Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgerq2.f
5195 views
1
SUBROUTINE CGERQ2( M, N, A, LDA, TAU, WORK, INFO )
2
*
3
* -- LAPACK routine (version 3.0) --
4
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5
* Courant Institute, Argonne National Lab, and Rice University
6
* September 30, 1994
7
*
8
* .. Scalar Arguments ..
9
INTEGER INFO, LDA, M, N
10
* ..
11
* .. Array Arguments ..
12
COMPLEX A( LDA, * ), TAU( * ), WORK( * )
13
* ..
14
*
15
* Purpose
16
* =======
17
*
18
* CGERQ2 computes an RQ factorization of a complex m by n matrix A:
19
* A = R * Q.
20
*
21
* Arguments
22
* =========
23
*
24
* M (input) INTEGER
25
* The number of rows of the matrix A. M >= 0.
26
*
27
* N (input) INTEGER
28
* The number of columns of the matrix A. N >= 0.
29
*
30
* A (input/output) COMPLEX array, dimension (LDA,N)
31
* On entry, the m by n matrix A.
32
* On exit, if m <= n, the upper triangle of the subarray
33
* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
34
* if m >= n, the elements on and above the (m-n)-th subdiagonal
35
* contain the m by n upper trapezoidal matrix R; the remaining
36
* elements, with the array TAU, represent the unitary matrix
37
* Q as a product of elementary reflectors (see Further
38
* Details).
39
*
40
* LDA (input) INTEGER
41
* The leading dimension of the array A. LDA >= max(1,M).
42
*
43
* TAU (output) COMPLEX array, dimension (min(M,N))
44
* The scalar factors of the elementary reflectors (see Further
45
* Details).
46
*
47
* WORK (workspace) COMPLEX array, dimension (M)
48
*
49
* INFO (output) INTEGER
50
* = 0: successful exit
51
* < 0: if INFO = -i, the i-th argument had an illegal value
52
*
53
* Further Details
54
* ===============
55
*
56
* The matrix Q is represented as a product of elementary reflectors
57
*
58
* Q = H(1)' H(2)' . . . H(k)', where k = min(m,n).
59
*
60
* Each H(i) has the form
61
*
62
* H(i) = I - tau * v * v'
63
*
64
* where tau is a complex scalar, and v is a complex vector with
65
* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
66
* exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
67
*
68
* =====================================================================
69
*
70
* .. Parameters ..
71
COMPLEX ONE
72
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
73
* ..
74
* .. Local Scalars ..
75
INTEGER I, K
76
COMPLEX ALPHA
77
* ..
78
* .. External Subroutines ..
79
EXTERNAL CLACGV, CLARF, CLARFG, XERBLA
80
* ..
81
* .. Intrinsic Functions ..
82
INTRINSIC MAX, MIN
83
* ..
84
* .. Executable Statements ..
85
*
86
* Test the input arguments
87
*
88
INFO = 0
89
IF( M.LT.0 ) THEN
90
INFO = -1
91
ELSE IF( N.LT.0 ) THEN
92
INFO = -2
93
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
94
INFO = -4
95
END IF
96
IF( INFO.NE.0 ) THEN
97
CALL XERBLA( 'CGERQ2', -INFO )
98
RETURN
99
END IF
100
*
101
K = MIN( M, N )
102
*
103
DO 10 I = K, 1, -1
104
*
105
* Generate elementary reflector H(i) to annihilate
106
* A(m-k+i,1:n-k+i-1)
107
*
108
CALL CLACGV( N-K+I, A( M-K+I, 1 ), LDA )
109
ALPHA = A( M-K+I, N-K+I )
110
CALL CLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA,
111
$ TAU( I ) )
112
*
113
* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
114
*
115
A( M-K+I, N-K+I ) = ONE
116
CALL CLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
117
$ TAU( I ), A, LDA, WORK )
118
A( M-K+I, N-K+I ) = ALPHA
119
CALL CLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
120
10 CONTINUE
121
RETURN
122
*
123
* End of CGERQ2
124
*
125
END
126
127