Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/mathlibs/src/lapack/cgetri.f
5191 views
1
SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
2
*
3
* -- LAPACK routine (version 3.0) --
4
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5
* Courant Institute, Argonne National Lab, and Rice University
6
* June 30, 1999
7
*
8
* .. Scalar Arguments ..
9
INTEGER INFO, LDA, LWORK, N
10
* ..
11
* .. Array Arguments ..
12
INTEGER IPIV( * )
13
COMPLEX A( LDA, * ), WORK( * )
14
* ..
15
*
16
* Purpose
17
* =======
18
*
19
* CGETRI computes the inverse of a matrix using the LU factorization
20
* computed by CGETRF.
21
*
22
* This method inverts U and then computes inv(A) by solving the system
23
* inv(A)*L = inv(U) for inv(A).
24
*
25
* Arguments
26
* =========
27
*
28
* N (input) INTEGER
29
* The order of the matrix A. N >= 0.
30
*
31
* A (input/output) COMPLEX array, dimension (LDA,N)
32
* On entry, the factors L and U from the factorization
33
* A = P*L*U as computed by CGETRF.
34
* On exit, if INFO = 0, the inverse of the original matrix A.
35
*
36
* LDA (input) INTEGER
37
* The leading dimension of the array A. LDA >= max(1,N).
38
*
39
* IPIV (input) INTEGER array, dimension (N)
40
* The pivot indices from CGETRF; for 1<=i<=N, row i of the
41
* matrix was interchanged with row IPIV(i).
42
*
43
* WORK (workspace/output) COMPLEX array, dimension (LWORK)
44
* On exit, if INFO=0, then WORK(1) returns the optimal LWORK.
45
*
46
* LWORK (input) INTEGER
47
* The dimension of the array WORK. LWORK >= max(1,N).
48
* For optimal performance LWORK >= N*NB, where NB is
49
* the optimal blocksize returned by ILAENV.
50
*
51
* If LWORK = -1, then a workspace query is assumed; the routine
52
* only calculates the optimal size of the WORK array, returns
53
* this value as the first entry of the WORK array, and no error
54
* message related to LWORK is issued by XERBLA.
55
*
56
* INFO (output) INTEGER
57
* = 0: successful exit
58
* < 0: if INFO = -i, the i-th argument had an illegal value
59
* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is
60
* singular and its inverse could not be computed.
61
*
62
* =====================================================================
63
*
64
* .. Parameters ..
65
COMPLEX ZERO, ONE
66
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
67
$ ONE = ( 1.0E+0, 0.0E+0 ) )
68
* ..
69
* .. Local Scalars ..
70
LOGICAL LQUERY
71
INTEGER I, IWS, J, JB, JJ, JP, LDWORK, LWKOPT, NB,
72
$ NBMIN, NN
73
* ..
74
* .. External Functions ..
75
INTEGER ILAENV
76
EXTERNAL ILAENV
77
* ..
78
* .. External Subroutines ..
79
EXTERNAL CGEMM, CGEMV, CSWAP, CTRSM, CTRTRI, XERBLA
80
* ..
81
* .. Intrinsic Functions ..
82
INTRINSIC MAX, MIN
83
* ..
84
* .. Executable Statements ..
85
*
86
* Test the input parameters.
87
*
88
INFO = 0
89
NB = ILAENV( 1, 'CGETRI', ' ', N, -1, -1, -1 )
90
LWKOPT = N*NB
91
WORK( 1 ) = LWKOPT
92
LQUERY = ( LWORK.EQ.-1 )
93
IF( N.LT.0 ) THEN
94
INFO = -1
95
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
96
INFO = -3
97
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
98
INFO = -6
99
END IF
100
IF( INFO.NE.0 ) THEN
101
CALL XERBLA( 'CGETRI', -INFO )
102
RETURN
103
ELSE IF( LQUERY ) THEN
104
RETURN
105
END IF
106
*
107
* Quick return if possible
108
*
109
IF( N.EQ.0 )
110
$ RETURN
111
*
112
* Form inv(U). If INFO > 0 from CTRTRI, then U is singular,
113
* and the inverse is not computed.
114
*
115
CALL CTRTRI( 'Upper', 'Non-unit', N, A, LDA, INFO )
116
IF( INFO.GT.0 )
117
$ RETURN
118
*
119
NBMIN = 2
120
LDWORK = N
121
IF( NB.GT.1 .AND. NB.LT.N ) THEN
122
IWS = MAX( LDWORK*NB, 1 )
123
IF( LWORK.LT.IWS ) THEN
124
NB = LWORK / LDWORK
125
NBMIN = MAX( 2, ILAENV( 2, 'CGETRI', ' ', N, -1, -1, -1 ) )
126
END IF
127
ELSE
128
IWS = N
129
END IF
130
*
131
* Solve the equation inv(A)*L = inv(U) for inv(A).
132
*
133
IF( NB.LT.NBMIN .OR. NB.GE.N ) THEN
134
*
135
* Use unblocked code.
136
*
137
DO 20 J = N, 1, -1
138
*
139
* Copy current column of L to WORK and replace with zeros.
140
*
141
DO 10 I = J + 1, N
142
WORK( I ) = A( I, J )
143
A( I, J ) = ZERO
144
10 CONTINUE
145
*
146
* Compute current column of inv(A).
147
*
148
IF( J.LT.N )
149
$ CALL CGEMV( 'No transpose', N, N-J, -ONE, A( 1, J+1 ),
150
$ LDA, WORK( J+1 ), 1, ONE, A( 1, J ), 1 )
151
20 CONTINUE
152
ELSE
153
*
154
* Use blocked code.
155
*
156
NN = ( ( N-1 ) / NB )*NB + 1
157
DO 50 J = NN, 1, -NB
158
JB = MIN( NB, N-J+1 )
159
*
160
* Copy current block column of L to WORK and replace with
161
* zeros.
162
*
163
DO 40 JJ = J, J + JB - 1
164
DO 30 I = JJ + 1, N
165
WORK( I+( JJ-J )*LDWORK ) = A( I, JJ )
166
A( I, JJ ) = ZERO
167
30 CONTINUE
168
40 CONTINUE
169
*
170
* Compute current block column of inv(A).
171
*
172
IF( J+JB.LE.N )
173
$ CALL CGEMM( 'No transpose', 'No transpose', N, JB,
174
$ N-J-JB+1, -ONE, A( 1, J+JB ), LDA,
175
$ WORK( J+JB ), LDWORK, ONE, A( 1, J ), LDA )
176
CALL CTRSM( 'Right', 'Lower', 'No transpose', 'Unit', N, JB,
177
$ ONE, WORK( J ), LDWORK, A( 1, J ), LDA )
178
50 CONTINUE
179
END IF
180
*
181
* Apply column interchanges.
182
*
183
DO 60 J = N - 1, 1, -1
184
JP = IPIV( J )
185
IF( JP.NE.J )
186
$ CALL CSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 )
187
60 CONTINUE
188
*
189
WORK( 1 ) = IWS
190
RETURN
191
*
192
* End of CGETRI
193
*
194
END
195
196