Path: blob/main/AMS/Diagonalpermutohedra.tex
1017 views
%-----------------------------------------------------------------------1% Beginning of memo-l-template.tex2%-----------------------------------------------------------------------3%4% This is a template file for AMS Memoirs for use with AMS-LaTeX 2.0.5% Separate chapters should be included at the appropriate position.6%7%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%89\documentclass{memo-l}1011% For use when working on individual chapters12%\includeonly{}1314% Include referenced packages here.15\usepackage[T1]{fontenc}16\usepackage{enumerate, amsmath, amsfonts, amssymb, amsthm, mathrsfs, wasysym, graphics, graphicx, url, hyperref, hypcap, shuffle, xargs, multicol, overpic, pdflscape, multirow, hvfloat, minibox, accents, array, multido, xifthen, ae, aecompl, blkarray, pifont, mathtools, etoolbox, dsfont, stmaryrd}17\usepackage[dvipsnames]{xcolor}18\usepackage{marginnote}19\hypersetup{colorlinks=true, citecolor=darkblue, linkcolor=darkblue}20\usepackage[all]{xy}21\usepackage[bottom]{footmisc}22\usepackage{tikz, tikz-cd, tikz-qtree}23\usetikzlibrary{trees, decorations, decorations.markings, shapes, arrows, matrix, calc, fit, intersections, patterns, angles, snakes}24\usepackage[external]{forest}25%\tikzexternalize26\graphicspath{{figures/}{figures/nodes/}}27\makeatletter\def\input@path{{figures/}}\makeatother28\usepackage{caption}29\captionsetup{width=\textwidth}30\renewcommand{\topfraction}{1} % possibility to have one page of pictures31\renewcommand{\bottomfraction}{1} % possibility to have one page of pictures32\usepackage[noabbrev,capitalise]{cleveref}33\usepackage[export]{adjustbox}34\usepackage{ulem}\normalem35\usepackage{xargs}3637%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3839% colors40\definecolor{darkblue}{rgb}{0,0,0.7} % darkblue color41\definecolor{green}{RGB}{57,181,74} % green color42\definecolor{violet}{RGB}{147,39,143} % violet color4344\newcommand{\red}{\color{red}} % red command45\newcommand{\blue}{\color{blue}} % blue command46\newcommand{\orange}{\color{orange}} % orange command47\newcommand{\green}{\color{green}} % green command48\newcommand{\darkblue}{\color{darkblue}} % darkblue command4950% marginal comments51\usepackage{todonotes}52\newcommand{\vincent}[1]{\todo[color=blue!30]{\rm #1 \\ \hfill --- V.}}53\newcommand{\Guillaume}[1]{\todo[color=magenta!30]{\rm #1 \\ \hfill --- G.}}54\newcommand{\Kurt}[1]{\todo[color=orange!30]{\rm #1 \\ \hfill --- K.}}55\newcommand{\BDO}[1]{\todo[color=green!30]{\rm #1 \\ \hfill --- B.}}5657% math special letters58\newcommand{\R}{\mathbb{R}} % reals59\newcommand{\N}{\mathbb{N}} % naturals60\newcommand{\Z}{\mathbb{Z}} % integers61\newcommand{\C}{\mathbb{C}} % complex62\newcommand{\I}{\mathbb{I}} % set of integers63\newcommand{\fA}{\mathfrak{A}} % alternating group64\newcommand{\fB}{\mathfrak{S}^\textsc{b}} % signed symmetric group65\newcommand{\cA}{\mathcal{A}} % algebra66\newcommand{\cC}{\mathcal{C}} % collection67\newcommand{\cS}{\mathcal{S}} % ground set68\newcommand{\uR}{\underline{R}} % underline set69\newcommand{\uS}{\underline{S}} % underline set70\newcommand{\uT}{\underline{T}} % underline set71\newcommand{\oS}{\overline{S}} % overline set72\newcommand{\ucS}{\underline{\cS}} % underline ground set73\renewcommand{\b}[1]{{\boldsymbol{#1}}} % bold letters74\newcommand{\bb}[1]{\mathbb{#1}} % bb letters75\newcommand{\f}[1]{\mathfrak{#1}} % frak letters76\newcommand{\h}{\widehat} % hat letters77\newcommand{\Un}{\mathrm{U}} % unordered IJ78\newcommand{\Or}{\mathrm{O}} % ordered IJ79\newcommand{\PT}{\mathrm{PT}} %planar trees80\newcommand{\K}{\mathrm{K}} %associahedra81\newcommand{\J}{\mathrm{J}} %multiplihedra8283% math commands84\newcommand{\set}[2]{\left\{ #1 \;\middle|\; #2 \right\}} % set notation85\newcommand{\bigset}[2]{\big\{ #1 \;\big|\; #2 \big\}} % big set notation86\newcommand{\Bigset}[2]{\Big\{ #1 \;\Big|\; #2 \Big\}} % Big set notation87\newcommand{\setangle}[2]{\left\langle #1 \;\middle|\; #2 \right\rangle} % set notation88\newcommand{\ssm}{\smallsetminus} % small set minus89\newcommand{\dotprod}[2]{\left\langle \, #1 \; \middle| \; #2 \, \right\rangle} % dot product90\newcommand{\symdif}{\,\triangle\,} % symmetric difference91\newcommand{\one}{\b{1}} % the all one vector92\newcommand{\eqdef}{\mbox{\,\raisebox{0.2ex}{\scriptsize\ensuremath{\mathrm:}}\ensuremath{=}\,}} % :=93\newcommand{\defeq}{\mbox{~\ensuremath{=}\raisebox{0.2ex}{\scriptsize\ensuremath{\mathrm:}} }} % =:94\newcommand{\simplex}{\b{\triangle}} % simplex95\renewcommand{\implies}{\Rightarrow} % imply sign96\newcommand{\transpose}[1]{{#1}^t} % transpose matrix97\renewcommand{\complement}[1]{\bar{#1}} % complement98\newcommand{\card}[1]{\##1} % cardinality99100% operators101\DeclareMathOperator{\conv}{conv} % convex hull102\DeclareMathOperator{\vect}{vect} % linear span103\DeclareMathOperator{\cone}{cone} % cone hull104\DeclareMathOperator{\Inv}{Inv} % inversions105\DeclareMathOperator{\inv}{inv} % inversions106\DeclareMathOperator{\Ima}{Im} %Image d'une fonction107\DeclareMathOperator{\std}{std}108109%colored nested trees110\newcommand{\bluea}[1]{\textcolor{MidnightBlue}{\boldsymbol{\left(\right.}} #1 \textcolor{MidnightBlue}{\boldsymbol{\left.\right)}}}111\newcommand{\reda}[1]{\textcolor{Red!60}{\boldsymbol{\left(\right.}} #1 \textcolor{Red!60}{\boldsymbol{\left.\right)}}}112\newcommand{\purplea}[1]{\textcolor{Purple!80}{\boldsymbol{\left[\right.}} #1 \textcolor{Purple!80}{\boldsymbol{\left.\right]}}}113114% others115\newcommand{\ie}{\textit{i.e.}~} % id est116\newcommand{\resp}{resp.~} % id est117\newcommand{\eg}{\textit{e.g.}~} % exempli gratia118\newcommand{\Eg}{\textit{E.g.}~} % exempli gratia119\newcommand{\apriori}{\textit{a priori}} % a priori120\newcommand{\viceversa}{\textit{vice versa}} % vice versa121\newcommand{\versus}{\textit{vs.}~} % versus122\newcommand{\aka}{\textit{a.k.a.}~} % also known as123\newcommand{\perse}{\textit{per se}} % per se124\newcommand{\ordinal}{\textsuperscript{th}} % th for ordinals125\newcommand{\ordinalst}{\textsuperscript{st}} % st for ordinals126\newcommand{\defn}[1]{\textsl{\darkblue #1}} % emphasis of a definition127\newcommand{\para}[1]{\medskip\noindent\uline{#1.}} % paragraph128\renewcommand{\topfraction}{1} % possibility to have one page of pictures129\renewcommand{\bottomfraction}{1} % possibility to have one page of pictures130\newcommand{\imagetop}[1]{\vtop{\null\hbox{#1}}} % image aligned top131\newcommand{\imagebot}[1]{\vbox{\hbox{#1}\null}} % image aligned bot132\newcommand{\OEIS}[1]{\cite[{\rm \href{http://oeis.org/#1}{\texttt{#1}}}]{OEIS}}133134%Hyperplane arrangements135\renewcommand{\b}[1]{\boldsymbol{#1}} % bold136\newcommandx{\arrangement}[1][1 = A]{\mathcal{#1}} % arrangement137\newcommand{\HH}{\mathbb{H}} % hyperplane138\newcommandx{\braidArrangement}[1][1 = n]{\arrangement[B]_{#1}} % braid arrangement139\newcommandx{\multiBraidArrangement}[2][1 = n, 2 = \ell]{\arrangement[B]_{#1}^{#2}} % (l,n)-braid arrangement140\newcommandx{\rank}[1][1 = \arrangement]{\operatorname{rk}(#1)} % rank141\newcommandx{\facePoset}[1][1 = \arrangement]{\mathsf{Fa}(#1)} % face poset142\newcommandx{\fPol}[2][1 = \arrangement, 2 = x]{\b{f}_{#1}(#2)} % face polynomial143\newcommandx{\bPol}[2][1 = \arrangement, 2 = x]{\b{b}_{#1}(#2)} % bounded face polynomial144\newcommandx{\flatPoset}[1][1 = \arrangement]{\mathsf{Fl}(#1)} % intersection poset145\newcommandx{\charPol}[2][1 = \arrangement, 2 = y]{\b{\chi}_{#1}(#2)} % characteristic polynomial146\newcommandx{\mobPol}[3][1 = \arrangement, 2 = x, 3 = y]{\b{\mu}_{#1}(#2, #3)} % Mobius polynomial147\newcommandx{\weirdPol}[2][1 = \arrangement, 2 = x]{\b{\pi}_{#1}(#2)} % weird polynomial148\newcommandx{\partitionPoset}[1][1 = n]{\b{\Pi}_{#1}} % partition poset149\newcommandx{\forestPoset}[2][1 = n, 2 = \ell]{\b{\Phi}_{#1}^{#2}} % partition forest poset150\newcommandx{\rainbowForests}[2][1 = n, 2 = \ell]{\b{\Psi}_{#1}^{#2}} % rainbow forests151\newcommandx{\rainbowTrees}[2][1 = n, 2 = \ell]{\b{\rm{T}}_{#1}^{#2}} % rainbow trees152\newcommandx{\Perm}[1][1 = n]{\mathsf{Perm}(#1)} % permutahedron153\newcommandx{\Asso}[1][1 = n]{\mathsf{Asso}(#1)} % associahedron154\newcommandx{\Cube}[1][1 = n]{\mathsf{Cube}(#1)} % cube155\newcommandx{\Simplex}[1][1 = n]{\mathsf{Simplex}(#1)} % simplex156\makeatletter157\def\rightharpoonupfill@{\arrowfill@\relbar\relbar\rightharpoonup}158\newcommand{\overrightharpoonup}{%159\mathpalette{\overarrow@\rightharpoonupfill@}}160\makeatother161\newcommandx{\order}[1]{\smash{\overrightharpoonup{#1}}} % ordered162\newcommandx{\orderedPartitionPoset}[1][1 = n]{\order{\b{\Pi}}_{#1}} % oriented partition poset163\newcommandx{\orderedForestPoset}[2][1 = n, 2 = \ell]{\order{\b{\Phi}}_{#1}^{#2}} % oriented partition forest poset164165%Operadic diagonals166\newcommand{\SU}{\mathrm{SU}}167\newcommand{\LA}{\mathrm{LA}}168\newcommand{\SUD}{\triangle^{\mathrm{SU}}}169\newcommand{\LAD}{\triangle^{\mathrm{LA}}}170\newcommand{\SCP}{\mathrm{SCP}}171\newcommand{\PolySub}{\mathsf{Poly}}172\newcommand{\EC}{\mathcal{E}} %essential complimentary partitions173\newcommand{\OP}{\triangle} %ordered partitions174\newcommand{\BT}{\mathcal{B}} %bipartite trees175\newcommand{\Ainf}{\ensuremath{\mathrm{A}_\infty}}176\newcommand{\op}{\mathrm{op}}177\newcommand{\tr}{\mathrm{tr}}178\newcommand{\id}{\mathrm{id}}179180%Shift operators181%\vphantom{1} ensures sequential arrows aligned.182\newcommand{\rightshift}[1]{\overrightarrow{\vphantom{1}{#1}}}183\newcommand{\rightshiftk}[2]{\overrightarrow{\vphantom{1}{#1}}^{#2}}184\newcommand{\leftshift}[1]{\overleftarrow{\vphantom{1}{#1}}}185\newcommand{\leftshiftk}[2]{\overleftarrow{\vphantom{1}{#1}}^{#2}}186%Subdiv cube defs187\newcommand{\divcube}[1]{\Box_{#1}}188\newcommandx{\hour}[1][1 = v]{\raisebox{0.065cm}{\rotatebox[origin=c]{90}{$\bowtie$}}_{#1}}189\newcommand{\maxsubdivpairsv}{M_v}190191%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%192193%% from https://tex.stackexchange.com/questions/356564/macro-for-rounded-polygon-around-some-nodes194%% answer of bitt.j195%Necessary for the mypoly command%196\usepackage{tkz-euclide}197\usepackage{xstring}198199%------------------------%200%---The mypoly command---%201%------------------------%202203%--Getting the last Element of a list--%204\def\splicelist#1{205\StrCount{#1}{,}[\numofelem]206\ifnum\numofelem>0\relax207\StrBehind[\numofelem]{#1}{,}[\mylast]%208\else209\let\mylast#1%210\fi211}212213%--The mypoly macro--%214%How to use:215%\myroundpoly[decorative commands]{list of names of nodes}{distance}216%list of names has to be given in clockwise order217\newcommand{\hedge}[3][very thick,color=black]{218%Get the last element219\splicelist{#2}220%Calculate the auxiliary coordinates for the arcs221\foreach \vertex [remember=\vertex as \succvertex222(initially \mylast)] in {#2}{223\coordinate (\succvertex-next) at ($(\succvertex)!#3!90:(\vertex)$);224\coordinate (\vertex-previous) at ($(\vertex)!#3!-90:(\succvertex)$);225\draw[#1] (\succvertex-next) -- (\vertex-previous);226}227%Draw the arcs228\foreach \vertex in {#2}{229\tkzDrawArc[#1](\vertex,\vertex-next)(\vertex-previous)230}231}232233%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%234235% formating the part command236\makeatletter237\def\part{\@startsection{part}{1}%238\z@{.7\linespacing\@plus\linespacing}{.8\linespacing}%239{\LARGE\sffamily\centering}}240%\@addtoreset{section}{part}241\makeatother242\renewcommand{\thepart}{\Roman{part}}243%\renewcommand{\thesection}{\arabic{part}.\arabic{section}}244245% formating the table of contents246\setcounter{tocdepth}{2}247\makeatletter248\def\l@part{\@tocline{1}{8pt}{0pc}{}{}}249\def\l@section{\@tocline{1}{4pt}{0pc}{}{}}250\makeatother251\let\oldtocchapter=\tocchapter252\renewcommand{\tocchapter}[2]{\sc\large\oldtocchapter{#1}{#2}}253\let\oldtocsection=\tocsection254\renewcommand{\tocsection}[2]{\bf\oldtocsection{#1}{#2}}255\let\oldtocsubsubsection=\tocsubsubsection256\renewcommand{\tocsubsubsection}[2]{\quad\oldtocsubsubsection{#1}{#2}}257258%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%259260% theorems261\newtheorem{theorem}{Theorem}[chapter]262\newtheorem*{theorem*}{Theorem}263\newtheorem{corollary}[theorem]{Corollary}264\newtheorem{proposition}[theorem]{Proposition}265\newtheorem{lemma}[theorem]{Lemma}266\newtheorem{conjecture}[theorem]{Conjecture}267\newtheorem{construction}[theorem]{Construction}268269\theoremstyle{definition}270\newtheorem{definition}[theorem]{Definition}271\newtheorem{example}[theorem]{Example}272\newtheorem{remark}[theorem]{Remark}273\newtheorem{question}[theorem]{Question}274\newtheorem{problem}[theorem]{Problem}275\newtheorem{notation}[theorem]{Notation}276\newtheorem{assumption}[theorem]{Assumption}277\crefname{notation}{Notation}{Notations}278\crefname{problem}{Problem}{Problems}279280281\numberwithin{section}{chapter}282\numberwithin{equation}{chapter}283284% For a single index; for multiple indexes, see the manual285% "AMS Author Handbook, Memoirs Class", included in the286% author package).287\makeindex288289\begin{document}290291\frontmatter292293\title{Cellular diagonals of permutahedra}294295\thanks{296BDO was partially supported by the French ANR grants ALCOHOL (ANR-19-CE40-0006), CARPLO (ANR-20-CE40-0007), HighAGT (ANR-20-CE40-0016) and S3 (ANR-20-CE48-0010).297GLA and KS were supported by the Australian Research Council Future Fellowship FT210100256.298KS was supported by an Australian Government Research Training Program (RTP) Scholarship.299VP was partially supported by the French ANR grant CHARMS (ANR-19-CE40-0017) and by the French--Austrian project PAGCAP (ANR-21-CE48-0020 \& FWF I 5788).300}301302\author[B. Delcroix-Oger]{B\'er\'enice Delcroix-Oger}303\address[B\'{e}r\'{e}nice Delcroix-Oger]{Institut Montpelli\'erain Alexander Grothendieck, Universit\'e de Montpellier, France}304\email{berenice.delcroix-oger@umontpellier.fr}305\urladdr{\url{https://oger.perso.math.cnrs.fr/}}306307\author[G. Laplante-Anfossi]{Guillaume Laplante-Anfossi}308\address[Guillaume Laplante-Anfossi]{School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia}309\email{guillaume.laplanteanfossi@unimelb.edu.au}310\urladdr{\url{https://guillaumelaplante-anfossi.github.io/}}311312\author[V. Pilaud]{Vincent Pilaud}313\address[Vincent Pilaud]{CNRS \& LIX, \'Ecole Polytechnique, Palaiseau, France}314\email{vincent.pilaud@lix.polytechnique.fr}315\urladdr{\url{http://www.lix.polytechnique.fr/~pilaud/}}316317\author[K. Stoeckl]{Kurt Stoeckl}318\address[Kurt Stoeckl]{School of Mathematics and Statistics, The University of Melbourne, Victoria, Australia}319\email{kstoeckl@student.unimelb.edu.au}320\urladdr{\url{https://kstoeckl.github.io/}}321322323% \date is required; it is the date received by the editor.324\date{\today}325326\subjclass[2020]{05A15; 05C05; 18M70; 52B11; 52C35}327% Recognition of the 2010 edition of the Mathematics Subject328% Classification requires a version of amsbook.cls from July 2009329% or later. If "2010" is not recognized, please upgrade.330331\keywords{Diagonal, permutahedron, hyperplane arrangement}332333%\dedicatory{Dedication text (use \\[2pt] for line break if necessary)}334335\begin{abstract}336We provide a systematic enumerative and combinatorial study of geometric cellular diagonals on the permutahedra.337338In the first part of the paper, we study the combinatorics of certain hyperplane arrangements obtained as the union of $\ell$ generically translated copies of the classical braid arrangement.339Based on Zaslavsky's theory, we derive enumerative results on the faces of these arrangements involving combinatorial objects named partition forests and rainbow forests.340This yields in particular nice formulas for the number of regions and bounded regions in terms of exponentials of generating functions of Fuss-Catalan numbers.341By duality, the specialization of these results to the case~$\ell = 2$ gives the enumeration of any geometric diagonal of the permutahedron.342343In the second part of the paper, we study diagonals which respect the operadic structure on the family of permutahedra.344We show that there are exactly two such diagonals, which are moreover isomorphic.345We describe their facets by a simple rule on paths in partition trees, and their vertices as pattern-avoiding pairs of permutations.346We show that one of these diagonals is a topological enhancement of the Sanbeblidze--Umble diagonal, and unravel a natural lattice structure on their sets of facets.347348In the third part of the paper, we use the preceding results to show that there are precisely two isomorphic topological cellular operadic structures on the families of operahedra and multiplihedra, and exactly two infinity-isomorphic geometric universal tensor products of homotopy operads and A-infinity morphisms.349350\end{abstract}351352\maketitle353354%\centerline{\includegraphics[scale=.75]{diagonalPermutahedron3}}355356\tableofcontents357358359360% Include unnumbered chapters (preface, acknowledgments, etc.) here.361\include{acknowledgements}362\include{intro}363364\mainmatter365% Include main chapters here.366\include{combinatorics}367\include{diag}368\include{higher}369370%\appendix371% Include appendix "chapters" here.372%\include{}373374\backmatter375% Bibliography styles amsplain or author-year (using natbib) are376% also acceptable.377\bibliographystyle{amsalpha}378\bibliography{diagonalsPermutahedra}379\label{sec:biblio}380381% See note above about multiple indexes.382%\printindex383384\end{document}385386%-----------------------------------------------------------------------387% End of memo-l-template.tex388%-----------------------------------------------------------------------389390391