Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
ElmerCSC
GitHub Repository: ElmerCSC/elmerfem
Path: blob/devel/umfpack/src/amd/amd_aat.c
3203 views
1
/* ========================================================================= */
2
/* === AMD_aat ============================================================= */
3
/* ========================================================================= */
4
5
/* ------------------------------------------------------------------------- */
6
/* AMD Version 1.1 (Jan. 21, 2004), Copyright (c) 2004 by Timothy A. Davis, */
7
/* Patrick R. Amestoy, and Iain S. Duff. See ../README for License. */
8
/* email: [email protected] CISE Department, Univ. of Florida. */
9
/* web: http://www.cise.ufl.edu/research/sparse/amd */
10
/* ------------------------------------------------------------------------- */
11
12
/* AMD_aat: compute the symmetry of the pattern of A, and count the number of
13
* nonzeros each column of A+A' (excluding the diagonal). Assume the input
14
* matrix has no errors.
15
*/
16
17
#include "amd_internal.h"
18
19
GLOBAL Int AMD_aat /* returns nz in A+A' */
20
(
21
Int n,
22
const Int Ap [ ],
23
const Int Ai [ ],
24
Int Len [ ], /* Len [j]: length of column j of A+A', excl diagonal*/
25
Int Tp [ ], /* workspace of size n */
26
double Info [ ]
27
)
28
{
29
Int p1, p2, p, i, j, pj, pj2, k, nzdiag, nzboth, nz, nzaat ;
30
double sym ;
31
32
#ifndef NDEBUG
33
AMD_debug_init ("AMD AAT") ;
34
for (k = 0 ; k < n ; k++) Tp [k] = EMPTY ;
35
ASSERT (AMD_valid (n, n, Ap, Ai)) ;
36
#endif
37
38
if (Info != (double *) NULL)
39
{
40
/* clear the Info array, if it exists */
41
for (i = 0 ; i < AMD_INFO ; i++)
42
{
43
Info [i] = EMPTY ;
44
}
45
Info [AMD_STATUS] = AMD_OK ;
46
}
47
48
for (k = 0 ; k < n ; k++)
49
{
50
Len [k] = 0 ;
51
}
52
53
nzdiag = 0 ;
54
nzboth = 0 ;
55
nz = Ap [n] ;
56
57
for (k = 0 ; k < n ; k++)
58
{
59
p1 = Ap [k] ;
60
p2 = Ap [k+1] ;
61
AMD_DEBUG2 (("\nAAT Column: "ID" p1: "ID" p2: "ID"\n", k, p1, p2)) ;
62
63
/* construct A+A' */
64
for (p = p1 ; p < p2 ; )
65
{
66
/* scan the upper triangular part of A */
67
j = Ai [p] ;
68
if (j < k)
69
{
70
/* entry A (j,k) is in the strictly upper triangular part,
71
* add both A (j,k) and A (k,j) to the matrix A+A' */
72
Len [j]++ ;
73
Len [k]++ ;
74
AMD_DEBUG3 ((" upper ("ID","ID") ("ID","ID")\n", j,k, k,j));
75
p++ ;
76
}
77
else if (j == k)
78
{
79
/* skip the diagonal */
80
p++ ;
81
nzdiag++ ;
82
break ;
83
}
84
else /* j > k */
85
{
86
/* first entry below the diagonal */
87
break ;
88
}
89
/* scan lower triangular part of A, in column j until reaching
90
* row k. Start where last scan left off. */
91
ASSERT (Tp [j] != EMPTY) ;
92
ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ;
93
pj2 = Ap [j+1] ;
94
for (pj = Tp [j] ; pj < pj2 ; )
95
{
96
i = Ai [pj] ;
97
if (i < k)
98
{
99
/* A (i,j) is only in the lower part, not in upper.
100
* add both A (i,j) and A (j,i) to the matrix A+A' */
101
Len [i]++ ;
102
Len [j]++ ;
103
AMD_DEBUG3 ((" lower ("ID","ID") ("ID","ID")\n",
104
i,j, j,i)) ;
105
pj++ ;
106
}
107
else if (i == k)
108
{
109
/* entry A (k,j) in lower part and A (j,k) in upper */
110
pj++ ;
111
nzboth++ ;
112
break ;
113
}
114
else /* i > k */
115
{
116
/* consider this entry later, when k advances to i */
117
break ;
118
}
119
}
120
Tp [j] = pj ;
121
}
122
/* Tp [k] points to the entry just below the diagonal in column k */
123
Tp [k] = p ;
124
}
125
126
/* clean up, for remaining mismatched entries */
127
for (j = 0 ; j < n ; j++)
128
{
129
for (pj = Tp [j] ; pj < Ap [j+1] ; pj++)
130
{
131
i = Ai [pj] ;
132
/* A (i,j) is only in the lower part, not in upper.
133
* add both A (i,j) and A (j,i) to the matrix A+A' */
134
Len [i]++ ;
135
Len [j]++ ;
136
AMD_DEBUG3 ((" lower cleanup ("ID","ID") ("ID","ID")\n",
137
i,j, j,i)) ;
138
}
139
}
140
141
/* --------------------------------------------------------------------- */
142
/* compute the symmetry of the nonzero pattern of A */
143
/* --------------------------------------------------------------------- */
144
145
/* Given a matrix A, the symmetry of A is:
146
* B = tril (spones (A), -1) + triu (spones (A), 1) ;
147
* sym = nnz (B & B') / nnz (B) ;
148
* or 1 if nnz (B) is zero.
149
*/
150
151
if (nz == nzdiag)
152
{
153
sym = 1 ;
154
}
155
else
156
{
157
sym = ((double) (2 * nzboth)) / ((double) (nz - nzdiag)) ;
158
}
159
160
nzaat = 0 ;
161
for (k = 0 ; k < n ; k++)
162
{
163
nzaat += Len [k] ;
164
}
165
AMD_DEBUG1 (("AMD nz in A+A', excluding diagonal (nzaat) = "ID"\n",nzaat));
166
AMD_DEBUG1 ((" nzboth: "ID" nz: "ID" nzdiag: "ID" symmetry: %g\n",
167
nzboth, nz, nzdiag, sym)) ;
168
169
if (Info != (double *) NULL)
170
{
171
Info [AMD_STATUS] = AMD_OK ;
172
Info [AMD_N] = n ;
173
Info [AMD_NZ] = nz ;
174
Info [AMD_SYMMETRY] = sym ; /* symmetry of pattern of A */
175
Info [AMD_NZDIAG] = nzdiag ; /* nonzeros on diagonal of A */
176
Info [AMD_NZ_A_PLUS_AT] = nzaat ; /* nonzeros in A+A' */
177
}
178
179
return (nzaat) ;
180
}
181
182