array Arguments ..
14
REAL C( * ), R( * )
15
COMPLEX A( LDA, * )
16
* ..
17
*
18
* Purpose
19
* =======
20
*
21
* CGEEQU computes row and column scalings intended to equilibrate an
22
* M-by-N matrix A and reduce its condition number. R returns the row
23
* scale factors and C the column scale factors, chosen to try to make
24
* the largest element in each row and column of the matrix B with
25
* elements B(i,j)=R(i)*A(i,j)*C(j) have absolute value 1.
26
*
27
* R(i) and C(j) are restricted to be between SMLNUM = smallest safe
28
* number and BIGNUM = largest safe number. Use of these scaling
29
* factors is not guaranteed to reduce the condition number of A but
30
* works well in practice.
31
*
32
* Arguments
33
* =========
34
*
35
* M (input) INTEGER
36
* The number of rows of the matrix A. M >= 0.
37
*
38
* N (input) INTEGER
39
* The number of columns of the matrix A. N >= 0.
40
*
41
* A (input) COMPLEX array, dimension (LDA,N)
42
* The M-by-N matrix whose equilibration factors are
43
* to be computed.
44
*
45
* LDA (input) INTEGER
46
* The leading dimension of the array A. LDA >= max(1,M).
47
*
48
* R (output) REAL array, dimension (M)
49
* If INFO = 0 or INFO > M, R contains the row scale factors
50
* for A.
51
*
52
* C (output) REAL array, dimension (N)
53
* If INFO = 0, C contains the column scale factors for A.
54
*
55
* ROWCND (output) REAL
56
* If INFO = 0 or INFO > M, ROWCND contains the ratio of the
57
* smallest R(i) to the largest R(i). If ROWCND >= 0.1 and
58
* AMAX is neither too large nor too small, it is not worth
59
* scaling by R.
60
*
61
* COLCND (output) REAL
62
* If INFO = 0, COLCND contains the ratio of the smallest
63
* C(i) to the largest C(i). If COLCND >= 0.1, it is not
64
* worth scaling by C.
65
*
66
* AMAX (output) REAL
67
* Absolute value of largest matrix element. If AMAX is very
68
* close to overflow or very close to underflow, the matrix
69
* should be scaled.
70
*
71
* INFO (output) INTEGER
72
* = 0: successful exit
73
* < 0: if INFO = -i, the i-th argument had an illegal value
74
* > 0: if INFO = i, and i is
75
* <= M: the i-th row of A is exactly zero
76
* > M: the (i-M)-th column of A is exactly zero
77
*
78
* =====================================================================
79
*
80
* .. Parameters ..
81
REAL ONE, ZERO
82
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
83
* ..
84
* .. Local Scalars ..
85
INTEGER I, J
86
REAL BIGNUM, RCMAX, RCMIN, SMLNUM
87
COMPLEX ZDUM
88
* ..
89
* .. External Functions ..
90
REAL SLAMCH
91
EXTERNAL SLAMCH
92
* ..
93
* .. External Subroutines ..
94
EXTERNAL XERBLA
95
* ..
96
* .. Intrinsic Functions ..
97
INTRINSIC ABS, AIMAG, MAX, MIN, REAL
98
* ..
99
* .. Statement Functions ..
100
REAL CABS1
101
* ..
102
* .. Statement Function definitions ..
103
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
104
* ..
105
* .. Executable Statements ..
106
*
107
* Test the input parameters.
108
*
109
INFO = 0
110
IF( M.LT.0 ) THEN
111
INFO = -1
112
ELSE IF( N.LT.0 ) THEN
113
INFO = -2
114
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
115
INFO = -4
116
END IF
117
IF( INFO.NE.0 ) THEN
118
CALL XERBLA( 'CGEEQU', -INFO )
119
RETURN
120
END IF
121
*
122
* Quick return if possible
123
*
124
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
125
ROWCND = ONE
126
COLCND = ONE
127
AMAX = ZERO
128
RETURN
129
END IF
130
*
131
* Get machine constants.
132
*
133
SMLNUM = SLAMCH( 'S' )
134
BIGNUM = ONE / SMLNUM
135
*
136
* Compute row scale factors.
137
*
138
DO 10 I = 1, M
139
R( I ) = ZERO
140
10 CONTINUE
141
*
142
* Find the maximum element in each row.
143
*
144
DO 30 J = 1, N
145
DO 20 I = 1, M
146
R( I ) = MAX( R( I ), CABS1( A( I, J ) ) )
147
20 CONTINUE
148
30 CONTINUE
149
*
150
* Find the maximum and minimum scale factors.
151
*
152
RCMIN = BIGNUM
153
RCMAX = ZERO
154
DO 40 I = 1, M
155
RCMAX = MAX( RCMAX, R( I ) )
156
RCMIN = MIN( RCMIN, R( I ) )
157
40 CONTINUE
158
AMAX = RCMAX
159
*
160
IF( RCMIN.EQ.ZERO ) THEN
161
*
162
* Find the first zero scale factor and return an error code.
163
*
164
DO 50 I = 1, M
165
IF( R( I ).EQ.ZERO ) THEN
166
INFO = I
167
RETURN
168
END IF
169
50 CONTINUE
170
ELSE
171
*
172
* Invert the scale factors.
173
*
174
DO 60 I = 1, M
175
R( I ) = ONE / MIN( MAX( R( I ), SMLNUM ), BIGNUM )
176
60 CONTINUE
177
*
178
* Compute ROWCND = min(R(I)) / max(R(I))
179
*
180
ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
181
END IF
182
*
183
* Compute column scale factors
184
*
185
DO 70 J = 1, N
186
C( J ) = ZERO
187
70 CONTINUE
188
*
189
* Find the maximum element in each column,
190
* assuming the row scaling computed above.
191
*
192
DO 90 J = 1, N
193
DO 80 I = 1, M
194
C( J ) = MAX( C( J ), CABS1( A( I, J ) )*R( I ) )
195
80 CONTINUE
196
90 CONTINUE
197
*
198
* Find the maximum and minimum scale factors.
199
*
200
RCMIN = BIGNUM
201
RCMAX = ZERO
202
DO 100 J = 1, N
203
RCMIN = MIN( RCMIN, C( J ) )
204
RCMAX = MAX( RCMAX, C( J ) )
205
100 CONTINUE
206
*
207
IF( RCMIN.EQ.ZERO ) THEN
208
*
209
* Find the first zero scale factor and return an error code.
210
*
211
DO 110 J = 1, N
212
IF( C( J ).EQ.ZERO ) THEN
213
INFO = M + J
214
RETURN
215
END IF
216
110 CONTINUE
217
ELSE
218
*
219
* Invert the scale factors.
220
*
221
DO 120 J = 1, N
222
C( J ) = ONE / MIN( MAX( C( J ), SMLNUM ), BIGNUM )
223
120 CONTINUE
224
*
225
* Compute COLCND = min(C(J)) / max(C(J))
226
*
227
COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
228
END IF
229
*
230
RETURN
231
*
232
* End of CGEEQU
233
*
234
END
235
236