Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgeqrf.f
5185 views
1
SUBROUTINE CGEQRF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
2
*
3
* -- LAPACK routine (version 3.0) --
4
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5
* Courant Institute, Argonne National Lab, and Rice University
6
* June 30, 1999
7
*
8
* .. Scalar Arguments ..
9
INTEGER INFO, LDA, LWORK, M, N
10
* ..
11
* .. Array Arguments ..
12
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
13
* ..
14
*
15
* Purpose
16
* =======
17
*
18
* CGEQRF computes a QR factorization of a complex M-by-N matrix A:
19
* A = Q * R.
20
*
21
* Arguments
22
* =========
23
*
24
* M (input) INTEGER
25
* The number of rows of the matrix A. M >= 0.
26
*
27
* N (input) INTEGER
28
* The number of columns of the matrix A. N >= 0.
29
*
30
* A (input/output) COMPLEX array, dimension (LDA,N)
31
* On entry, the M-by-N matrix A.
32
* On exit, the elements on and above the diagonal of the array
33
* contain the min(M,N)-by-N upper trapezoidal matrix R (R is
34
* upper triangular if m >= n); the elements below the diagonal,
35
* with the array TAU, represent the unitary matrix Q as a
36
* product of min(m,n) elementary reflectors (see Further
37
* Details).
38
*
39
* LDA (input) INTEGER
40
* The leading dimension of the array A. LDA >= max(1,M).
41
*
42
* TAU (output) COMPLEX array, dimension (min(M,N))
43
* The scalar factors of the elementary reflectors (see Further
44
* Details).
45
*
46
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
47
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
48
*
49
* LWORK (input) INTEGER
50
* The dimension of the array WORK. LWORK >= max(1,N).
51
* For optimum performance LWORK >= N*NB, where NB is
52
* the optimal blocksize.
53
*
54
* If LWORK = -1, then a workspace query is assumed; the routine
55
* only calculates the optimal size of the WORK array, returns
56
* this value as the first entry of the WORK array, and no error
57
* message related to LWORK is issued by XERBLA.
58
*
59
* INFO (output) INTEGER
60
* = 0: successful exit
61
* < 0: if INFO = -i, the i-th argument had an illegal value
62
*
63
* Further Details
64
* ===============
65
*
66
* The matrix Q is represented as a product of elementary reflectors
67
*
68
* Q = H(1) H(2) . . . H(k), where k = min(m,n).
69
*
70
* Each H(i) has the form
71
*
72
* H(i) = I - tau * v * v'
73
*
74
* where tau is a complex scalar, and v is a complex vector with
75
* v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
76
* and tau in TAU(i).
77
*
78
* =====================================================================
79
*
80
* .. Local Scalars ..
81
LOGICAL LQUERY
82
INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
83
$ NBMIN, NX
84
* ..
85
* .. External Subroutines ..
86
EXTERNAL CGEQR2, CLARFB, CLARFT, XERBLA
87
* ..
88
* .. Intrinsic Functions ..
89
INTRINSIC MAX, MIN
90
* ..
91
* .. External Functions ..
92
INTEGER ILAENV
93
EXTERNAL ILAENV
94
* ..
95
* .. Executable Statements ..
96
*
97
* Test the input arguments
98
*
99
INFO = 0
100
NB = ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 )
101
LWKOPT = N*NB
102
WORK( 1 ) = LWKOPT
103
LQUERY = ( LWORK.EQ.-1 )
104
IF( M.LT.0 ) THEN
105
INFO = -1
106
ELSE IF( N.LT.0 ) THEN
107
INFO = -2
108
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
109
INFO = -4
110
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
111
INFO = -7
112
END IF
113
IF( INFO.NE.0 ) THEN
114
CALL XERBLA( 'CGEQRF', -INFO )
115
RETURN
116
ELSE IF( LQUERY ) THEN
117
RETURN
118
END IF
119
*
120
* Quick return if possible
121
*
122
K = MIN( M, N )
123
IF( K.EQ.0 ) THEN
124
WORK( 1 ) = 1
125
RETURN
126
END IF
127
*
128
NBMIN = 2
129
NX = 0
130
IWS = N
131
IF( NB.GT.1 .AND. NB.LT.K ) THEN
132
*
133
* Determine when to cross over from blocked to unblocked code.
134
*
135
NX = MAX( 0, ILAENV( 3, 'CGEQRF', ' ', M, N, -1, -1 ) )
136
IF( NX.LT.K ) THEN
137
*
138
* Determine if workspace is large enough for blocked code.
139
*
140
LDWORK = N
141
IWS = LDWORK*NB
142
IF( LWORK.LT.IWS ) THEN
143
*
144
* Not enough workspace to use optimal NB: reduce NB and
145
* determine the minimum value of NB.
146
*
147
NB = LWORK / LDWORK
148
NBMIN = MAX( 2, ILAENV( 2, 'CGEQRF', ' ', M, N, -1,
149
$ -1 ) )
150
END IF
151
END IF
152
END IF
153
*
154
IF( NB.GE.NBMIN .AND. NB.LT.K .AND. NX.LT.K ) THEN
155
*
156
* Use blocked code initially
157
*
158
DO 10 I = 1, K - NX, NB
159
IB = MIN( K-I+1, NB )
160
*
161
* Compute the QR factorization of the current block
162
* A(i:m,i:i+ib-1)
163
*
164
CALL CGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ), WORK,
165
$ IINFO )
166
IF( I+IB.LE.N ) THEN
167
*
168
* Form the triangular factor of the block reflector
169
* H = H(i) H(i+1) . . . H(i+ib-1)
170
*
171
CALL CLARFT( 'Forward', 'Columnwise', M-I+1, IB,
172
$ A( I, I ), LDA, TAU( I ), WORK, LDWORK )
173
*
174
* Apply H' to A(i:m,i+ib:n) from the left
175
*
176
CALL CLARFB( 'Left', 'Conjugate transpose', 'Forward',
177
$ 'Columnwise', M-I+1, N-I-IB+1, IB,
178
$ A( I, I ), LDA, WORK, LDWORK, A( I, I+IB ),
179
$ LDA, WORK( IB+1 ), LDWORK )
180
END IF
181
10 CONTINUE
182
ELSE
183
I = 1
184
END IF
185
*
186
* Use unblocked code to factor the last or only block.
187
*
188
IF( I.LE.K )
189
$ CALL CGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK,
190
$ IINFO )
191
*
192
WORK( 1 ) = IWS
193
RETURN
194
*
195
* End of CGEQRF
196
*
197
END
198
199