Path: blob/main/AMS/combinatorics.tex
1017 views
\chapter{Combinatorics of multiple braid arrangements}1\label{part:multiBraidArrangements}23In this first part, we study the combinatorics of hyperplane arrangements obtained as unions of generically translated copies of the braid arrangement.4In \cref{sec:arrangements}, we first recall some classical facts on the enumeration of hyperplane arrangements (\cref{subsec:arrangements}), present the classical braid arrangement (\cref{subsec:braidArrangement}), and define our multiple braid arrangements (\cref{subsec:multiBraidArrangement}).5Then in \cref{sec:flatPoset}, we describe their flat posets in terms of partition forests (\cref{subsec:partitionForests}) and rainbow forests (\cref{subsec:rainbowForests}), from which we derive their M\"obius polynomials (\cref{subsec:MobiusPolynomialMultiBraidArrangement}), and some surprising formulas for their numbers of vertices (\cref{subsec:verticesMultiBraidArrangement}) and regions (\cref{subsec:regionsMultiBraidArrangement}).6Finally, in \cref{sec:facePoset}, we describe their face posets in terms of ordered partition forests (\cref{subsec:orderedPartitionForests}), and explore some combinatorial criteria to describe the ordered partition forests that appear as faces of a given multiple braid arrangement (\cref{subsec:PFtoOPF,subsec:criterionOPF}).78%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%910\section{Recollection on hyperplane arrangements and braid arrangements}11\label{sec:arrangements}1213%%%%%%%%%%%%%%%1415\subsection{Hyperplane arrangements}16\label{subsec:arrangements}1718We first briefly recall classical results on the combinatorics of affine hyperplane arrangements, in particular the enumerative connection between their intersection posets and their face lattices due to T.~Zaslavsky~\cite{Zaslavsky}.1920\begin{definition}21A finite affine real \defn{hyperplane arrangement} is a finite set~$\arrangement$ of affine hyperplanes in~$\R^d$.22\end{definition}2324\begin{definition}25A \defn{region} of~$\arrangement$ is a connected component of~$\R^d \ssm \bigcup_{H \in \arrangement} H$.26The \defn{faces} of~$\arrangement$ are the closures of the regions of~$\arrangement$ and all their intersections with a hyperplane of~$\arrangement$.27The \defn{face poset} of~$\arrangement$ is the poset~$\facePoset$ of faces of~$\arrangement$ ordered by inclusion.28The \defn{$f$-polynomial}~$\fPol$ and \defn{$b$-polynomial}~$\bPol$ of~$\arrangement$ are the polynomials29\[30\fPol \eqdef \sum_{k = 0}^d f_k(\arrangement) \, x^k31\qquad\text{and}\qquad32\bPol \eqdef \sum_{k = 0}^d b_k(\arrangement) \, x^k ,33\]34where~$f_k(\arrangement)$ denotes the number of $k$-dimensional faces of~$\arrangement$, while~$b_k(\arrangement)$ denotes the number of bounded $k$-dimensional faces of~$\arrangement$.35\end{definition}3637\begin{definition}38A \defn{flat} of~$\arrangement$ is a non-empty affine subspace of~$\R^d$ that can be obtained as the intersection of some hyperplanes of~$\arrangement$.39The \defn{flat poset} of~$\arrangement$ is the poset~$\flatPoset$ of flats of~$\arrangement$ ordered by reverse inclusion.40\end{definition}4142\begin{definition}43\label{def:MobiusPolynomial}44The \defn{M\"obius polynomial}~$\mu_{\arrangement}(x,y)$ of~$\arrangement$ is the polynomial defined by45\[46\mobPol \eqdef \sum_{F \le G} \mu_{\flatPoset}(F,G) \, x^{\dim(F)} \, y^{\dim(G)},47\]48where~$F \le G$ ranges over all intervals of the flat poset~$\flatPoset$, and~$\mu_{\flatPoset}(F,G)$ denotes the \defn{M\"obius function} on the flat poset~$\flatPoset$ defined as usual by49\[50\mu_{\flatPoset}(F, F) = 151\qquad\text{and}\qquad52\sum_{F \le G \le H} \mu_{\flatPoset}(F,G) = 053\]54for all~$F < H$ in~$\flatPoset$.55\end{definition}5657\begin{remark}58Our definition of the M\"obius polynomial slightly differs from that of~\cite{Zaslavsky} as we use the dimension of~$F$ instead of its codimension, in order to simplify slightly the following statement.59\end{remark}6061\begin{theorem}[{\cite[Thm.~A]{Zaslavsky}}]62\label{thm:Zaslavsky}63The $f$-polynomial, the $b$-polynomial, and the M\"obius polynomial of the hyperplane arrangement~$\arrangement$ are related by64\[65\fPol = \mobPol[\arrangement][-x][-1]66\qquad\text{and}\qquad67\bPol = \mobPol[\arrangement][-x][1].68\]69\end{theorem}7071\begin{example}72%73\begin{figure}74% \begin{overpic}[scale=.9]{intersectionPoset}75% \put(72.5, -2){$1$}76% \put(51, 10){$-1$}77% \put(61, 10){$-1$}78% \put(71, 10){$-1$}79% \put(82, 10){$-1$}80% \put(94, 10){$-1$}81% \put(51.5, 32){$2$}82% \put(66, 32){$1$}83% \put(80, 32){$1$}84% \put(93.5, 32){$2$}85% \end{overpic}86% \caption{A hyperplane arrangement (left) and its intersection poset with its M\"obius function (right).}87\centerline{\includegraphics[scale=.9]{intersectionPoset}}88\caption{A hyperplane arrangement (left) and its intersection poset (right).}89\label{fig:arrangement}90\end{figure}91%92For the arrangement~$\arrangement$ of $5$ hyperplanes of \cref{fig:arrangement}, we have93\[94\mobPol = x^2y^2 - 5x^2y + 6x^2 + 5xy - 10x + 4 ,95\]96so that97\[98\fPol = 12 \, x^2 + 15 \, x + 499\qquad\text{and}\qquad100\bPol = 2 \, x^2 + 5 \, x + 4 .101\]102\end{example}103104\begin{remark}105\label{rem:characteristicPolynomial}106The coefficient of~$x^d$ in the M\"obius polynomial~$\mobPol$ gives the more classical \defn{characteristic polynomial}107\[108\charPol \eqdef [x^d] \, \mobPol = \sum_F \mu_{\flatPoset}(\R^d,F) \, y^{\dim(F)} .109\]110By \cref{thm:Zaslavsky}, we thus have111\[112f_d(\arrangement) = (-1)^d \, \charPol[\arrangement][-1]113\qquad\text{and}\qquad114b_d(\arrangement) = (-1)^d \, \charPol[\arrangement][1].115\]116\end{remark}117118%%%%%%%%%%%%%%%119120\subsection{The braid arrangement}121\label{subsec:braidArrangement}122123We now briefly recall the classical combinatorics of the braid arrangement.124See \cref{fig:facePosetBraidArrangement3,fig:intersectionPosetBraidArrangement3,fig:intersectionPosetBraidArrangement4} for illustrations when~$n = 3$ and~$n = 4$.125126%\begin{figure}127% \centerline{\includegraphics[scale=.9]{figures/intersectionPosetBraidArrangement3Full}}128% \caption{The braid arrangement $\braidArrangement[3]$ (left), its flat poset~$\flatPoset[{\braidArrangement[3]}]$ (middle), and the partition poset~$\partitionPoset[3]$ (right).}129% \label{fig:braidArrangement3}130%\end{figure}131132%\afterpage{133\begin{figure}[b]134\centerline{\includegraphics[scale=.7]{figures/facePosetBraidArrangement3}}135\caption{The face poset~$\facePoset[{\braidArrangement[3]}]$ of the braid arrangement $\braidArrangement[3]$ (left), where faces are represented as cones (middle) or as ordered set partitions of~$[3]$ (right).}136\label{fig:facePosetBraidArrangement3}137\end{figure}138%}139140%\afterpage{141\begin{figure}142\centerline{\includegraphics[scale=.7]{figures/intersectionPosetBraidArrangement3}}143\caption{The flat poset~$\flatPoset[{\braidArrangement[3]}]$ of the braid arrangement $\braidArrangement[3]$, where flats are represented as intersections of hyperplanes (left) or as set partitions of~$[3]$ (right).}144\label{fig:intersectionPosetBraidArrangement3}145\end{figure}146%}147148%\afterpage{149\begin{figure}150\centerline{\includegraphics[scale=.26]{figures/intersectionPosetBraidArrangement4}}151\caption{The flat poset~$\flatPoset[{\braidArrangement[4]}]$ of the braid arrangement $\braidArrangement[4]$, where flats are represented as intersections of hyperplanes (top) or as set partitions of~$[4]$ (bottom).}152\label{fig:intersectionPosetBraidArrangement4}153\end{figure}154%}155156\begin{definition}157Fix~$n \ge 1$ and denote by~$\HH$ the hyperplane of~$\R^n$ defined by the equality~${\sum_{s \in [n]} x_s = 0}$.158The \defn{braid arrangement}~$\braidArrangement$ is the arrangement of the hyperplanes~$\set{\b{x} \in \HH}{x_s = x_t}$ for all~${1 \le s < t \le n}$.159\end{definition}160161\begin{remark}162\label{rem:essential}163Note that we have decided to work in the space~$\HH$ rather than in the space~$\R^n$.164The advantage is that the braid arrangement~$\braidArrangement$ in~$\HH$ is essential, so that we can speak of its rays.165Working in~$\R^n$ would change rays to walls, and would multiply all M\"obius polynomials by a factor~$xy$.166\end{remark}167168The combinatorics of the braid arrangement~$\braidArrangement$ is well-known.169The descriptions of its face and flat posets involve both ordered and unordered set partitions.170To avoid confusions, we will always mark with an arrow the ordered structures (ordered set partitions, ordered partition forests, etc.).171Hence, the letter $\pi$ denotes an unordered set partition (the order is irrelevant, neither inside each part, nor between two distinct parts), while~$\order{\pi}$ denotes an ordered set partition (the order inside each part is irrelevant, but the order between distinct parts is relevant).172173The braid arrangement~$\braidArrangement$ has a $k$-dimensional face174\[175\Phi(\order{\pi}) \eqdef \set{\b{x} \in \R^n}{\substack{\displaystyle x_s \le x_t \text{ for all $s,t$ such that the part of~$s$} \\[.1cm] \displaystyle \text{is weakly before the part of~$t$ in $\order{\pi}$}}}176\]177for each ordered set partition~$\order{\pi}$ of~$[n]$ into~$k+1$ parts, or equivalently, for each surjection from~$[n]$ to~$[k+1]$.178The face poset~$\facePoset[\braidArrangement]$ is thus isomorphic to the refinement poset~$\orderedPartitionPoset$ on ordered set partitions, where an ordered partition~$\order{\pi}$ is smaller than an ordered partition~$\order{\omega}$ if each part of~$\order{\pi}$ is the union of an interval of consecutive parts in~$\order{\omega}$.179In particular, it has a single vertex corresponding to the ordered partition~$[n]$, $2^n-2$ rays corresponding to the proper nonempty subsets of~$[n]$ (ordered partitions of~$[n]$ into~$2$ parts), and $n!$ regions corresponding to the permutations of~$[n]$ (ordered partitions of~$[n]$ into~$n$ parts).180As an example, \cref{fig:facePosetBraidArrangement3} illustrates the face poset of the braid arrangement~$\braidArrangement[3]$.181182The braid arrangement~$\braidArrangement$ has a $k$-dimensional~flat183\[184\Psi(\pi) \eqdef \set{\b{x} \in \R^n}{x_s = x_t \text{ for all $s, t$ which belong to the same part of~$\pi$}}185\]186for each unordered set partition~$\pi$ of~$[n]$ into $k+1$ parts.187The flat poset~$\flatPoset[\braidArrangement]$ is thus isomorphic to the refinement poset~$\partitionPoset$ on set partitions of~$[n]$, where a partition~$\pi$ is smaller than a partition~$\omega$ if each part of~$\pi$ is contained in a part of~$\omega$.188For instance, \cref{fig:intersectionPosetBraidArrangement3,fig:intersectionPosetBraidArrangement4} illustrate the flat posets of the braid arrangements~$\braidArrangement[3]$ and~$\braidArrangement[4]$.189Note that the refinement in~$\orderedPartitionPoset$ and in~$\partitionPoset$ are in opposite direction.190191The M\"obius function of the set partitions poset~$\partitionPoset$ is given by192\[193\mu_{\partitionPoset}(\pi, \omega) = \prod_{p \in \omega} (-1)^{\card{\pi[p]}-1}(\card{\pi[p]}-1)! \ ,194\]195where~$\pi[p]$ denotes the restriction of the partition~$\pi$ to the part~$p$ of the partition~$\omega$, and $\card{\pi[p]}$ denotes its number of parts.196See for instance~\cite{Birkhoff, Rota}.197The M\"obius polynomial of the braid arrangement~$\braidArrangement$ is given by198\[199\mobPol[\braidArrangement] = \sum_{k \in [n]} x^{k-1} S(n,k) \prod_{i \in [k-1]} (y-i) ,200\]201where~$S(n,k)$ denotes the Stirling number of the second kind \OEIS{A008277}, \ie the number of set partitions of~$[n]$ into~$k$ parts.202For instance203\begin{align*}204\mobPol[{\braidArrangement[1]}] & = 1 \\205\mobPol[{\braidArrangement[2]}] & = x y - x + 1 = x (y - 1) + 1 \\206\mobPol[{\braidArrangement[3]}] & = x^2 y^2 - 3 x^2 y + 2 x^2 + 3 x y - 3 x + 1 = x^2 (y - 1) (y - 2) + 3 x (y - 1) + 1\\207\mobPol[{\braidArrangement[4]}] & = x^3 y^3 - 6 x^3 y^2 + 11 x^3 y - 6 x^3 + 6 x^2 y^2 - 18 x^2 y + 12 x^2 + 7 x y - 7 x + 1 \\208& = x^3 (y - 1) (y - 2) (y - 3) + 6 x^2 (y - 1) (y - 2) + 7 x (y - 1) + 1.209\end{align*}210In particular, the characteristic polynomial of the braid arrangement~$\braidArrangement$ is given by211\[212\charPol[\braidArrangement] = (y-1) (y-2) \dots (y-n-1).213\]214Working in~$\R^n$ rather than in~$\HH$ would lead to an additional~$y$ factor in this formula, which might be more familiar to the reader.215See \cref{rem:essential}.216217Finally, we will consider the evaluation of the M\"obius polynomial~$\mobPol[\braidArrangement]$ at~$y = 0$:218\[219\weirdPol[n] \eqdef \mobPol[\braidArrangement][x][0] = \sum_{k \in [n]} (-1)^{k-1} \, (k-1)! \, S(n,k) \, x^{k-1}.220\]221The coefficients of this polynomial are given by the sequence \OEIS{A028246}.222We just observe here that it is connected to the $\b{f}$-polynomial of~$\braidArrangement$.223224\begin{lemma}225We have~$\weirdPol[n] = (1-x) \, \fPol[\braidArrangement]$.226\end{lemma}227228\begin{proof}229This lemma is equivalent to the equality230\begin{equation*}231\sum_{k=1}^n (-1)^{k-1} (k-1)! \, S(n,k) \, x^{k-1} = (1-x) \sum_{k=1}^{n-1} (-1)^{k-1} \, k! \, S(n-1,k) \, x^{k-1}.232\end{equation*}233Distributing $(1-x)$ in the right hand side gives:234\begin{gather*}235(1-x) \sum_{k=1}^{n-1} (-1)^{k-1} \, k! \, S(n-1,k) \, x^{k-1} \\236= \sum_{k=1}^{n-1} k! \, S(n-1,k) \, (-x)^{k-1} + \sum_{k=1}^{n-1} k! \, S(n-1,k) \, (-x)^{k} \\237= \sum_{k=1}^{n-1} k! \, S(n-1,k) \, (-x)^{k-1} \hspace{7cm} \\[-.3cm] + \sum_{k=2}^{n} (k-1)! \, S(n-1,k-1) \, (-x)^{k-1} \\[-.2cm] \hspace{7cm}+ (n-1)! \, S(n-1, n-1) \, (-x)^{n-1} \\238= S(n-1,1) \, (-x)^0 + \sum_{k=2}^{n-1} (k-1)! \, \big( S(n-1,k-1) + k \, S(n-1,k) \big) \, (-x)^{k-1}.239\end{gather*}240The result thus follows from the inductive formula on Stirling numbers of the second kind241\[242S(n+1,k) = k \, S(n,k) + S(n,k-1)243\]244for $0<k<n$.245\end{proof}246247%%%%%%%%%%%%%%%248249\subsection{The $(\ell,n)$-braid arrrangement}250\label{subsec:multiBraidArrangement}251252We now focus on the following specific hyperplane arrangements, illustrated in \cref{fig:multiBraidArrangements}.253We still denote by~$\HH$ the hyperplane of~$\R^n$ defined by~$\sum_{s \in [n]} x_s = 0$.254255\begin{figure}[t]256\centerline{257\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c@{\hspace{.7cm}}c}258\includegraphics[scale=.5]{multiBraidArrangement1}259&260\includegraphics[scale=.5]{multiBraidArrangement2}261&262\includegraphics[scale=.5]{multiBraidArrangement3}263&264\includegraphics[scale=.5]{multiBraidArrangement4}265\\266$\ell = 1$ & $\ell = 2$ & $\ell = 3$ & $\ell = 4$267\end{tabular}268}269\caption{The $(\ell,3)$-braid arrangements for~$\ell \in [4]$.}270\label{fig:multiBraidArrangements}271\end{figure}272273%\begin{definition}274%\label{def:multiBraidArrangement}275%The \defn{$(\ell,n)$-braid arrangement}~$\multiBraidArrangement$ is the arrangement in~$\HH$ obtained as the union of $\ell$ generically translated copies of the braid arrangement~$\braidArrangement$ (that is, the $\b{a}$-braid arrangement for some generic matrix~$\b{a} \in M_{\ell,n-1}(\R)$).276%\end{definition}277%278%This definition is slightly misleading, as the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ a priori depends on the (generic) translation vectors chosen for each copy.279%We will see that many combinatorial aspects of~$\multiBraidArrangement$, in particular its flat poset and thus its M\"obius, $f$- and $b$-polynomials, are in fact independent of the translation vectors as long as they are generic.280%However, the combinatorial description of the face poset of~$\multiBraidArrangement$ will depend on the translation vectors, so that we introduce the following more precise notation recording the translations.281%282%\begin{definition}283%A matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$ is \defn{generic} if any linear dependence among its coefficients~$\sum_{i,j} \lambda_{i,j} \, a_{i,j} = 0$ splits into $\ell$ linear dependences~$\sum_j \lambda_{i,j} \, a_{i,j} = 0$ for~$i \in [\ell]$.284%\end{definition}285%286%\begin{definition}287%\label{def:multiBraidArrangementPrecise}288%For any integers~$\ell,n \geq 1$, and any matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$, the \defn{$\b{a}$-braid arrangement}~$\multiBraidArrangement(\b{a})$ is the arrangement of hyperplanes~$\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ for all~${1 \le s < t \le n}$ and~$i \in [\ell]$, where $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$.289%\end{definition}290291\begin{definition}292\label{def:multiBraidArrangementPrecise}293For any integers~$\ell,n \geq 1$, and any matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$, the \defn{$\b{a}$-braid arrangement}~$\multiBraidArrangement(\b{a})$ is the arrangement of the hyperplanes \linebreak $\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ for~${1 \le s < t \le n}$ and~$i \in [\ell]$, where $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$.294\end{definition}295296In other words, the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ is the union of~$\ell$ copies of the braid arrangement~$\braidArrangement$ translated according to the matrix~$\b{a}$.297Of course, the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ highly depends on~$\b{a}$.298In this paper, we are interested in the case where~$\b{a}$ is generic in the following sense.299300\begin{definition}301A matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$ is \defn{generic} if for any~$i_1, \dots, i_k \in [\ell]$ and distinct $r_1, \dots, r_k \in [n]$, the equality~$\sum_{j \in [k]} A_{i_j, r_{j-1}, r_j} = 0$ implies~$i_1 = \dots = i_k$ (with the notation~$A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$ and the convention~$r_0 = r_k$).302\end{definition}303304We will see that many combinatorial aspects of~$\multiBraidArrangement(\b{a})$, in particular its flat poset and thus its M\"obius, $f$- and $b$-polynomials, are in fact independent of the matrix~$\b{a}$ as long as it is generic.305We therefore consider the following definition.306307\begin{definition}308\label{def:multiBraidArrangement}309The \defn{$(\ell,n)$-braid arrangement}~$\multiBraidArrangement$ is the arrangement in~$\HH$ obtained as the union of $\ell$ generically translated copies of the braid arrangement~$\braidArrangement$ (that is, any $\b{a}$-braid arrangement for some generic matrix~$\b{a} \in M_{\ell,n-1}(\R)$).310\end{definition}311312%\begin{remark}313%\label{rem:multiBraidArrangement}314%In practice, consider the hyperplanes~$\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ for all~$1 \le s < t \le n$ and~$i \in [\ell]$, where $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$ for an arbitrary generic matrix~$(a_{i,j}) \in M_{\ell,n-1}(\R)$.315%\end{remark}316317The objective of \cref{part:multiBraidArrangements} is to explore the combinatorics of these multiple braid arrangements.318We have split our presentation into two sections:319\begin{itemize}320\item In \cref{sec:flatPoset}, we describe the flat poset~$\flatPoset[\multiBraidArrangement]$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ in terms of $(\ell,n)$-partition forests (\cref{subsec:partitionForests}) and labeled $(\ell,n)$-rainbow forests (\cref{subsec:rainbowForests}), which enables us to derive its M\"obius, $f$- and $b$- polynomials (\cref{subsec:MobiusPolynomialMultiBraidArrangement}), from which we extract interesting formulas for the number of vertices (\cref{subsec:verticesMultiBraidArrangement}) and regions (\cref{subsec:regionsMultiBraidArrangement}). Note that all these results are independent of the translation matrix.321\item In \cref{sec:facePoset}, we describe the face poset~$\facePoset[\multiBraidArrangement(\b{a})]$ of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ in terms of ordered $(\ell,n)$-partition forests (\cref{subsec:orderedPartitionForests}). In contrast to the flat poset, this description of the face poset depends on the translation matrix~$\b{a}$. For a given choice of~$\b{a}$, we describe in particular the ordered $(\ell,n)$-partitions forests with a given underlying (unordered) $(\ell,n)$-partition forest (\cref{subsec:PFtoOPF}). We then give a criterion to decide whether a given ordered $(\ell,n)$-partition forest corresponds to a face of~$\multiBraidArrangement(\b{a})$ (\cref{subsec:criterionOPF}).322\end{itemize}323324\begin{remark}325Note that each hyperplane of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is orthogonal to a root~$\b{e}_i-\b{e}_j$ of the type~$A$ root system.326Many such arrangements have been studied previously, for instance, the \defn{Shi arrangement}~\cite{Shi1, Shi2}, the \defn{Catalan arrangement}~\cite[Sect.~7]{PostnikovStanley}, the \defn{Linial arrangement}~\cite[Sect.~8]{PostnikovStanley}, the \defn{generic arrangement} of~\cite[Sect.~5]{PostnikovStanley}, or the \defn{discriminantal arrangements} of~\cite{ManinSchechtman,BayerBrandt}.327We refer to the work of A.~Postnikov and R.~Stanley~\cite{PostnikovStanley} and of O.~Bernardi~\cite{Bernardi} for much more references.328However, in all these examples, either the copies of the braid arrangement are perturbed, or they are translated non-generically.329We have not been able to find the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ properly treated in the literature.330\end{remark}331332\begin{remark}333Part of our discussion on the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ could actually be developed for a hyperplane arrangement~$\arrangement^\ell$ obtained as the union of~$\ell$ generically translated copies of an arbitrary linear hyperplane arrangement~$\arrangement$.334Similarly to \cref{prop:flatPosetMultiBraidArrangement}, the flat poset~$\flatPoset[\arrangement^\ell]$ is isomorphic to the lower set of the $\ell$\ordinal{} Cartesian power of the flat poset~$\flatPoset$ induced by the $\ell$-tuples whose meet in the flat poset~$\flatPoset$ is the bottom element~$\b{0}$ (these are sometimes called strong antichains) and which are minimal for this property.335Similar to \cref{thm:MobiusPolynomialMultiBraidArrangement}, this yields a general formula for the M\"obius polynomial of~$\arrangement^\ell$ in terms of the M\"obius function of the flat poset~$\flatPoset$.336Here, we additionally benefit from the nice properties of the M\"obius polynomial of the braid arrangement~$\braidArrangement$ to obtain appealing formulas for the vertices, regions and bounded regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ (see \cref{thm:verticesMultiBraidArrangement,thm:verticesRefinedMultiBraidArrangement,thm:characteristicPolynomialMultiBraidArrangement,thm:regionsMultiBraidArrangement}).337We have therefore decided to restrict our attention to the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.338\end{remark}339340%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%341342\section{Flat poset and enumeration of~$\multiBraidArrangement$}343\label{sec:flatPoset}344345In this section, we describe the flat poset of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ in terms of \mbox{$(\ell,n)$-partition} forests and derive explicit formulas for its $f$-vector.346Remarkably, the flat poset (and thus the M\"obius, $f$- and $b$- polynomials) of~$\multiBraidArrangement$ is independent of the translation vectors as long as they are generic.347348%%%%%%%%%%%%%%%349350\subsection{Partition forests}351\label{subsec:partitionForests}352353We first introduce the main characters of this section, which will describe the combinatorics of the flat poset of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ of \cref{def:multiBraidArrangement}.354355\begin{definition}356\label{def:intersectionHypergraph}357The \defn{intersection hypergraph} of a $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of set partitions of~$[n]$ is the $\ell$-regular $\ell$-partite hypergraph on all parts of all the partitions~$F_i$ for~${i \in [\ell]}$, with a hyperedge connecting the parts containing~$j$ for each~${j \in [n]}$.358\end{definition}359360\begin{definition}361\label{def:partitionForests}362An \defn{$(\ell,n)$-partition forest} (\resp \defn{tree}) is a $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of set partitions of~$[n]$ whose intersection hypergraph is a hyperforest (\resp hypertree).363See \cref{fig:forests}.364The \defn{dimension} of~$\b{F}$ is~$\smash{{\dim(\b{F}) \eqdef n - 1 - \ell n + \sum_{i \in [\ell]} \card{F_i}}}$.365The \defn{$(\ell,n)$-partition forest poset} is the poset~$\forestPoset$ on $(\ell,n)$-partition forests ordered by componentwise refinement.366%367\begin{figure}368\centerline{\includegraphics[scale=.9]{forests}}369\caption{Some $(3,6)$-partition forests (top) with their intersection hypergraphs (middle) and the corresponding labeled $(3,6)$-rainbow forests (bottom). The last two are trees. The order of the colors in the bottom pictures is red, green, blue.}370\label{fig:forests}371\end{figure}372\end{definition}373374In other words, $\forestPoset$ is the lower set of the $\ell$\ordinal{} Cartesian power of the partition poset~$\partitionPoset$ induced by $(\ell,n)$-partition forests.375Note that the maximal elements of~$\forestPoset$ are the $(\ell, n)$-partition trees.376377The following statement is illustrated in \cref{fig:intersectionPosetMultiBraidArrangement32}.378%379\begin{figure}380\centerline{\includegraphics[scale=.9]{figures/intersectionPosetMultiBraidArrangement32Full}}381\caption{The $(2,3)$-braid arrangement $\multiBraidArrangement[3][2]$ (left), and its flat poset (right), where flats are represented as intersections of hyperplanes (top), as $(2,3)$-partitions forests (middle), and as labeled $(2,3)$-rainbow forests (bottom).}382\label{fig:intersectionPosetMultiBraidArrangement32}383\end{figure}384385\begin{proposition}386\label{prop:flatPosetMultiBraidArrangement}387The flat poset~$\flatPoset[\multiBraidArrangement]$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is isomorphic to the $(\ell,n)$-partition forest poset.388\end{proposition}389390\begin{proof}391Consider that~$\multiBraidArrangement$ is the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ for some generic matrix~$\b{a}$.392%Consider the hyperplanes~$\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ described in \cref{def:multiBraidArrangementPrecise}.393In view of our discussion in \cref{subsec:braidArrangement}, observe that, for each~${i \in [\ell]}$, each set partition~$\pi$ of~$[n]$ corresponds to a $(\card{\pi})$-dimensional flat394\[395\Psi_i(\pi) \eqdef \set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t} \text{ for all $s,t$ in the same part of $\pi$} }396\]397of the $i$\ordinal{} copy of the braid arrangement~$\braidArrangement$.398The flats of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ are thus all of the form399\[400\Psi(\b{F}) \eqdef \bigcap_{i \in [\ell]} \Psi_i(F_i)401\]402for certain $\ell$-tuples~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of set partitions of~$[n]$.403Since the matrix~$\b{a}$ is generic, $\Psi(\b{F})$ is non-empty if and only if the intersection hypergraph of~$\b{F}$ is acyclic.404Moreover, $\Psi(\b{F})$ is included in~$\Psi(\b{G})$ if and only if~$\b{F}$ refines~$\b{G}$ componentwise.405Hence, the flat poset of~$\multiBraidArrangement$ is isomorphic to the $(\ell,n)$-partition forest poset.406Finally, notice that the codimension of the flat~$\Psi(\b{F})$ is the sum of the codimensions of the flats~$\Psi_i(F_i)$ for~$i \in [\ell]$, so that~$\dim(\b{F}) \eqdef n - 1 - \ell n + \sum_{i \in [\ell]} \card{F_i} $ is indeed the dimension of the flat~$\Psi(\b{F})$.407\end{proof}408409%%%%%%%%%%%%%%%410411\pagebreak412\subsection{M\"obius polynomial}413\label{subsec:MobiusPolynomialMultiBraidArrangement}414415We now derive from \cref{def:MobiusPolynomial,prop:flatPosetMultiBraidArrangement} the M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.416417\begin{theorem}418\label{thm:MobiusPolynomialMultiBraidArrangement}419The M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given by420\[421\mobPol[\multiBraidArrangement] = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} y^{\card{G_i}} \prod_{p \in G_i} (-1)^{\card{F_i[p]}-1} (\card{F_i[p]}-1)! \; ,422\]423where~$\b{F} \le \b{G}$ ranges over all intervals of the $(\ell,n)$-partition forest poset~$\forestPoset$, and~$F_i[p]$ denotes the restriction of the partition~$F_i$ to the part~$p$ of~$G_i$.424\end{theorem}425426\begin{proof}427Observe that for~$\b{F} \eqdef (F_1, \dots, F_\ell)$ and~$\b{G} \eqdef (G_1, \dots, G_\ell)$ in~$\forestPoset$, we have428\[429[\b{F}, \b{G}] = \prod_{i \in [\ell]} [F_i, G_i] \simeq \prod_{i \in [\ell]} \prod_{p \in G_i} \partitionPoset[{\card{F_i[p]}}].430\]431Recall that the M\"obius function is multiplicative:432\(433\mu_{P \times Q} \big( (p,q), (p’,q’) \big) = \mu_P(p,p’) \cdot \mu_Q(q,q’),434\)435for all~$p, p' \in P$ and~$q, q' \in Q$.436Hence, we obtain that437\[438\mu_{\forestPoset}(\b{F}, \b{G}) = \prod_{i \in [\ell]} \prod_{p \in G_i} (-1)^{\card{F_i[p]}-1} (\card{F_i[p]}-1)! .439\]440Hence, we derive from \cref{def:MobiusPolynomial,prop:flatPosetMultiBraidArrangement} that441\begin{align*}442\mobPol[\multiBraidArrangement]443& = \sum_{\b{F} \le \b{G}} \mu_{\forestPoset}(\b{F}, \b{G}) \, x^{\dim(\b{F})} \, y^{\dim(\b{G})} \\444& = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} y^{\card{G_i}} \prod_{p \in G_i} (-1)^{\card{F_i[p]}-1} (\card{F_i[p]}-1)! .445\qedhere446\end{align*}447\end{proof}448449By using the polynomial450\[451\weirdPol[n] \eqdef \mobPol[\braidArrangement][x][0] = \sum_{k \in [n]} (-1)^{k-1} \, (k-1)! \, S(n,k) \, x^{k-1}452\]453introduced at the end of \cref{subsec:braidArrangement}, the M\"obius polynomial~$\mobPol[\multiBraidArrangement]$ can also be expressed as follows.454455\begin{proposition}456\label{prop:alternativeFormulaMobiusPolynomialMultiBraidArrangement}457The M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given by458\[459\mobPol[\multiBraidArrangement] = x^{(n-1)(1-\ell)} \sum_{G \in \forestPoset} y^{n-1-\ell n+\sum_{i \in [\ell]} \card{G_i}} \prod_{i \in [\ell]} \weirdPol[\card{G_i}].460\]461\end{proposition}462463\begin{proof}464As already mentioned, the $(\ell,n)$-partition forest poset~$\forestPoset$ is a lower set of the $\ell$\ordinal{} Cartesian power of the partition poset~$\partitionPoset$.465In other words, given a $(\ell,n)$-partition forest $\b{G} \eqdef (G_1, \dots, G_\ell)$, any $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of partitions satisfying~$F_i \le_{\partitionPoset[n]} G_i$ for all~$i \in [\ell]$ is a $(\ell,n)$-partition forest.466Hence, we obtain from \cref{def:MobiusPolynomial,prop:flatPosetMultiBraidArrangement} that467\begin{align*}468\mobPol[\multiBraidArrangement]469& = \sum_{G \in \forestPoset} y^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{G_i}} \prod_{i \in [\ell]} \sum_{F_i \leq_{\partitionPoset[n]} G_i } \mu_{\partitionPoset[n]}(F_i,G_i) \, x^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{F_i}}, \\470& = \sum_{G \in \forestPoset} y^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{G_i}} x^{(n-1)(1-\ell)} \prod_{i \in [\ell]} \sum_{\pi_i \in \partitionPoset[\card{G_i}]} \mu_{\partitionPoset[\card{G_i}]}(\pi_i,\hat{1}) \, x^{\card{\pi_i}-1},471\end{align*}472where $\hat{1}$ denotes the maximal element in $\partitionPoset[\card{G_i}]$ and $\pi_i$ is obtained from $F_i$ by merging elements in the same part of $G_i$.473The result follows since474\[475\weirdPol[\card{G_i}] = \sum_{\pi_i \in \partitionPoset[\card{G_i}]} \mu_{\partitionPoset[\card{G_i}]}(\pi_i,\hat{1}) \, x^{\card{\pi_i}-1}.476\qedhere477\]478%Hence, we obtain479%\[480%\mobPol[\multiBraidArrangement] = \sum_{G \in \forestPoset} y^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{G_i}} x^{(n-1)(1-\ell)} \prod_{i \in [\ell]} \weirdPol[\card{G_i}].481%\qedhere482%\]483\end{proof}484485From \cref{thm:Zaslavsky,thm:MobiusPolynomialMultiBraidArrangement}, we thus obtain the face numbers and bounded face numbers of~$\multiBraidArrangement$, whose first few values are gathered in \cref{table:fvectorMultiBraidArrangements}.486487%\begin{table}488%\centerline{489% \begin{tabular}{c@{\hspace{.7cm}}c}490% \begin{tabular}[t]{c|cccc|c}491% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\492% \hline493% $1$ & $1$ &&&& $1$ \\494% $2$ & $2$ & $1$ &&& $3$ \\495% $3$ & $6$ & $6$ & $1$ && $13$ \\496% $4$ & $24$ & $36$ & $14$ & $1$ & $75$497% \end{tabular}498% &499% \begin{tabular}[t]{c|cccc|c}500% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\501% \hline502% $1$ & $1$ &&&& $1$ \\503% $2$ & $3$ & $2$ &&& $5$ \\504% $3$ & $17$ & $24$ & $8$ && $49$ \\505% $4$ & $149$ & $324$ & $226$ & $50$ & $749$506% \end{tabular}507% \\[2cm]508% \begin{tabular}[t]{c|cccc|c}509% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\510% \hline511% $1$ & $1$ &&&& $1$ \\512% $2$ & $0$ & $1$ &&& $1$ \\513% $3$ & $0$ & $0$ & $1$ && $1$ \\514% $4$ & $0$ & $0$ & $0$ & $1$ & $1$515% \end{tabular}516% &517% \begin{tabular}[t]{c|cccc|c}518% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\519% \hline520% $1$ & $1$ &&&& $1$ \\521% $2$ & $1$ & $2$ &&& $3$ \\522% $3$ & $5$ & $12$ & $8$ && $25$ \\523% $4$ & $43$ & $132$ & $138$ & $50$ & $363$524% \end{tabular}525% \\[2cm]526% $\ell = 1$ & $\ell = 2$527% \\[.8cm]528% \begin{tabular}[t]{c|cccc|c}529% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\530% \hline531% $1$ & $1$ &&&& $1$ \\532% $2$ & $4$ & $3$ &&& $7$ \\533% $3$ & $34$ & $54$ & $21$ && $109$ \\534% $4$ & $472$ & $1152$ & $924$ & $243$ & $2791$535% \end{tabular}536% &537% \begin{tabular}[t]{c|cccc|c}538% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\539% \hline540% $1$ & $1$ &&&& $1$ \\541% $2$ & $5$ & $4$ &&& $9$ \\542% $3$ & $57$ & $96$ & $40$ && $193$ \\543% $4$ & $1089$ & $2808$ & $2396$ & $676$ & $6969$544% \end{tabular}545% \\[2cm]546% \begin{tabular}[t]{c|cccc|c}547% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\548% \hline549% $1$ & $1$ &&&& $1$ \\550% $2$ & $2$ & $3$ &&& $5$ \\551% $3$ & $16$ & $36$ & $21$ && $73$ \\552% $4$ & $224$ & $684$ & $702$ & $243$ & $1853$553% \end{tabular}554% &555% \begin{tabular}[t]{c|cccc|c}556% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\557% \hline558% $1$ & $1$ &&&& $1$ \\559% $2$ & $3$ & $4$ &&& $7$ \\560% $3$ & $33$ & $72$ & $40$ && $145$ \\561% $4$ & $639$ & $1944$ & $1980$ & $676$ & $5239$562% \end{tabular}563% \\[2cm]564% $\ell = 3$ & $\ell = 4$565% \end{tabular}566% }567% \vspace{.3cm}568% \caption{The face numbers (top) and the bounded face numbers (bottom) of the $(\ell,n)$-braid arrangements for~$\ell, n \in [4]$.}569% \label{table:fvectorMultiBraidArrangements}570%\end{table}571572\begin{table}[t]573\centerline{574\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c@{\hspace{2cm}}}575$\ell = 1$576&577\begin{tabular}[t]{c|cccc|c}578$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\579\hline580$1$ & $1$ &&&& $1$ \\581$2$ & $2$ & $1$ &&& $3$ \\582$3$ & $6$ & $6$ & $1$ && $13$ \\583$4$ & $24$ & $36$ & $14$ & $1$ & $75$584\end{tabular}585&586\begin{tabular}[t]{c|cccc|c}587$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\588\hline589$1$ & $1$ &&&& $1$ \\590$2$ & $0$ & $1$ &&& $1$ \\591$3$ & $0$ & $0$ & $1$ && $1$ \\592$4$ & $0$ & $0$ & $0$ & $1$ & $1$593\end{tabular}594\\[2.3cm]595$\ell = 2$596&597\begin{tabular}[t]{c|cccc|c}598$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\599\hline600$1$ & $1$ &&&& $1$ \\601$2$ & $3$ & $2$ &&& $5$ \\602$3$ & $17$ & $24$ & $8$ && $49$ \\603$4$ & $149$ & $324$ & $226$ & $50$ & $749$604\end{tabular}605&606\begin{tabular}[t]{c|cccc|c}607$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\608\hline609$1$ & $1$ &&&& $1$ \\610$2$ & $1$ & $2$ &&& $3$ \\611$3$ & $5$ & $12$ & $8$ && $25$ \\612$4$ & $43$ & $132$ & $138$ & $50$ & $363$613\end{tabular}614\\[2.3cm]615$\ell = 3$616&617\begin{tabular}[t]{c|cccc|c}618$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\619\hline620$1$ & $1$ &&&& $1$ \\621$2$ & $4$ & $3$ &&& $7$ \\622$3$ & $34$ & $54$ & $21$ && $109$ \\623$4$ & $472$ & $1152$ & $924$ & $243$ & $2791$624\end{tabular}625&626\begin{tabular}[t]{c|cccc|c}627$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\628\hline629$1$ & $1$ &&&& $1$ \\630$2$ & $2$ & $3$ &&& $5$ \\631$3$ & $16$ & $36$ & $21$ && $73$ \\632$4$ & $224$ & $684$ & $702$ & $243$ & $1853$633\end{tabular}634\\[2.3cm]635$\ell = 4$636&637\begin{tabular}[t]{c|cccc|c}638$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\639\hline640$1$ & $1$ &&&& $1$ \\641$2$ & $5$ & $4$ &&& $9$ \\642$3$ & $57$ & $96$ & $40$ && $193$ \\643$4$ & $1089$ & $2808$ & $2396$ & $676$ & $6969$644\end{tabular}645&646\begin{tabular}[t]{c|cccc|c}647$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\648\hline649$1$ & $1$ &&&& $1$ \\650$2$ & $3$ & $4$ &&& $7$ \\651$3$ & $33$ & $72$ & $40$ && $145$ \\652$4$ & $639$ & $1944$ & $1980$ & $676$ & $5239$653\end{tabular}654\end{tabular}655}656% \vspace{.3cm}657\caption{The face numbers (left) and the bounded face numbers (right) of the $(\ell,n)$-braid arrangements for~$\ell, n \in [4]$.}658\label{table:fvectorMultiBraidArrangements}659\end{table}660661\begin{corollary}662\label{coro:fbvectorsMultiBraidArrangement}663The $f$- and $b$-polynomials of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ are given by664\begin{align*}665\fPol[\multiBraidArrangement] & = x^{n-1-\ell n}\sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} \prod_{p \in G_i} (\card{F_i[p]}-1)!\\666\text{and}\qquad667\bPol[\multiBraidArrangement] & = (-1)^\ell x^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} \prod_{p \in G_i} -(\card{F_i[p]}-1)! ,668\end{align*}669where~$\b{F} \le \b{G}$ ranges over all intervals of the $(\ell,n)$-partition forest poset~$\forestPoset$, and~$F_i[p]$ denotes the restriction of the partition~$F_i$ to the part~$p$ of~$G_i$.670\end{corollary}671672\begin{example}673For~$n = 1$, we have674\[675\mobPol[{\multiBraidArrangement[1][\ell]}] = \fPol[{\multiBraidArrangement[1][\ell]}] = \bPol[{\multiBraidArrangement[1][\ell]}] = 1.676\]677For~$n = 2$, we have678\[679\mobPol[{\multiBraidArrangement[2][\ell]}] = xy-\ell x+\ell,680\quad681\fPol[{\multiBraidArrangement[2][\ell]}] = (\ell+1)x+\ell682\quad\text{and}\quad683\bPol[{\multiBraidArrangement[2][\ell]}] = (\ell-1)x+\ell.684\]685The case~$n = 3$ is already more interesting.686Consider the set partitions687\[688P \eqdef \big\{ \{1\}, \{2\}, \{3\} \big\},689\quad690Q_i \eqdef \big\{ \{i\}, [3] \ssm \{i\} \big\} \text{\;\;for~$i \in [3]$},691\quad\text{and}\quad R \eqdef \big\{ [3] \big\}.692\]693Observe that the $(\ell,3)$-partition forests are all of the form694\begin{align*}695\b{F} & \eqdef P^\ell,696\\697\b{G}_i^p & \eqdef P^p Q_i P^{\ell-p-1}, % \text{ for } p \le \ell-1 \text{ and } i \in [3],698\\699\b{H}_{i,j}^{p,q} & \eqdef P^p Q_i P^{\ell-p-q-2} Q_j P^q \;\text{($i \ne j$)} % \text{ for } p + q \le \ell-2 \text{ and } i \ne j \in [3]700\\\text{or}\qquad701\b{K}^p & \eqdef P^p R P^{\ell-p-1}. % \text{ for } p \le \ell-1.702\end{align*}703(where we write a tuple of partitions of~$[3]$ as a word on~$\{P, Q_1, Q_2, Q_3, R\}$). %, and $p$ and $q$ are such that the total length is~$\ell$).704%\begin{gather*}705%\b{F} \eqdef (\underbrace{P, \dots, P}_\ell), \\706%\b{G}_i^p \eqdef (\underbrace{P, \dots, P}_p, Q_i, \underbrace{P, \dots, P}_{\ell-p-1}) \text{ for } p \le \ell-1 \text{ and } i \in [3],707%\\708%\b{H}_{i,j}^{p,q} \eqdef (\underbrace{P, \dots, P}_p, Q_i, \underbrace{P, \dots, P}_{\ell-p-q-2}, Q_j, \underbrace{P, \dots, P}_q) \text{ for } p + q \le \ell-2 \text{ and } i \ne j \in [3],709%\\710%\text{or}\quad711%\b{K}^p \eqdef (\underbrace{P, \dots, P}_p, R, \underbrace{P, \dots, P}_{\ell-p-1}) \text{ for } p \le \ell-1.712%\end{gather*}713Moreover, the cover relations in the $(\ell,3)$-partition forest poset are precisely the relations714\[715\b{F} \le \b{G}_i^p \hspace{-.4cm} \begin{array}{l} \rotatebox[origin=c]{45}{$\le$} \raisebox{.2cm}{$\b{H}_{i,j}^{p,q}$} \\[.1cm] \quad \le \b{K}^p \\[.1cm] \rotatebox[origin=c]{-45}{$\le$} \raisebox{-.2cm}{$\b{H}_{j,i}^{\ell-q-1, \ell-p-1}$} \end{array}716\]717for~$i \ne j$ and~$p, q$ such that~$p + q \le \ell-2$.718Hence, we have719\begin{align*}720\mobPol[{\multiBraidArrangement[3][\ell]}] & = x^2 y^2 - 3 \ell x^2 y + \ell (3 \ell - 1) x^2 + 3 \ell x y - 3 \ell (2 \ell - 1) x + \ell (3 \ell - 2) , \\721\fPol[{\multiBraidArrangement[3][\ell]}] & = (3 \ell^2 + 2 \ell + 1) x^2 + 6 \ell^2 x + \ell (3 \ell - 2), \\722\text{and}\qquad723\bPol[{\multiBraidArrangement[3][\ell]}] & = (3 \ell^2 - 4 \ell + 1) x^2 + 6 \ell (\ell - 1) x + \ell (3 \ell - 2).724\end{align*}725Observe that~$3 \ell^2 + 2 \ell + 1$ is~\OEIS{A056109}, that~$\ell (3 \ell - 2)$ is~\OEIS{A000567}, and that ${3 \ell^2 - 4 \ell + 1}$ is~\OEIS{A045944}.726%\vincenti{There is a weird connection between the first and the last. Namely, $3 \ell^2 - 4 \ell + 1 = 3 (\ell - 1)^2 + 2 (\ell - 1)$. Is there a bijective explanation on the arrangements?}727\end{example}728729%%%%%%%%%%%%%%%730731\subsection{Rainbow forests}732\label{subsec:rainbowForests}733734In order to obtain more explicit formulas for the number of vertices and regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ in \cref{subsec:verticesMultiBraidArrangement,subsec:regionsMultiBraidArrangement}, we now introduce another combinatorial model for $(\ell,n)$-partition forests which is more adapted to their enumeration.735736\begin{definition}737\label{def:rainbowForest}738An \defn{$\ell$-rainbow coloring} of a rooted plane forest~$F$ is an assignment of colors of~$[\ell]$ to the non-root nodes of~$F$ such that739\begin{enumerate}[(i)]740\item there is no monochromatic edge,741\item the colors of siblings are increasing from left to right.742\end{enumerate}743We denote by~$\|F\|$ the number of nodes of~$F$ and by~$\card{F}$ the number of trees of the forest~$F$ (\ie its number of connected components).744An \defn{$(\ell,n)$-rainbow forest} (\resp \defn{tree}) is a \mbox{$\ell$-rainbow} colored forest (\resp tree) with $\|F\| = n$ nodes.745We denote by~$\rainbowForests$ (\resp $\rainbowTrees$) the set of $(\ell,n)$-rainbow forests (\resp trees), and set~$\rainbowForests[][\ell] \eqdef \bigsqcup_n \rainbowForests$ (\resp $\rainbowTrees[][\ell] \eqdef \bigsqcup_n \rainbowTrees$).746\end{definition}747748For instance, we have listed the $14$ $(2,4)$-rainbow trees in \cref{fig:rainbowTrees}\,(top).749This figure actually illustrates the following statement.750751\begin{lemma}752\label{lem:FussCatalan}753The $(\ell,m)$-rainbow trees are counted by the \defn{Fuss-Catalan number}754\[755\card{\rainbowTrees[m][\ell]} = F_{\ell,m} \eqdef \frac{1}{(\ell-1)m+1} \binom{\ell m}{m} \qquad \text{\OEIS{A062993}}.756\]757\end{lemma}758759\begin{proof}760We can transform a $\ell$-rainbow tree~$R$ to an $\ell$-ary tree~$T$ as illustrated in \cref{fig:rainbowTrees}.761Namely, the parent of a node~$N$ in~$T$ is the previous sibling colored as~$N$ in~$R$ if it exists, and the parent of~$N$ in~$R$ otherwise.762This classical map is a bijection from $\ell$-rainbow trees to $\ell$-ary trees, which are counted by the Fuss-Catalan numbers~\cite{Klarner, HiltonPedersen}.763%764\begin{figure}765\centerline{\includegraphics[scale=.7]{rainbowTrees}}766\caption{The $14$ $(2,4)$-rainbow trees (top) and $14$ binary trees (bottom), and the simple bijection between them (middle). The order of the colors is red, blue.}767\label{fig:rainbowTrees}768\end{figure}769\end{proof}770771\begin{remark}772\label{rem:functionalEquationFussCatalan}773Recall that the corresponding generating function~$F_\ell(z) \eqdef \sum_{m \ge 0} F_{\ell,m} \, z^m$ satisfies the functional equation774\[775F_\ell(z) = 1 + z \, F_\ell(z)^\ell.776\]777\end{remark}778779\begin{table}780\centerline{%\scalebox{.8}{781\begin{tabular}[t]{c|ccccccccc}782$m \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ \\783\hline784$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\785$2$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ \\786$3$ & $1$ & $5$ & $12$ & $22$ & $35$ & $51$ & $70$ & $92$ & $117$ \\787$4$ & $1$ & $14$ & $55$ & $140$ & $285$ & $506$ & $819$ & $1240$ & $1785$ \\788$5$ & $1$ & $42$ & $273$ & $969$ & $2530$ & $5481$ & $10472$ & $18278$ & $29799$ \\789$6$ & $1$ & $132$ & $1428$ & $7084$ & $23751$ & $62832$ & $141778$ & $285384$ & $527085$ \\790$7$ & $1$ & $429$ & $7752$ & $53820$ & $231880$ & $749398$ & $1997688$ & $4638348$ & $9706503$ \\791$8$ & $1$ & $1430$ & $43263$ & $420732$ & $2330445$ & $9203634$ & $28989675$ & $77652024$ & $184138713$ \\792$9$ & $1$ & $4862$ & $246675$ & $3362260$ & $23950355$ & $115607310$ & $430321633$ & $1329890705$ & $3573805950$793\end{tabular}794}%}795% \vspace{.3cm}796\caption{The Fuss-Catalan numbers~$F_{\ell,m} = \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$ for~$\ell,m \in [9]$. See \OEIS{A062993}.}797\end{table}798799\begin{definition}800For a $(\ell,n)$-rainbow forest~$F$, we define801\[802\omega(F) \eqdef \prod_{i \in [\ell]} \prod_{N \in F} \card{C_i(N)}! ,803\]804where~$N$ ranges over all nodes of~$F$ and~$C_i(N)$ denotes the children of~$N$ colored by~$i$.805\end{definition}806807\begin{definition}808\label{def:labelingRainbowForest}809A \defn{labeling} of a $(\ell,n)$-rainbow forest~$F$ is a bijective map from the nodes of~$F$ to~$[n]$ such that810\begin{enumerate}[(i)]811\item the label of each root is minimal in its tree,812\item the labels of siblings with the same color are increasing from left to right.813\end{enumerate}814\end{definition}815816\begin{lemma}817\label{lem:labelingRainbowForest}818The number~$\lambda(F)$ of labelings of a $(\ell,n)$-rainbow forest~$F$ is given by819\[820\lambda(F) = \frac{n!}{\omega(F) \prod\limits_{T \in F} \|T\|} .821\]822\end{lemma}823824\begin{proof}825Out of all~$n!$ bijective maps from the nodes of~$F$ to~$[n]$, only~$1/\prod_{T \in F} \|T\|$ satisfy Condition~(i) of \cref{def:labelingRainbowForest}, and only $1/\prod_{i \in [\ell]} \prod_{N \in F} \card{C_i(N)}! = 1/\omega(F)$ satisfy Condition~(ii) of \cref{def:labelingRainbowForest}.826\end{proof}827828The following statement is illustrated in \cref{fig:forests}.829830\begin{proposition}831\label{prop:bijectionForests}832There is a bijection from $(\ell,n)$-partition forests to labeled $(\ell,n)$-rainbow forests, such that if the partition forest~$\b{F}$ is sent to the labeled rainbow forest~$F$, then833\[834\dim(\b{F}) = \card{F}-1835\qquad\text{and}\qquad836\mu_{\forestPoset}(\HH, \b{F}) = (-1)^{n-\card{F}} \, \omega(F).837\]838\end{proposition}839840\begin{proof}841From a labeled $(\ell,n)$-rainbow forest~$F$, we construct a $(\ell,n)$-partition forest~$\b{F} \eqdef (F_1, \dots, F_\ell)$ whose $i$\ordinal{} partition~$F_i$ has a part~$\{N\} \cup C_i(N)$ for each node~$N$ of~$F$ not colored~$i$.842Condition~(i) of \cref{def:rainbowForest} ensures that each $F_i$ is indeed a partition.843844Conversely, start from a $(\ell,n)$-partition forest~$\b{F} \eqdef (F_1, \dots, F_i)$.845Consider the colored clique graph~$K_{\b{F}}$ on~$[n]$ obtained by replacing each part in~$F_i$ by a clique of edges colored by~$i$.846For each~$1 < j \le n$, there is a unique shortest path in~$K_{\b{F}}$ from the vertex~$j$ to the smallest vertex in the connected component of~$j$.847Define the parent~$p$ of~$j$ to be the next vertex along this path, and color the node~$j$ by the color of the edge between~$j$ and~$p$.848This defines a labeled $(\ell,n)$-rainbow forest~$F$.849850Finally, observe that851\begin{align*}852\dim(\b{F}) & = n - 1 - \ell n + \sum_{i \in [\ell]} \card{F_i} = \card{F}-1, \qquad\text{and} \\853\mu_{\forestPoset}(\HH, \b{F}) & = \prod\limits_{i \in [\ell]} \prod\limits_{p \in F_i} (-1)^{\card{p}-1} (\card{p}-1) \\ & = \prod\limits_{i \in [\ell]} \prod\limits_{N \in F} (-1)^{\card{C_i(N)}} \card{C_i(N)}! = (-1)^{n-\card{F}} \, \omega(F).854\qedhere855\end{align*}856\end{proof}857858We now transport via this bijection the partial order of the flat lattice on rainbow forests.859For a node~$a$ of a forest~$F$, we denote by $\operatorname{Root}(a)$ the root of the tree of~$F$ containing~$a$.860The following statement is illustrated in \cref{fig:CoverRelRF}, choosing~$c$ to be green, $a$ to be $5$ and $b$ to be $7$.861862\begin{figure}863\centerline{\includegraphics[scale=1]{CoverRelRFFig}}864\vspace{-.3cm}865\caption{A covering relation described in \cref{prop:CoverRelRF}, choosing $c$ to be green, $a$ to be $5$ and $b$ to be $7$.}866\label{fig:CoverRelRF}867\end{figure}868869\begin{proposition}870\label{prop:CoverRelRF}871In the flat poset~$\flatPoset[\multiBraidArrangement]$ labeled by rainbow forests using~\cref{prop:flatPosetMultiBraidArrangement,prop:bijectionForests}, a rainbow forest~$F$ is covered by a rainbow forest~$G$ if and only~$G$ can be obtained from $F$ by:872\begin{enumerate}873\item choosing a color $c$, and two vertices $a$ and $b$ not colored with~$c$ and with $\operatorname{Root}(a)<\operatorname{Root}(b)$,874\item shifting the colors along the path from~$\operatorname{Root}(b)$ to~$b$, so that each node along this path is now colored by the former color of its child and~$b$ is not colored anymore,875\item rerooting at~$b$ the tree containing~$b$ at~$b$, and coloring $b$ with~$c$,876\item adding an edge~$(a,b)$ and replacing the edge~$(b,e)$ by an edge~$(a,e)$ for each child $e$ of~$b$ colored with~$c$.877\end{enumerate}878\end{proposition}879880\begin{proof}881Let us first remark that the graph obtained by these operations is indeed a rainbow forest.882First, we add an edge between two distinct connected components, so that the result is indeed acyclic.883Moreover, the condition on the color of $a$ and on the deletion of edges between $b$ and vertices of color $c$ ensures that we do not add an edge between two vertices of the same color.884Note that the parent of $b$ inherits the color of $b$ which is not $c$.885886Let us recall that the cover relations in the flat poset~$\flatPoset[\multiBraidArrangement]$ are given in terms of $(\ell,n)$-partition forests by choosing a partition $\pi$ of the partition tuple (which corresponds directly to choosing a color), choosing two parts $\pi_a$ and $\pi_b$ in the partition~$\pi$, and merging them, without creating a loop in the intersection hypergraph.887888By choosing two vertices in different connected components of the rainbow forest, we are sure that the intersection hypergraph obtained by adding an edge is still acyclic.889890The last point that has to be explained is the link between the condition on the color of~$a$ and~$b$ and merging two parts in the same partition.891If one of the two nodes, say $a$ for instance is of color~$c$, then it belongs to the same part of $\pi$ as its parent $z$.892The merging is the same if we choose~$z$ which is not colored $c$.893Moreover, as $b$ is in a different connected component, the corresponding two parts are distinct in $\pi$.894Finally, a part is just a corolla so the merging corresponds to building a corolla with $a$, $b$ and their children of color $c$.895\end{proof}896897We finally recast \cref{prop:alternativeFormulaMobiusPolynomialMultiBraidArrangement} in terms of rainbow forests.898899\begin{proposition}900The M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given by901\[902\mobPol[\multiBraidArrangement] = x^{(n-1)(1-\ell)} \sum_{G \in \rainbowForests} y^{n-1+\card{E(G)}} \prod_{i \in [\ell]} \weirdPol[n-\card{E(G,i)}].903\]904\end{proposition}905906\begin{remark}907To further simplify this expression, we would need to count the number of rainbow forests with a prescribed number of colored edges.908However, this number does not admit a known multiplicative formula, up to our knowledge. When there is only one color, the corresponding sequence (counting non-colored forests on $n$ nodes and $k$ edges, rooted in the minimal label of each connected component) is \OEIS{A138464}.909\end{remark}910911%%%%%%%%%%%%%%%912913\subsection{Enumeration of vertices of $\multiBraidArrangement$}914\label{subsec:verticesMultiBraidArrangement}915916We now use the labeled $(\ell,n)$-rainbow forests of \cref{subsec:rainbowForests} to derive more explicit formulas for the number of vertices of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.917The first few values are gathered in \cref{table:verticesMultiBraidArrangement}.918919\begin{table}920\centerline{%\scalebox{.8}{921\begin{tabular}[t]{c|cccccccc}922$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\923\hline924$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ % & $1$ \\925$2$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\926$3$ & $1$ & $8$ & $21$ & $40$ & $65$ & $96$ & $133$ & $176$ \\ % & $225$ \\927$4$ & $1$ & $50$ & $243$ & $676$ & $1445$ & $2646$ & $4375$ & $6728$ \\ % & $9801$ \\928$5$ & $1$ & $432$ & $3993$ & $16384$ & $46305$ & $105456$ & $208537$ & $373248$ \\ % & $620289$ \\929$6$ & $1$ & $4802$ & $85683$ & $521284$ & $1953125$ & $5541126$ & $13119127$ & $27350408$ \\ % & $51883209$ \\930$7$ & $1$ & $65536$ & $2278125$ & $20614528$ & $102555745$ & $362797056$ & $1029059101$ & $2500000000$ \\ % & $5415228513$ \\931$8$ & $1$ & $1062882$ & $72412707$ & $976562500$ & $6457339845$ & $28500625446$ & $96889010407$ & $274371577992$ % \\ & $678770015625$ \\932% $9$ & $1$ & $20000000$ & $2681615217$ & $53971714048$ & $474659385665$ & $2614905943296$ & $10657046640625$ & $35184372088832$ & $99426586671873$933\end{tabular}934}%}935% \vspace{.3cm}936\caption{The numbers $f_0(\multiBraidArrangement) = \ell \big( (\ell-1) n + 1 \big)^{n-2}$ of vertices of~$\multiBraidArrangement$ for~$\ell,n \in [8]$.}937\label{table:verticesMultiBraidArrangement}938\end{table}939940\begin{theorem}941\label{thm:verticesMultiBraidArrangement}942The number of vertices of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is943\[944f_0(\multiBraidArrangement) = \ell \big( (\ell-1) n + 1 \big)^{n-2}.945\]946\end{theorem}947948\begin{proof}949By \cref{prop:flatPosetMultiBraidArrangement,prop:bijectionForests}, we just need to count the labeled $(\ell,n)$-rainbow trees.950A common reasoning for counting Cayley trees is the use of its Prüfer code defined by recursively pruning the smallest leaf while writing down the label of its parent.951This bijection can be adapted to colored Cayley trees by writing down the label of the parent colored by the color of the pruned leaf.952This leads to a bijection with certain colored words of length $n-1$.953Namely, there are two possibilities:954\begin{itemize}955\item either the pruned leaf is attached to the node~$1$ and it can have all $\ell$ colors,956\item or it is attached to one of the $n-1$ other nodes and it can only have $\ell-1$ colors.957\end{itemize}958Note that the last letter in the Prüfer code (obtained by removing the last edge) is necessarily the root $1$, with $\ell$ possible different colors.959Hence, there are960\[961\big( \ell+(n-1)(\ell-1) \big)^{n-2} \ell = \ell \big( (\ell-1) n + 1 \big)^{n-2}962\]963such words.964Similar ideas were used in~\cite{Lewis}.965\end{proof}966967We can refine the formula of \cref{thm:verticesMultiBraidArrangement} according to the dimension of the flats of the different copies intersected to obtain the vertices of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.968969\begin{theorem}970\label{thm:verticesRefinedMultiBraidArrangement}971For any~$k_1, \dots, k_\ell$ such that~$0 \le k_i \le n-1$ for~$i \in [\ell]$ and~${\sum_{i \in [\ell]} k_i = n-1}$, the number of vertices~$v$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ such that the smallest flat of the $i$\ordinal{} copy of~$\braidArrangement$ containing~$v$ has dimension~$n-k_i-1$ is given by972\[973n^{\ell-1} \binom{n-1}{k_1, \dots, k_\ell} \prod_{i \in [\ell]} (n-k_i)^{k_i-1}.974\]975\end{theorem}976977\begin{proof}978By \cref{prop:flatPosetMultiBraidArrangement,prop:bijectionForests}, we just need to count the labeled $(\ell,n)$-rainbow trees with~$k_i$ nodes colored by~$i$.979Forgetting the labels, the $(\ell,n)$-rainbow trees with~$k_i$ nodes colored by~$i$ are precisely the spanning trees of the complete multipartite graph~$K_{k_1, \dots, k_\ell, 1}$ (where the last~$1$ stands for the uncolored root).980Using a Pr\"ufer code similar to that of the proof of \cref{thm:verticesMultiBraidArrangement}, R.~Lewis proved in~\cite{Lewis} that the latter are counted by~${n^{\ell-1} \prod_{i \in [\ell]} (n-k_i)^{k_i-1}}$.981Finally, the possible labelings are counted by the multinomial coefficient~$\binom{n-1}{k_1, \dots, k_\ell}$.982\end{proof}983984%%%%%%%%%%%%%%%985986\subsection{Enumeration of regions and bounded regions of $\multiBraidArrangement$}987\label{subsec:regionsMultiBraidArrangement}988989We finally use the labeled $(\ell,n)$-rainbow forests of \cref{subsec:rainbowForests} to derive more explicit formulas for the number of regions and bounded regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.990The first few values are gathered in \cref{table:regionsMultiBraidArrangement,table:boundedRegionsMultiBraidArrangement}.991We first compute the characteristic polynomial of~$\multiBraidArrangement$.992993%\afterpage{994\begin{table}995\centerline{%\scalebox{.8}{996\begin{tabular}[t]{c|cccccccc}997$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\998\hline999$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ % & $1$ \\1000$2$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ \\ % & $10$ \\1001$3$ & $6$ & $17$ & $34$ & $57$ & $86$ & $121$ & $162$ & $209$ \\ % & $262$ \\1002$4$ & $24$ & $149$ & $472$ & $1089$ & $2096$ & $3589$ & $5664$ & $8417$ \\ % & $11944$ \\1003$5$ & $120$ & $1809$ & $9328$ & $29937$ & $73896$ & $154465$ & $287904$ & $493473$ \\ % & $793432$ \\1004$6$ & $720$ & $28399$ & $241888$ & $1085157$ & $3442816$ & $8795635$ & $19376064$ & $38323753$ \\ % & $69841072$ \\1005$7$ & $5040$ & $550297$ & $7806832$ & $49075065$ & $200320816$ & $625812385$ & $1629858672$ & $3720648337$ \\ % & $7686190000$ \\1006$8$ & $40320$ & $12732873$ & $302346112$ & $2666534049$ & $14010892416$ & $53536186825$ & $164859458688$ & $434390214657$ % \\ & $1017282905344$ \\1007% $9$ & $362880$ & $343231361$ & $13682809216$ & $169423639713$ & $1146173002496$ & $5357227099105$ & $19506923076096$ & $59328538244801$ & $157507267166848$1008\end{tabular}1009}%}1010% \vspace{.3cm}1011\caption{The numbers $f_{n-1}(\multiBraidArrangement)$ of regions of~$\multiBraidArrangement$ for~$\ell,n \in [8]$.}1012\label{table:regionsMultiBraidArrangement}1013\end{table}1014%}10151016%\afterpage{1017\begin{table}1018\centerline{%\scalebox{.8}{1019\begin{tabular}[t]{c|cccccccc}1020$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\1021\hline1022$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ % & $1$ \\1023$2$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ \\ % & $8$ \\1024$3$ & $0$ & $5$ & $16$ & $33$ & $56$ & $85$ & $120$ & $161$ \\ % & $208$ \\1025$4$ & $0$ & $43$ & $224$ & $639$ & $1384$ & $2555$ & $4248$ & $6559$ \\ % & $9584$ \\1026$5$ & $0$ & $529$ & $4528$ & $17937$ & $49696$ & $111745$ & $219024$ & $389473$ \\ % & $644032$ \\1027$6$ & $0$ & $8501$ & $120272$ & $663363$ & $2354624$ & $6455225$ & $14926176$ & $30583847$ \\ % & $57255488$ \\1028$7$ & $0$ & $169021$ & $3968704$ & $30533409$ & $138995776$ & $464913325$ & $1268796096$ & $2996735329$ \\ % & $6353133184$ \\1029$8$ & $0$ & $4010455$ & $156745472$ & $1684352799$ & $9841053184$ & $40179437975$ & $129465630720$ & $352560518527$ % \\ & $846588258944$ \\1030% $9$ & $0$ & $110676833$ & $7216242688$ & $108413745057$ & $813420601856$ & $4055310777025$ & $15431698810368$ & $48461340225473$ & $131823966149632$1031\end{tabular}1032}%}1033% \vspace{.3cm}1034\caption{The numbers $b_{n-1}(\multiBraidArrangement)$ of bounded regions of~$\multiBraidArrangement$ for~$\ell,n \in [8]$.}1035\label{table:boundedRegionsMultiBraidArrangement}1036\end{table}1037%}10381039\begin{theorem}1040\label{thm:characteristicPolynomialMultiBraidArrangement}1041The characteristic polynomial~$\charPol[\multiBraidArrangement]$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given~by1042\[1043\charPol[\multiBraidArrangement] = \frac{(-1)^n n!}{y} \, [z^n] \, \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, y \, z^m}{m} \bigg) ,1044\]1045where~$\displaystyle F_{\ell,m} \eqdef \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$ is the Fuss-Catalan number.1046\end{theorem}10471048\begin{proof}1049By \cref{thm:MobiusPolynomialMultiBraidArrangement,prop:bijectionForests}, the characteristic polynomial~$\charPol[\multiBraidArrangement]$ is1050\[1051\charPol[\multiBraidArrangement] = \sum_{\b{F} \in \forestPoset} \mu_{\forestPoset}(\HH, \b{F}) \, y^{\dim(\b{F})} = \sum_{F \in \rainbowForests} \lambda(F) \, (-1)^{n-\card{F}} \, \omega(F) \, y^{\card{F}-1}.1052\]1053From \cref{lem:labelingRainbowForest}, we observe that1054\[1055\frac{\lambda(F) \, \omega(F) \, (-y)^{\card{F}} \, z^{\|F\|}}{\|F\|!} = \prod_{T \in F} \frac{-y \, z^{\|T\|}}{\|T\|} ,1056\]1057where $T$ ranges over the trees of~$F$.1058Now using that rainbow forests are exactly sets of rainbow trees, we obtain that1059\[1060\sum_{F \in \rainbowForests[][\ell]} \frac{ \lambda(F) \, \omega(F) \, (-y)^{\card{F}} \, z^{\|F\|}}{\|F\|!} = \sum_{F \in \rainbowForests[][\ell]} \prod_{T \in F} \frac{-y \, z^{\|T\|}}{\|T\|} = \exp \bigg( \sum_{T \in \rainbowTrees[][\ell]} \frac{-y \, z^{\|T\|}}{\|T\|} \bigg).1061\]1062From \cref{lem:FussCatalan}, we obtain that1063\[1064\exp \bigg( \sum_{T \in \rainbowTrees[][\ell]} \frac{-y \, z^{\|T\|}}{\|T\|} \bigg) = \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, y \, z^m}{m} \bigg).1065\]1066We conclude that1067\begin{align*}1068\charPol[\multiBraidArrangement]1069& = \sum_{F \in \rainbowForests} \lambda(F) \, (-1)^{n-\card{F}} \, \omega(F) \, y^{\card{F}-1} \\1070& = \frac{(-1)^n \, n!}{y} [z^n] \sum_{F \in \rainbowForests[][\ell]} \frac{ \lambda(F) \, \omega(F) \, (-y)^{\card{F}} \, z^{\|F\|}}{\|F\|!} \\1071& = \frac{(-1)^n n!}{y} \, [z^n] \, \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, y \, z^m}{m} \bigg).1072\qedhere1073\end{align*}1074\end{proof}10751076From the characteristic polynomial of~$\multiBraidArrangement$ and \cref{rem:characteristicPolynomial}, we obtain its numbers of regions and bounded regions.10771078\begin{theorem}1079\label{thm:regionsMultiBraidArrangement}1080The numbers of regions and of bounded regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ are given by1081\begin{align*}1082f_{n-1}(\multiBraidArrangement)1083& = n! \, [z^n] \exp \Bigg( \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \Bigg) \\1084\text{and}\qquad1085b_{n-1}(\multiBraidArrangement)1086%& = - n! \, [z^n] \exp \Bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \Bigg)1087& = (n-1)! \, [z^{n-1}] \exp \bigg( (\ell-1) \sum_{m \ge 1} F_{\ell,m} \, z^m \bigg),1088\end{align*}1089where~$\displaystyle F_{\ell,m} \eqdef \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$ is the Fuss-Catalan number.1090\end{theorem}10911092\begin{proof}1093By \cref{rem:characteristicPolynomial}, we obtain from \cref{thm:characteristicPolynomialMultiBraidArrangement} that1094\begin{align*}1095f_{n-1}(\multiBraidArrangement) & = (-1)^{n-1} \charPol[\multiBraidArrangement][-1] = n! \, [z^n] \, \exp \bigg( \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \bigg), \\1096% \text{and}\qquad1097b_{n-1}(\multiBraidArrangement) & = (-1)^{n-1} \charPol[\multiBraidArrangement][1] = - n! \, [z^n] \, \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \bigg).1098\end{align*}1099To conclude, we thus just need to observe that1100\(1101U_\ell(z) = \frac{\partial}{\partial z} V_\ell(z)1102\)1103where1104\[1105U_\ell(z) \eqdef \exp \bigg( (\ell-1) \sum_{m \ge 1} F_{\ell,m} \, z^m \bigg)1106\qquad\text{and}\qquad1107V_\ell(z) \eqdef - \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \bigg).1108\]1109For this, consider the generating functions1110\[1111F_\ell(z) \eqdef \sum_{m \ge 0} F_{\ell,m} \, z^m1112\qquad\text{and}\qquad1113G_\ell(z) \eqdef \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m}.1114\]1115Recall from \cref{rem:functionalEquationFussCatalan} that~$F_\ell(z)$ satisfies the functional equation1116\[1117F_\ell(z) = 1 + z \, F_\ell(z)^\ell.1118\]1119We thus obtain that1120\[1121F_\ell'(z) \big( 1 - \ell \, z \, F_\ell(z)^{\ell-1} \big) = F_\ell(z)^\ell1122\quad\text{and}\quad1123F_\ell(z) \big( 1 - \ell \, z \, F_\ell(z)^{\ell-1} \big) = 1 - (\ell-1) \, z \, F_\ell(z)^\ell.1124\]1125Combining these two equations, we get1126\begin{equation}1127\label{eq:diff}1128F_\ell(z)^{\ell+1} = F_\ell'(z) \big( 1 - (\ell-1) \, z \, F_\ell(z)^\ell \big).1129\end{equation}1130Observe now that1131\begin{equation}1132\label{eq:GF}1133z \, G_\ell'(z) = F_\ell(z) - 1 = z \, F_\ell(z)^\ell1134\qquad\text{and}\qquad1135G_\ell''(z) = \ell \, F_\ell(z)^{\ell-1} \, F_\ell'(z).1136\end{equation}1137Hence1138\[1139U_\ell(z) = \exp \big( (\ell-1) \, (F_\ell(z) - 1) \big) = \exp \big( (\ell-1) \, z \, G_\ell’(z) \big)1140\]1141and1142\[1143V_\ell'(z) = \frac{\partial}{\partial z} - \exp \big( \! - G_\ell(z) \big) = G_\ell'(z) \exp \big( -G_\ell(z) \big).1144\]1145Consider now the function1146\[1147W_\ell(z) = V_\ell'(z) / U_\ell(z) = G_\ell'(z) \exp \big( \! - G_\ell(z) - (\ell-1) \, z \, G_\ell'(z) \big).1148\]1149Clearly, $W_\ell(0) = 1$.1150Moreover, using~\eqref{eq:GF}, we obtain that its derivative is1151\begin{align*}1152W_\ell'(z)1153& = \Big( G_\ell''(z) \big(1 - (\ell-1) \, z \, G_\ell'(z) \big) - \ell \, G_\ell'(z)^2 \Big) \exp \big( \! - G_\ell(z) - (\ell-1) \, z \, G_\ell'(z) \big) \\1154& = \ell \, F_\ell(z)^{\ell-1} \Big( F_\ell'(z) \big( 1 - (\ell-1) \, z \, F_\ell(z)^\ell \big) - F_\ell(z)^{\ell+1} \Big) \exp \big( \! - G_\ell(z) - (\ell-1) \, z \, G_\ell'(z) \big),1155\end{align*}1156which vanishes by~\eqref{eq:diff}.1157\end{proof}11581159%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%11601161\section{Face poset and combinatorial description of~$\multiBraidArrangement(\b{a})$}1162\label{sec:facePoset}11631164In this section, we describe the face poset of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ in terms of ordered $(\ell,n)$-partition forests.1165This section highly depends on the choice of the translation matrix~$\b{a}$.11661167%%%%%%%%%%%%%%%11681169\subsection{Ordered partition forests}1170\label{subsec:orderedPartitionForests}11711172We now introduce the combinatorial objects that will be used to encode the faces of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ of \cref{def:multiBraidArrangementPrecise}.11731174\begin{definition}1175\label{def:orderedPartitionForest}1176An \defn{ordered $(\ell,n)$-partition forest} (\resp \defn{tree}) is an $\ell$-tuple \linebreak $\order{\b{F}} \eqdef (\order{F_1}, \dots, \order{F_\ell})$ of ordered set partitions of~$[n]$ such that the corresponding \linebreak $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of unordered set partitions of~$[n]$ forms an $(\ell,n)$-partition forest (\resp tree).1177The \defn{ordered $(\ell,n)$-partition forest poset} is the poset~$\orderedForestPoset$ on ordered $(\ell,n)$-partition forests ordered by componentwise refinement.1178In other words, $\orderedForestPoset$ is the subposet of the $\ell$\ordinal{} Cartesian power of the ordered partition poset~$\orderedPartitionPoset$ induced by ordered $(\ell,n)$-partition forests.1179Note that the maximal elements of~$\orderedForestPoset$ are the ordered $(\ell, n)$-partition trees.1180\end{definition}11811182The following statement is the analogue of \cref{prop:flatPosetMultiBraidArrangement}, and is illustrated in \cref{fig:B23a,fig:B23b}.11831184\begin{proposition}1185\label{prop:facePosetMultiBraidArrangement}1186The face poset~$\facePoset[\multiBraidArrangement(\b{a})]$ of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ is isomorphic to an upper set~$\orderedForestPoset(\b{a})$ of the ordered $(\ell,n)$-partition forest poset~$\orderedForestPoset$.1187\end{proposition}11881189\begin{proof}1190The proof is based on that of \cref{prop:flatPosetMultiBraidArrangement}.1191A face of~$\multiBraidArrangement(\b{a})$ is an intersection of faces of the $\ell$ copies of~$\multiBraidArrangement$, hence corresponds to an $\ell$-tuple of ordered partitions of~$[n]$.1192Moreover, the flats supporting these faces intersect, so that the corresponding unordered partitions must form an $(\ell,n)$-partition forest.1193Hence, each face of~$\multiBraidArrangement(\b{a})$ corresponds to a certain ordered $(\ell,n)$-partition forest.1194Moreover, the inclusion of faces of~$\multiBraidArrangement(\b{a})$ translates to the componentwise refinement on ordered partitions.1195Finally, by genericity, it is immediate that we obtain an upper set of this componentwise refinement order.1196\end{proof}11971198\begin{figure}[p]1199\vspace*{.5cm}1200\centerline{\includegraphics[scale=1]{B23a}}1201\vspace*{.5cm}1202\caption{Labelings of the faces of the arrangement~$\multiBraidArrangement[3][2](\b{a})$ for~$\b{a} = \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix}$.}1203\label{fig:B23a}1204\end{figure}12051206\begin{figure}[p]1207\vspace*{.5cm}1208\centerline{\includegraphics[scale=1]{B23b}}1209\vspace*{.5cm}1210\caption{Labelings of the faces of the arrangement~$\multiBraidArrangement[3][2](\b{a})$ for~$\b{a} = \begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix}$.}1211\label{fig:B23b}1212\end{figure}12131214We now fix a generic translation matrix~$\b{a} \eqdef (a_{i,j})$ and we still denote by $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$ for all~$1 \le s < t \le n$ and~$i \in [\ell]$ (and often write~$A_{i,t,s}$ for~$-A_{i,s,t}$).1215The objective of this section is to describe1216\begin{itemize}1217\item the ordered $(\ell,n)$-partitions forests of the upper set~$\orderedForestPoset(\b{a})$ with a given underlying (unordered) $(\ell,n)$-partition forest (\cref{subsec:PFtoOPF}),1218\item a criterion to decide whether a given ordered $(\ell,n)$-partition forest belongs to the upper set~$\orderedForestPoset(\b{a})$, \ie corresponds to a face of~$\multiBraidArrangement(\b{a})$ (\cref{subsec:criterionOPF}).1219\end{itemize}12201221%%%%%%%%%%%%%%%12221223\subsection{From partition forests to ordered partition forests}1224\label{subsec:PFtoOPF}12251226In this section, we describe the ordered $(\ell,n)$-partitions forests~$\order{\b{F}}$ of the upper set~$\orderedForestPoset(\b{a})$ with a given underlying $(\ell,n)$-partition forest~$\b{F}$.1227We denote by~$cc(\b{F})$ the connected components of~$\b{F}$, meaning the partition of~$[n]$ given by the hyperedge labels of the connected components of the intersection hypergraph of~$\b{F}$.1228We first observe that the choice of~$\b{a}$ fixes the order of the parts in a common connected component of~$\b{F}$.12291230\begin{proposition}1231\label{prop:PFtoOPF1}1232Consider a $(\ell,n)$-partition forest~$\b{F} \eqdef (F_1, \dots, F_\ell)$, and two integers~$s,t \in [n]$ labeling two hyperedges in the same connected component of the intersection hypergraph of~$\b{F}$.1233Assume that the unique path from~$s$ to~$t$ in the hypergraph of~$\b{F}$ passes through the hyperedges labeled by~$s = r_0, \dots, r_q = t$ and through parts of the partitions~$F_{i_1}, \dots, F_{i_q}$.1234Then for any ordered $(\ell,n)$-partition forest~$\order{\b{F}} \eqdef (\order{F_1}, \dots, \order{F_\ell})$ of the upper set~$\orderedForestPoset(\b{a})$ with underlying $(\ell,n)$-partition \linebreak forest~$\b{F}$ and any~$i \in [\ell]$, the order of~$s$ and~$t$ in~$\order{F}_i$ is given by the sign \linebreak of~${A_{i,s,t} - \sum_{p \in [q]} A_{i_p, r_{p-1}, r_p}}$.1235\end{proposition}12361237\begin{proof}1238Consider any point~$\b{x}$ in the face of~$\multiBraidArrangement(\b{a})$ corresponding to~$\order{\b{F}}$.1239Along the path from~$s$ to~$t$, we have~$x_{r_{p-1}} - x_{r_p} = A_{i_p, r_{p-1}, r_p}$ for each~$p \in [q]$.1240Hence, we obtain that1241\[1242x_s - x_t = \sum_{p \in [q]} (x_{r_{p-1}} - x_{r_p}) = \sum_{p \in [q]} A_{i_p, r_{p-1}, r_p}.1243\]1244The order of~$s,t$ in~$\order{F}_i$ is given by the sign of~$A_{i,s,t} - (x_s - x_t)$, hence by the sign of ${A_{i,s,t} - \sum_{p \in [q]} A_{i_p, r_{p-1}, r_p}}$.1245\end{proof}12461247We now describe the different ways to order the parts in distinct connected components of~$\b{F}$.1248For this, we need the following posets.12491250\begin{definition}1251Consider a $(\ell,n)$-partition forest~$\b{F}$ and denote by~$cc(\b{F})$ the connected components of~$\b{F}$.1252For each pair~$s,t \in [n]$ in distinct connected components of~$cc(\b{F})$, we define the chain~$<_{s,t}$ on the $\ell$ triples~$(i,s,t)$ for~$i \in [\ell]$ given by the order of the values~$A_{i,s,t}$.1253The \defn{inversion poset}~$\Inv(\b{F}, \b{a})$ is then the poset obtained by quotienting the disjoint union of the chains~$<_{s,t}$ (for all~$s,t \in [n]$ in distinct connected components of~$cc(\b{F})$) by the equivalence relation~$(i,s,t) \equiv (i,s',t')$ if~$s$ and~$s'$ belong to the same part of~$F_i$ and~$t$ and~$t'$ belong to the same part of~$F_i$.1254We say that a subset~$X$ of~$\Inv(\b{F}, \b{a})$ is antisymmetric if~$(i,s,t) \in X \iff (i,t,s) \notin X$.1255\end{definition}12561257\begin{proposition}1258\label{prop:PFtoOPF2}1259The ordered $(\ell,n)$-partition forests of the upper set~$\orderedForestPoset(\b{a})$ with a given underlying $(\ell,n)$-partition forest~$\b{F}$ are in bijection with the antisymmetric lower sets of the inversion poset~$\Inv(\b{F}, \b{a})$.1260\end{proposition}12611262\begin{proof}1263Consider an ordered $(\ell,n)$-partition forest~$\order{\b{F}}$ of the upper set~$\orderedForestPoset(\b{a})$.1264Let~$\b{x}$ be any point of the face of~$\multiBraidArrangement(\b{a})$ corresponding to~$\order{\b{F}}$.1265For each pair~$s,t \in [n]$ in distinct connected components of~$cc(\b{F})$, let~$I_{s,t}(\order{\b{F}})$ be the set of indices~$i \in [\ell]$ such that~$x_s - x_t < A_{i,s,t}$.1266Note that~$I_{s,t}$ is by definition a lower set of the chain~$<_{s,t}$ of~$\Inv(\b{F}, \b{a})$.1267Hence, $I(\order{F}) \eqdef \bigcup_{s,t} I_{s,t} / {\equiv}$ is a lower set of~$\Inv(\b{F}, \b{a})$.1268Moreover, it is clearly antisymmetric since1269\[1270(i,s,t) \in I(\order{F}) \iff x_s - x_t < A_{i,s,t} \iff x_t - x_s > A_{i,t,s} \iff (i,t,s) \notin I(\order{F}).1271\]12721273Conversely, given an antisymmetric lower set~$I$ of~$\Inv(\b{F}, \b{a})$, we can reconstruct an ordered $(\ell,n)$-partition forest~$\order{\b{F}}$ by ordering each pair~$s,t \in [n]$ in~$\order{F}_i$1274\begin{itemize}1275\item according to \cref{prop:PFtoOPF1} (hence independently of~$I$) if $s$ and~$t$ belong to the same connected component of~$\b{F}$,1276\item according to~$I$ if~$s$ and~$t$ belong to distinct connected components of~$\b{F}$. Namely, we place the block of~$\order{F}_i$ containing~$s$ before the block of~$\order{F}_i$ containing~$t$ if and only if~$(i,s,t) \in I$.1277\end{itemize}1278It is then straightforward to check that the resulting ordered $(\ell,n)$-partition forest belongs to the upper set~$\orderedForestPoset(\b{a})$, by exhibiting a point~$\b{x}$ in of the corresponding face of~$\multiBraidArrangement(\b{a})$.1279\end{proof}12801281%%%%%%%%%%%%%%%12821283\subsection{A criterion for ordered partition forests}1284\label{subsec:criterionOPF}12851286We now consider a given ordered $(\ell,n)$-partition forest~$\order{F}$ and provide a criterion to decide if it belongs to the upper set~$\orderedForestPoset(\b{a})$ corresponding to the faces of~$\multiBraidArrangement(\b{a})$.1287For this, we need the following directed graph associated to~$\order{\b{F}}$.12881289\begin{definition}1290For an ordered partition~$\order{\pi} \eqdef \order{\pi}_1 | \cdots | \order{\pi}_k$ of~$[n]$, we denote by~$D_{\order{\pi}}$ the directed graph on~$[n]$ with an arc~$\max(\order{\pi}_j) \to \min(\order{\pi}_{j+1})$ for each~$j \in [k-1]$ and a cycle~${x_1 \to \dots \to x_p \to x_1}$ for each part~$\order{\pi}_j = \{x_1 < \dots < x_p\}$.1291Note that~$D_{\order{\pi}}$ has~$n$ vertices and~$n + k$ arcs.1292For an ordered $(\ell,n)$-partition forest~$\order{\b{F}} \eqdef (\order{F_1}, \dots, \order{F_\ell})$, we denote by~$D_{\order{\b{F}}}$ the superposition of the directed graphs~$D_{\order{F}_i}$ for~$i \in [\ell]$, where the arcs of~$D_{\order{F}_i}$ are labeled by~$i$.1293\end{definition}12941295\begin{proposition}1296\label{prop:characterizationOPFs}1297An ordered $(\ell,n)$-partition forest~$\order{\b{F}}$ belongs to the upper set~$\orderedForestPoset(\b{a})$ if and only if $\sum_{\alpha \in \gamma} A_{i(\alpha), s(\alpha), t(\alpha)} \ge 0$ for any (simple) oriented cycle~$\gamma$ in~$D_{\order{\b{F}}}$, where each arc~$\alpha \in \gamma$ has label~$i(\alpha)$, source~$s(\alpha)$, and target~$t(\alpha)$.1298\end{proposition}12991300\begin{proof}1301Consider an ordered $(\ell,n)$-partition forest~$\order{\b{F}} \eqdef (\order{F}_1, \dots, \order{F}_\ell)$.1302For each~$i \in [\ell]$, denote by1303\begin{itemize}1304\item $m_i$ the number of arcs of~$D_{\order{F}_i}$1305\item $M_i$ the incidence matrix of~$D_{\order{F}_i}$, with $m_i$ rows and $n$ columns, with a row for each arc~$\alpha$ of~$D_{\order{F}_i}$ containing a $-1$ in column~$s(\alpha)$, a $1$ in column~$t(\alpha)$, and $0$ elsewhere,1306\item $\b{z}_i$ the column vector in~$\R^{m_i}$ with a row for each arc~$\alpha$ of~$D_{\order{F}_i}$ containing the value~$A_{i(\alpha), s(\alpha), t(\alpha)}$.1307\end{itemize}1308Then a point~$\b{x} \in \R^n$ belongs to the face of the $i$\ordinal{} braid arrangement corresponding to~$\order{F}_i$ if and only if it satisfies~$M_i \, \b{x} \le \b{z}_i$.1309Hence, $\order{\b{F}}$ appears as a face of the $\b{a}$-braid arrangement if and only if there exists~$\b{x} \in \R^n$ such that~$M \, \b{x} \le \b{z}$, where~$M$ is the $(m \times n)$-matrix (where~$m \eqdef \sum_{i \in [\ell]} m_i$), obtained by piling the matrices~$M_i$ for~$i \in [\ell]$ and similarly, $\b{z}$ is the column vector obtained by piling the vectors~$\b{z}_i$.1310A direct application of the Farkas lemma (see \eg \cite[Prop.~1.7]{Ziegler}), there exists~$\b{x} \in \R^n$ such that~$M \, \b{x} \le \b{z}$ if and only if~$\b{c} \b{z} \ge 0$ for any~$\b{c} \in (\R^m)^*$ with~$\b{c} \ge \b{0}$ and~$\b{c} M = \b{0}$.1311Now it is classical that the left kernel of the incidence matrix of a directed graph is generated by its circuits (non-necessarily oriented cycles), and that the positive cone in this left kernel is generated by its oriented cycles.1312\end{proof}13131314\begin{remark}1315Note that we made some arbitrary choices here by choosing the arc from~$\max(\order{\pi}_j)$ to~$\min(\order{\pi}_{j+1})$ between two consecutive parts~$\order{\pi}_j$ and~$\order{\pi}_{j+1}$ and a cycle inside each part~$\order{\pi}_j$ (while we said that the order in each part is irrelevant).1316We could instead have considered all arcs connecting two elements of two consecutive parts, or two elements inside the same part.1317Our choices just limit the amount of oriented cycles in~$D_{\order{\pi}}$.1318\end{remark}131913201321