Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgelsd.f
5192 views
1
SUBROUTINE CGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
2
$ WORK, LWORK, RWORK, IWORK, INFO )
3
*
4
* -- LAPACK driver routine (version 3.0) --
5
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6
* Courant Institute, Argonne National Lab, and Rice University
7
* October 31, 1999
8
*
9
* .. Scalar Arguments ..
10
INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
11
REAL RCOND
12
* ..
13
* .. Array Arguments ..
14
INTEGER IWORK( * )
15
REAL RWORK( * ), S( * )
16
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
17
* ..
18
*
19
* Purpose
20
* =======
21
*
22
* CGELSD computes the minimum-norm solution to a real linear least
23
* squares problem:
24
* minimize 2-norm(| b - A*x |)
25
* using the singular value decomposition (SVD) of A. A is an M-by-N
26
* matrix which may be rank-deficient.
27
*
28
* Several right hand side vectors b and solution vectors x can be
29
* handled in a single call; they are stored as the columns of the
30
* M-by-NRHS right hand side matrix B and the N-by-NRHS solution
31
* matrix X.
32
*
33
* The problem is solved in three steps:
34
* (1) Reduce the coefficient matrix A to bidiagonal form with
35
* Householder tranformations, reducing the original problem
36
* into a "bidiagonal least squares problem" (BLS)
37
* (2) Solve the BLS using a divide and conquer approach.
38
* (3) Apply back all the Householder tranformations to solve
39
* the original least squares problem.
40
*
41
* The effective rank of A is determined by treating as zero those
42
* singular values which are less than RCOND times the largest singular
43
* value.
44
*
45
* The divide and conquer algorithm makes very mild assumptions about
46
* floating point arithmetic. It will work on machines with a guard
47
* digit in add/subtract, or on those binary machines without guard
48
* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
49
* Cray-2. It could conceivably fail on hexadecimal or decimal machines
50
* without guard digits, but we know of none.
51
*
52
* Arguments
53
* =========
54
*
55
* M (input) INTEGER
56
* The number of rows of the matrix A. M >= 0.
57
*
58
* N (input) INTEGER
59
* The number of columns of the matrix A. N >= 0.
60
*
61
* NRHS (input) INTEGER
62
* The number of right hand sides, i.e., the number of columns
63
* of the matrices B and X. NRHS >= 0.
64
*
65
* A (input/output) COMPLEX array, dimension (LDA,N)
66
* On entry, the M-by-N matrix A.
67
* On exit, A has been destroyed.
68
*
69
* LDA (input) INTEGER
70
* The leading dimension of the array A. LDA >= max(1,M).
71
*
72
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
73
* On entry, the M-by-NRHS right hand side matrix B.
74
* On exit, B is overwritten by the N-by-NRHS solution matrix X.
75
* If m >= n and RANK = n, the residual sum-of-squares for
76
* the solution in the i-th column is given by the sum of
77
* squares of elements n+1:m in that column.
78
*
79
* LDB (input) INTEGER
80
* The leading dimension of the array B. LDB >= max(1,M,N).
81
*
82
* S (output) REAL array, dimension (min(M,N))
83
* The singular values of A in decreasing order.
84
* The condition number of A in the 2-norm = S(1)/S(min(m,n)).
85
*
86
* RCOND (input) REAL
87
* RCOND is used to determine the effective rank of A.
88
* Singular values S(i) <= RCOND*S(1) are treated as zero.
89
* If RCOND < 0, machine precision is used instead.
90
*
91
* RANK (output) INTEGER
92
* The effective rank of A, i.e., the number of singular values
93
* which are greater than RCOND*S(1).
94
*
95
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
96
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
97
*
98
* LWORK (input) INTEGER
99
* The dimension of the array WORK. LWORK must be at least 1.
100
* The exact minimum amount of workspace needed depends on M,
101
* N and NRHS. As long as LWORK is at least
102
* 2 * N + N * NRHS
103
* if M is greater than or equal to N or
104
* 2 * M + M * NRHS
105
* if M is less than N, the code will execute correctly.
106
* For good performance, LWORK should generally be larger.
107
*
108
* If LWORK = -1, then a workspace query is assumed; the routine
109
* only calculates the optimal size of the WORK array, returns
110
* this value as the first entry of the WORK array, and no error
111
* message related to LWORK is issued by XERBLA.
112
*
113
*
114
* RWORK (workspace) REAL array, dimension at least
115
* 10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
116
* (SMLSIZ+1)**2
117
* if M is greater than or equal to N or
118
* 10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +
119
* (SMLSIZ+1)**2
120
* if M is less than N, the code will execute correctly.
121
* SMLSIZ is returned by ILAENV and is equal to the maximum
122
* size of the subproblems at the bottom of the computation
123
* tree (usually about 25), and
124
* NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
125
*
126
* IWORK (workspace) INTEGER array, dimension (LIWORK)
127
* LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,
128
* where MINMN = MIN( M,N ).
129
*
130
* INFO (output) INTEGER
131
* = 0: successful exit
132
* < 0: if INFO = -i, the i-th argument had an illegal value.
133
* > 0: the algorithm for computing the SVD failed to converge;
134
* if INFO = i, i off-diagonal elements of an intermediate
135
* bidiagonal form did not converge to zero.
136
*
137
* Further Details
138
* ===============
139
*
140
* Based on contributions by
141
* Ming Gu and Ren-Cang Li, Computer Science Division, University of
142
* California at Berkeley, USA
143
* Osni Marques, LBNL/NERSC, USA
144
*
145
* =====================================================================
146
*
147
* .. Parameters ..
148
REAL ZERO, ONE
149
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
150
COMPLEX CZERO
151
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
152
* ..
153
* .. Local Scalars ..
154
LOGICAL LQUERY
155
INTEGER IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
156
$ LDWORK, MAXMN, MAXWRK, MINMN, MINWRK, MM,
157
$ MNTHR, NRWORK, NWORK, SMLSIZ
158
REAL ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
159
* ..
160
* .. External Subroutines ..
161
EXTERNAL CGEBRD, CGELQF, CGEQRF, CLACPY,
162
$ CLALSD, CLASCL, CLASET, CUNMBR,
163
$ CUNMLQ, CUNMQR, SLABAD, SLASCL,
164
$ SLASET, XERBLA
165
* ..
166
* .. External Functions ..
167
INTEGER ILAENV
168
REAL CLANGE, SLAMCH
169
EXTERNAL CLANGE, SLAMCH, ILAENV
170
* ..
171
* .. Intrinsic Functions ..
172
INTRINSIC CMPLX, MAX, MIN
173
* ..
174
* .. Executable Statements ..
175
*
176
* Test the input arguments.
177
*
178
INFO = 0
179
MINMN = MIN( M, N )
180
MAXMN = MAX( M, N )
181
MNTHR = ILAENV( 6, 'CGELSD', ' ', M, N, NRHS, -1 )
182
LQUERY = ( LWORK.EQ.-1 )
183
IF( M.LT.0 ) THEN
184
INFO = -1
185
ELSE IF( N.LT.0 ) THEN
186
INFO = -2
187
ELSE IF( NRHS.LT.0 ) THEN
188
INFO = -3
189
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
190
INFO = -5
191
ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
192
INFO = -7
193
END IF
194
*
195
SMLSIZ = ILAENV( 9, 'CGELSD', ' ', 0, 0, 0, 0 )
196
*
197
* Compute workspace.
198
* (Note: Comments in the code beginning "Workspace:" describe the
199
* minimal amount of workspace needed at that point in the code,
200
* as well as the preferred amount for good performance.
201
* NB refers to the optimal block size for the immediately
202
* following subroutine, as returned by ILAENV.)
203
*
204
MINWRK = 1
205
IF( INFO.EQ.0 ) THEN
206
MAXWRK = 0
207
MM = M
208
IF( M.GE.N .AND. M.GE.MNTHR ) THEN
209
*
210
* Path 1a - overdetermined, with many more rows than columns.
211
*
212
MM = N
213
MAXWRK = MAX( MAXWRK, N*ILAENV( 1, 'CGEQRF', ' ', M, N, -1,
214
$ -1 ) )
215
MAXWRK = MAX( MAXWRK, NRHS*ILAENV( 1, 'CUNMQR', 'LC', M,
216
$ NRHS, N, -1 ) )
217
END IF
218
IF( M.GE.N ) THEN
219
*
220
* Path 1 - overdetermined or exactly determined.
221
*
222
MAXWRK = MAX( MAXWRK, 2*N+( MM+N )*
223
$ ILAENV( 1, 'CGEBRD', ' ', MM, N, -1, -1 ) )
224
MAXWRK = MAX( MAXWRK, 2*N+NRHS*
225
$ ILAENV( 1, 'CUNMBR', 'QLC', MM, NRHS, N, -1 ) )
226
MAXWRK = MAX( MAXWRK, 2*N+( N-1 )*
227
$ ILAENV( 1, 'CUNMBR', 'PLN', N, NRHS, N, -1 ) )
228
MAXWRK = MAX( MAXWRK, 2*N+N*NRHS )
229
MINWRK = MAX( 2*N+MM, 2*N+N*NRHS )
230
END IF
231
IF( N.GT.M ) THEN
232
IF( N.GE.MNTHR ) THEN
233
*
234
* Path 2a - underdetermined, with many more columns
235
* than rows.
236
*
237
MAXWRK = M + M*ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 )
238
MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
239
$ ILAENV( 1, 'CGEBRD', ' ', M, M, -1, -1 ) )
240
MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
241
$ ILAENV( 1, 'CUNMBR', 'QLC', M, NRHS, M, -1 ) )
242
MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
243
$ ILAENV( 1, 'CUNMLQ', 'LC', N, NRHS, M, -1 ) )
244
IF( NRHS.GT.1 ) THEN
245
MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
246
ELSE
247
MAXWRK = MAX( MAXWRK, M*M+2*M )
248
END IF
249
MAXWRK = MAX( MAXWRK, M*M+4*M+M*NRHS )
250
ELSE
251
*
252
* Path 2 - underdetermined.
253
*
254
MAXWRK = 2*M + ( N+M )*ILAENV( 1, 'CGEBRD', ' ', M, N,
255
$ -1, -1 )
256
MAXWRK = MAX( MAXWRK, 2*M+NRHS*
257
$ ILAENV( 1, 'CUNMBR', 'QLC', M, NRHS, M, -1 ) )
258
MAXWRK = MAX( MAXWRK, 2*M+M*
259
$ ILAENV( 1, 'CUNMBR', 'PLN', N, NRHS, M, -1 ) )
260
MAXWRK = MAX( MAXWRK, 2*M+M*NRHS )
261
END IF
262
MINWRK = MAX( 2*M+N, 2*M+M*NRHS )
263
END IF
264
MINWRK = MIN( MINWRK, MAXWRK )
265
WORK( 1 ) = CMPLX( MAXWRK, 0 )
266
IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
267
INFO = -12
268
END IF
269
END IF
270
*
271
IF( INFO.NE.0 ) THEN
272
CALL XERBLA( 'CGELSD', -INFO )
273
RETURN
274
ELSE IF( LQUERY ) THEN
275
GO TO 10
276
END IF
277
*
278
* Quick return if possible.
279
*
280
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
281
RANK = 0
282
RETURN
283
END IF
284
*
285
* Get machine parameters.
286
*
287
EPS = SLAMCH( 'P' )
288
SFMIN = SLAMCH( 'S' )
289
SMLNUM = SFMIN / EPS
290
BIGNUM = ONE / SMLNUM
291
CALL SLABAD( SMLNUM, BIGNUM )
292
*
293
* Scale A if max entry outside range [SMLNUM,BIGNUM].
294
*
295
ANRM = CLANGE( 'M', M, N, A, LDA, RWORK )
296
IASCL = 0
297
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
298
*
299
* Scale matrix norm up to SMLNUM
300
*
301
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
302
IASCL = 1
303
ELSE IF( ANRM.GT.BIGNUM ) THEN
304
*
305
* Scale matrix norm down to BIGNUM.
306
*
307
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
308
IASCL = 2
309
ELSE IF( ANRM.EQ.ZERO ) THEN
310
*
311
* Matrix all zero. Return zero solution.
312
*
313
CALL CLASET( 'F', MAX( M, N ), NRHS, CZERO, CZERO, B, LDB )
314
CALL SLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
315
RANK = 0
316
GO TO 10
317
END IF
318
*
319
* Scale B if max entry outside range [SMLNUM,BIGNUM].
320
*
321
BNRM = CLANGE( 'M', M, NRHS, B, LDB, RWORK )
322
IBSCL = 0
323
IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
324
*
325
* Scale matrix norm up to SMLNUM.
326
*
327
CALL CLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
328
IBSCL = 1
329
ELSE IF( BNRM.GT.BIGNUM ) THEN
330
*
331
* Scale matrix norm down to BIGNUM.
332
*
333
CALL CLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
334
IBSCL = 2
335
END IF
336
*
337
* If M < N make sure B(M+1:N,:) = 0
338
*
339
IF( M.LT.N )
340
$ CALL CLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
341
*
342
* Overdetermined case.
343
*
344
IF( M.GE.N ) THEN
345
*
346
* Path 1 - overdetermined or exactly determined.
347
*
348
MM = M
349
IF( M.GE.MNTHR ) THEN
350
*
351
* Path 1a - overdetermined, with many more rows than columns
352
*
353
MM = N
354
ITAU = 1
355
NWORK = ITAU + N
356
*
357
* Compute A=Q*R.
358
* (RWorkspace: need N)
359
* (CWorkspace: need N, prefer N*NB)
360
*
361
CALL CGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
362
$ LWORK-NWORK+1, INFO )
363
*
364
* Multiply B by transpose(Q).
365
* (RWorkspace: need N)
366
* (CWorkspace: need NRHS, prefer NRHS*NB)
367
*
368
CALL CUNMQR( 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAU ), B,
369
$ LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
370
*
371
* Zero out below R.
372
*
373
IF( N.GT.1 ) THEN
374
CALL CLASET( 'L', N-1, N-1, CZERO, CZERO, A( 2, 1 ),
375
$ LDA )
376
END IF
377
END IF
378
*
379
ITAUQ = 1
380
ITAUP = ITAUQ + N
381
NWORK = ITAUP + N
382
IE = 1
383
NRWORK = IE + N
384
*
385
* Bidiagonalize R in A.
386
* (RWorkspace: need N)
387
* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB)
388
*
389
CALL CGEBRD( MM, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
390
$ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
391
$ INFO )
392
*
393
* Multiply B by transpose of left bidiagonalizing vectors of R.
394
* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB)
395
*
396
CALL CUNMBR( 'Q', 'L', 'C', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
397
$ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
398
*
399
* Solve the bidiagonal least squares problem.
400
*
401
CALL CLALSD( 'U', SMLSIZ, N, NRHS, S, RWORK( IE ), B, LDB,
402
$ RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
403
$ IWORK, INFO )
404
IF( INFO.NE.0 ) THEN
405
GO TO 10
406
END IF
407
*
408
* Multiply B by right bidiagonalizing vectors of R.
409
*
410
CALL CUNMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
411
$ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
412
*
413
ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
414
$ MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
415
*
416
* Path 2a - underdetermined, with many more columns than rows
417
* and sufficient workspace for an efficient algorithm.
418
*
419
LDWORK = M
420
IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
421
$ M*LDA+M+M*NRHS ) )LDWORK = LDA
422
ITAU = 1
423
NWORK = M + 1
424
*
425
* Compute A=L*Q.
426
* (CWorkspace: need 2*M, prefer M+M*NB)
427
*
428
CALL CGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
429
$ LWORK-NWORK+1, INFO )
430
IL = NWORK
431
*
432
* Copy L to WORK(IL), zeroing out above its diagonal.
433
*
434
CALL CLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
435
CALL CLASET( 'U', M-1, M-1, CZERO, CZERO, WORK( IL+LDWORK ),
436
$ LDWORK )
437
ITAUQ = IL + LDWORK*M
438
ITAUP = ITAUQ + M
439
NWORK = ITAUP + M
440
IE = 1
441
NRWORK = IE + M
442
*
443
* Bidiagonalize L in WORK(IL).
444
* (RWorkspace: need M)
445
* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB)
446
*
447
CALL CGEBRD( M, M, WORK( IL ), LDWORK, S, RWORK( IE ),
448
$ WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
449
$ LWORK-NWORK+1, INFO )
450
*
451
* Multiply B by transpose of left bidiagonalizing vectors of L.
452
* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
453
*
454
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, M, WORK( IL ), LDWORK,
455
$ WORK( ITAUQ ), B, LDB, WORK( NWORK ),
456
$ LWORK-NWORK+1, INFO )
457
*
458
* Solve the bidiagonal least squares problem.
459
*
460
CALL CLALSD( 'U', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
461
$ RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
462
$ IWORK, INFO )
463
IF( INFO.NE.0 ) THEN
464
GO TO 10
465
END IF
466
*
467
* Multiply B by right bidiagonalizing vectors of L.
468
*
469
CALL CUNMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
470
$ WORK( ITAUP ), B, LDB, WORK( NWORK ),
471
$ LWORK-NWORK+1, INFO )
472
*
473
* Zero out below first M rows of B.
474
*
475
CALL CLASET( 'F', N-M, NRHS, CZERO, CZERO, B( M+1, 1 ), LDB )
476
NWORK = ITAU + M
477
*
478
* Multiply transpose(Q) by B.
479
* (CWorkspace: need NRHS, prefer NRHS*NB)
480
*
481
CALL CUNMLQ( 'L', 'C', N, NRHS, M, A, LDA, WORK( ITAU ), B,
482
$ LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
483
*
484
ELSE
485
*
486
* Path 2 - remaining underdetermined cases.
487
*
488
ITAUQ = 1
489
ITAUP = ITAUQ + M
490
NWORK = ITAUP + M
491
IE = 1
492
NRWORK = IE + M
493
*
494
* Bidiagonalize A.
495
* (RWorkspace: need M)
496
* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB)
497
*
498
CALL CGEBRD( M, N, A, LDA, S, RWORK( IE ), WORK( ITAUQ ),
499
$ WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
500
$ INFO )
501
*
502
* Multiply B by transpose of left bidiagonalizing vectors.
503
* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB)
504
*
505
CALL CUNMBR( 'Q', 'L', 'C', M, NRHS, N, A, LDA, WORK( ITAUQ ),
506
$ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
507
*
508
* Solve the bidiagonal least squares problem.
509
*
510
CALL CLALSD( 'L', SMLSIZ, M, NRHS, S, RWORK( IE ), B, LDB,
511
$ RCOND, RANK, WORK( NWORK ), RWORK( NRWORK ),
512
$ IWORK, INFO )
513
IF( INFO.NE.0 ) THEN
514
GO TO 10
515
END IF
516
*
517
* Multiply B by right bidiagonalizing vectors of A.
518
*
519
CALL CUNMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
520
$ B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
521
*
522
END IF
523
*
524
* Undo scaling.
525
*
526
IF( IASCL.EQ.1 ) THEN
527
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
528
CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
529
$ INFO )
530
ELSE IF( IASCL.EQ.2 ) THEN
531
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
532
CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
533
$ INFO )
534
END IF
535
IF( IBSCL.EQ.1 ) THEN
536
CALL CLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
537
ELSE IF( IBSCL.EQ.2 ) THEN
538
CALL CLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
539
END IF
540
*
541
10 CONTINUE
542
WORK( 1 ) = CMPLX( MAXWRK, 0 )
543
RETURN
544
*
545
* End of CGELSD
546
*
547
END
548
549