Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgelq2.f
5225 views
1
SUBROUTINE CGELQ2( M, N, A, LDA, TAU, WORK, INFO )
2
*
3
* -- LAPACK routine (version 3.0) --
4
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5
* Courant Institute, Argonne National Lab, and Rice University
6
* September 30, 1994
7
*
8
* .. Scalar Arguments ..
9
INTEGER INFO, LDA, M, N
10
* ..
11
* .. Array Arguments ..
12
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
13
* ..
14
*
15
* Purpose
16
* =======
17
*
18
* CGELQ2 computes an LQ factorization of a complex m by n matrix A:
19
* A = L * Q.
20
*
21
* Arguments
22
* =========
23
*
24
* M (input) INTEGER
25
* The number of rows of the matrix A. M >= 0.
26
*
27
* N (input) INTEGER
28
* The number of columns of the matrix A. N >= 0.
29
*
30
* A (input/output) COMPLEX array, dimension (LDA,N)
31
* On entry, the m by n matrix A.
32
* On exit, the elements on and below the diagonal of the array
33
* contain the m by min(m,n) lower trapezoidal matrix L (L is
34
* lower triangular if m <= n); the elements above the diagonal,
35
* with the array TAU, represent the unitary matrix Q as a
36
* product of elementary reflectors (see Further Details).
37
*
38
* LDA (input) INTEGER
39
* The leading dimension of the array A. LDA >= max(1,M).
40
*
41
* TAU (output) COMPLEX array, dimension (min(M,N))
42
* The scalar factors of the elementary reflectors (see Further
43
* Details).
44
*
45
* WORK (workspace) COMPLEX array, dimension (M)
46
*
47
* INFO (output) INTEGER
48
* = 0: successful exit
49
* < 0: if INFO = -i, the i-th argument had an illegal value
50
*
51
* Further Details
52
* ===============
53
*
54
* The matrix Q is represented as a product of elementary reflectors
55
*
56
* Q = H(k)' . . . H(2)' H(1)', where k = min(m,n).
57
*
58
* Each H(i) has the form
59
*
60
* H(i) = I - tau * v * v'
61
*
62
* where tau is a complex scalar, and v is a complex vector with
63
* v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
64
* A(i,i+1:n), and tau in TAU(i).
65
*
66
* =====================================================================
67
*
68
* .. Parameters ..
69
COMPLEX ONE
70
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
71
* ..
72
* .. Local Scalars ..
73
INTEGER I, K
74
COMPLEX ALPHA
75
* ..
76
* .. External Subroutines ..
77
EXTERNAL CLACGV, CLARF, CLARFG, XERBLA
78
* ..
79
* .. Intrinsic Functions ..
80
INTRINSIC MAX, MIN
81
* ..
82
* .. Executable Statements ..
83
*
84
* Test the input arguments
85
*
86
INFO = 0
87
IF( M.LT.0 ) THEN
88
INFO = -1
89
ELSE IF( N.LT.0 ) THEN
90
INFO = -2
91
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
92
INFO = -4
93
END IF
94
IF( INFO.NE.0 ) THEN
95
CALL XERBLA( 'CGELQ2', -INFO )
96
RETURN
97
END IF
98
*
99
K = MIN( M, N )
100
*
101
DO 10 I = 1, K
102
*
103
* Generate elementary reflector H(i) to annihilate A(i,i+1:n)
104
*
105
CALL CLACGV( N-I+1, A( I, I ), LDA )
106
ALPHA = A( I, I )
107
CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
108
$ TAU( I ) )
109
IF( I.LT.M ) THEN
110
*
111
* Apply H(i) to A(i+1:m,i:n) from the right
112
*
113
A( I, I ) = ONE
114
CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
115
$ A( I+1, I ), LDA, WORK )
116
END IF
117
A( I, I ) = ALPHA
118
CALL CLACGV( N-I+1, A( I, I ), LDA )
119
10 CONTINUE
120
RETURN
121
*
122
* End of CGELQ2
123
*
124
END
125
126