Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
GRAAL-Research
GitHub Repository: GRAAL-Research/deepparse
Path: blob/main/examples/retrained_model_parsing.py
1233 views
1
# pylint: skip-file
2
###################
3
"""
4
IMPORTANT:
5
THE EXAMPLE IN THIS FILE IS CURRENTLY NOT FUNCTIONAL
6
BECAUSE THE `download_from_public_repository` FUNCTION
7
NO LONGER EXISTS. WE HAD TO MAKE A QUICK RELEASE TO
8
REMEDIATE AN ISSUE IN OUR PREVIOUS STORAGE SOLUTION.
9
THIS WILL BE FIXED IN A FUTURE RELEASE.
10
11
IN THE MEAN TIME IF YOU NEED ANY CLARIFICATION
12
REGARDING THE PACKAGE PLEASE FEEL FREE TO OPEN AN ISSUE.
13
"""
14
import os
15
16
from deepparse import download_from_public_repository
17
from deepparse.dataset_container import PickleDatasetContainer
18
from deepparse.parser import AddressParser
19
20
# Here is an example on how to parse multiple addresses
21
# First, let's download the train and test data from the public repository.
22
data_saving_dir = "./data"
23
file_extension = "p"
24
test_dataset_name = "predict"
25
download_from_public_repository(test_dataset_name, data_saving_dir, file_extension=file_extension)
26
27
# Now let's load the dataset using one of our dataset container
28
addresses_to_parse = PickleDatasetContainer("./data/predict.p", is_training_container=False)
29
30
# Let's download a BPEmb retrained model create just for this example, but you can also use one of yours.
31
model_saving_dir = "./retrained_models"
32
retrained_model_name = "retrained_light_bpemb_address_parser"
33
model_file_extension = "ckpt"
34
download_from_public_repository(retrained_model_name, model_saving_dir, file_extension=model_file_extension)
35
36
address_parser = AddressParser(
37
model_type="bpemb",
38
device=0,
39
path_to_retrained_model=os.path.join(model_saving_dir, retrained_model_name + "." + model_file_extension),
40
)
41
42
# We can now parse some addresses
43
parsed_addresses = address_parser(addresses_to_parse[0:300])
44
45