Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
GuillaumeLaplante-Anfossi
GitHub Repository: GuillaumeLaplante-Anfossi/Poissons
Path: blob/main/AMS/combinatorics.tex
1017 views
1
\chapter{Combinatorics of multiple braid arrangements}
2
\label{part:multiBraidArrangements}
3
4
In this first part, we study the combinatorics of hyperplane arrangements obtained as unions of generically translated copies of the braid arrangement.
5
In \cref{sec:arrangements}, we first recall some classical facts on the enumeration of hyperplane arrangements (\cref{subsec:arrangements}), present the classical braid arrangement (\cref{subsec:braidArrangement}), and define our multiple braid arrangements (\cref{subsec:multiBraidArrangement}).
6
Then in \cref{sec:flatPoset}, we describe their flat posets in terms of partition forests (\cref{subsec:partitionForests}) and rainbow forests (\cref{subsec:rainbowForests}), from which we derive their M\"obius polynomials (\cref{subsec:MobiusPolynomialMultiBraidArrangement}), and some surprising formulas for their numbers of vertices (\cref{subsec:verticesMultiBraidArrangement}) and regions (\cref{subsec:regionsMultiBraidArrangement}).
7
Finally, in \cref{sec:facePoset}, we describe their face posets in terms of ordered partition forests (\cref{subsec:orderedPartitionForests}), and explore some combinatorial criteria to describe the ordered partition forests that appear as faces of a given multiple braid arrangement (\cref{subsec:PFtoOPF,subsec:criterionOPF}).
8
9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10
11
\section{Recollection on hyperplane arrangements and braid arrangements}
12
\label{sec:arrangements}
13
14
%%%%%%%%%%%%%%%
15
16
\subsection{Hyperplane arrangements}
17
\label{subsec:arrangements}
18
19
We first briefly recall classical results on the combinatorics of affine hyperplane arrangements, in particular the enumerative connection between their intersection posets and their face lattices due to T.~Zaslavsky~\cite{Zaslavsky}.
20
21
\begin{definition}
22
A finite affine real \defn{hyperplane arrangement} is a finite set~$\arrangement$ of affine hyperplanes in~$\R^d$.
23
\end{definition}
24
25
\begin{definition}
26
A \defn{region} of~$\arrangement$ is a connected component of~$\R^d \ssm \bigcup_{H \in \arrangement} H$.
27
The \defn{faces} of~$\arrangement$ are the closures of the regions of~$\arrangement$ and all their intersections with a hyperplane of~$\arrangement$.
28
The \defn{face poset} of~$\arrangement$ is the poset~$\facePoset$ of faces of~$\arrangement$ ordered by inclusion.
29
The \defn{$f$-polynomial}~$\fPol$ and \defn{$b$-polynomial}~$\bPol$ of~$\arrangement$ are the polynomials
30
\[
31
\fPol \eqdef \sum_{k = 0}^d f_k(\arrangement) \, x^k
32
\qquad\text{and}\qquad
33
\bPol \eqdef \sum_{k = 0}^d b_k(\arrangement) \, x^k ,
34
\]
35
where~$f_k(\arrangement)$ denotes the number of $k$-dimensional faces of~$\arrangement$, while~$b_k(\arrangement)$ denotes the number of bounded $k$-dimensional faces of~$\arrangement$.
36
\end{definition}
37
38
\begin{definition}
39
A \defn{flat} of~$\arrangement$ is a non-empty affine subspace of~$\R^d$ that can be obtained as the intersection of some hyperplanes of~$\arrangement$.
40
The \defn{flat poset} of~$\arrangement$ is the poset~$\flatPoset$ of flats of~$\arrangement$ ordered by reverse inclusion.
41
\end{definition}
42
43
\begin{definition}
44
\label{def:MobiusPolynomial}
45
The \defn{M\"obius polynomial}~$\mu_{\arrangement}(x,y)$ of~$\arrangement$ is the polynomial defined by
46
\[
47
\mobPol \eqdef \sum_{F \le G} \mu_{\flatPoset}(F,G) \, x^{\dim(F)} \, y^{\dim(G)},
48
\]
49
where~$F \le G$ ranges over all intervals of the flat poset~$\flatPoset$, and~$\mu_{\flatPoset}(F,G)$ denotes the \defn{M\"obius function} on the flat poset~$\flatPoset$ defined as usual by
50
\[
51
\mu_{\flatPoset}(F, F) = 1
52
\qquad\text{and}\qquad
53
\sum_{F \le G \le H} \mu_{\flatPoset}(F,G) = 0
54
\]
55
for all~$F < H$ in~$\flatPoset$.
56
\end{definition}
57
58
\begin{remark}
59
Our definition of the M\"obius polynomial slightly differs from that of~\cite{Zaslavsky} as we use the dimension of~$F$ instead of its codimension, in order to simplify slightly the following statement.
60
\end{remark}
61
62
\begin{theorem}[{\cite[Thm.~A]{Zaslavsky}}]
63
\label{thm:Zaslavsky}
64
The $f$-polynomial, the $b$-polynomial, and the M\"obius polynomial of the hyperplane arrangement~$\arrangement$ are related by
65
\[
66
\fPol = \mobPol[\arrangement][-x][-1]
67
\qquad\text{and}\qquad
68
\bPol = \mobPol[\arrangement][-x][1].
69
\]
70
\end{theorem}
71
72
\begin{example}
73
%
74
\begin{figure}
75
% \begin{overpic}[scale=.9]{intersectionPoset}
76
% \put(72.5, -2){$1$}
77
% \put(51, 10){$-1$}
78
% \put(61, 10){$-1$}
79
% \put(71, 10){$-1$}
80
% \put(82, 10){$-1$}
81
% \put(94, 10){$-1$}
82
% \put(51.5, 32){$2$}
83
% \put(66, 32){$1$}
84
% \put(80, 32){$1$}
85
% \put(93.5, 32){$2$}
86
% \end{overpic}
87
% \caption{A hyperplane arrangement (left) and its intersection poset with its M\"obius function (right).}
88
\centerline{\includegraphics[scale=.9]{intersectionPoset}}
89
\caption{A hyperplane arrangement (left) and its intersection poset (right).}
90
\label{fig:arrangement}
91
\end{figure}
92
%
93
For the arrangement~$\arrangement$ of $5$ hyperplanes of \cref{fig:arrangement}, we have
94
\[
95
\mobPol = x^2y^2 - 5x^2y + 6x^2 + 5xy - 10x + 4 ,
96
\]
97
so that
98
\[
99
\fPol = 12 \, x^2 + 15 \, x + 4
100
\qquad\text{and}\qquad
101
\bPol = 2 \, x^2 + 5 \, x + 4 .
102
\]
103
\end{example}
104
105
\begin{remark}
106
\label{rem:characteristicPolynomial}
107
The coefficient of~$x^d$ in the M\"obius polynomial~$\mobPol$ gives the more classical \defn{characteristic polynomial}
108
\[
109
\charPol \eqdef [x^d] \, \mobPol = \sum_F \mu_{\flatPoset}(\R^d,F) \, y^{\dim(F)} .
110
\]
111
By \cref{thm:Zaslavsky}, we thus have
112
\[
113
f_d(\arrangement) = (-1)^d \, \charPol[\arrangement][-1]
114
\qquad\text{and}\qquad
115
b_d(\arrangement) = (-1)^d \, \charPol[\arrangement][1].
116
\]
117
\end{remark}
118
119
%%%%%%%%%%%%%%%
120
121
\subsection{The braid arrangement}
122
\label{subsec:braidArrangement}
123
124
We now briefly recall the classical combinatorics of the braid arrangement.
125
See \cref{fig:facePosetBraidArrangement3,fig:intersectionPosetBraidArrangement3,fig:intersectionPosetBraidArrangement4} for illustrations when~$n = 3$ and~$n = 4$.
126
127
%\begin{figure}
128
% \centerline{\includegraphics[scale=.9]{figures/intersectionPosetBraidArrangement3Full}}
129
% \caption{The braid arrangement $\braidArrangement[3]$ (left), its flat poset~$\flatPoset[{\braidArrangement[3]}]$ (middle), and the partition poset~$\partitionPoset[3]$ (right).}
130
% \label{fig:braidArrangement3}
131
%\end{figure}
132
133
%\afterpage{
134
\begin{figure}[b]
135
\centerline{\includegraphics[scale=.7]{figures/facePosetBraidArrangement3}}
136
\caption{The face poset~$\facePoset[{\braidArrangement[3]}]$ of the braid arrangement $\braidArrangement[3]$ (left), where faces are represented as cones (middle) or as ordered set partitions of~$[3]$ (right).}
137
\label{fig:facePosetBraidArrangement3}
138
\end{figure}
139
%}
140
141
%\afterpage{
142
\begin{figure}
143
\centerline{\includegraphics[scale=.7]{figures/intersectionPosetBraidArrangement3}}
144
\caption{The flat poset~$\flatPoset[{\braidArrangement[3]}]$ of the braid arrangement $\braidArrangement[3]$, where flats are represented as intersections of hyperplanes (left) or as set partitions of~$[3]$ (right).}
145
\label{fig:intersectionPosetBraidArrangement3}
146
\end{figure}
147
%}
148
149
%\afterpage{
150
\begin{figure}
151
\centerline{\includegraphics[scale=.26]{figures/intersectionPosetBraidArrangement4}}
152
\caption{The flat poset~$\flatPoset[{\braidArrangement[4]}]$ of the braid arrangement $\braidArrangement[4]$, where flats are represented as intersections of hyperplanes (top) or as set partitions of~$[4]$ (bottom).}
153
\label{fig:intersectionPosetBraidArrangement4}
154
\end{figure}
155
%}
156
157
\begin{definition}
158
Fix~$n \ge 1$ and denote by~$\HH$ the hyperplane of~$\R^n$ defined by the equality~${\sum_{s \in [n]} x_s = 0}$.
159
The \defn{braid arrangement}~$\braidArrangement$ is the arrangement of the hyperplanes~$\set{\b{x} \in \HH}{x_s = x_t}$ for all~${1 \le s < t \le n}$.
160
\end{definition}
161
162
\begin{remark}
163
\label{rem:essential}
164
Note that we have decided to work in the space~$\HH$ rather than in the space~$\R^n$.
165
The advantage is that the braid arrangement~$\braidArrangement$ in~$\HH$ is essential, so that we can speak of its rays.
166
Working in~$\R^n$ would change rays to walls, and would multiply all M\"obius polynomials by a factor~$xy$.
167
\end{remark}
168
169
The combinatorics of the braid arrangement~$\braidArrangement$ is well-known.
170
The descriptions of its face and flat posets involve both ordered and unordered set partitions.
171
To avoid confusions, we will always mark with an arrow the ordered structures (ordered set partitions, ordered partition forests, etc.).
172
Hence, the letter $\pi$ denotes an unordered set partition (the order is irrelevant, neither inside each part, nor between two distinct parts), while~$\order{\pi}$ denotes an ordered set partition (the order inside each part is irrelevant, but the order between distinct parts is relevant).
173
174
The braid arrangement~$\braidArrangement$ has a $k$-dimensional face
175
\[
176
\Phi(\order{\pi}) \eqdef \set{\b{x} \in \R^n}{\substack{\displaystyle x_s \le x_t \text{ for all $s,t$ such that the part of~$s$} \\[.1cm] \displaystyle \text{is weakly before the part of~$t$ in $\order{\pi}$}}}
177
\]
178
for each ordered set partition~$\order{\pi}$ of~$[n]$ into~$k+1$ parts, or equivalently, for each surjection from~$[n]$ to~$[k+1]$.
179
The face poset~$\facePoset[\braidArrangement]$ is thus isomorphic to the refinement poset~$\orderedPartitionPoset$ on ordered set partitions, where an ordered partition~$\order{\pi}$ is smaller than an ordered partition~$\order{\omega}$ if each part of~$\order{\pi}$ is the union of an interval of consecutive parts in~$\order{\omega}$.
180
In particular, it has a single vertex corresponding to the ordered partition~$[n]$, $2^n-2$ rays corresponding to the proper nonempty subsets of~$[n]$ (ordered partitions of~$[n]$ into~$2$ parts), and $n!$ regions corresponding to the permutations of~$[n]$ (ordered partitions of~$[n]$ into~$n$ parts).
181
As an example, \cref{fig:facePosetBraidArrangement3} illustrates the face poset of the braid arrangement~$\braidArrangement[3]$.
182
183
The braid arrangement~$\braidArrangement$ has a $k$-dimensional~flat
184
\[
185
\Psi(\pi) \eqdef \set{\b{x} \in \R^n}{x_s = x_t \text{ for all $s, t$ which belong to the same part of~$\pi$}}
186
\]
187
for each unordered set partition~$\pi$ of~$[n]$ into $k+1$ parts.
188
The flat poset~$\flatPoset[\braidArrangement]$ is thus isomorphic to the refinement poset~$\partitionPoset$ on set partitions of~$[n]$, where a partition~$\pi$ is smaller than a partition~$\omega$ if each part of~$\pi$ is contained in a part of~$\omega$.
189
For instance, \cref{fig:intersectionPosetBraidArrangement3,fig:intersectionPosetBraidArrangement4} illustrate the flat posets of the braid arrangements~$\braidArrangement[3]$ and~$\braidArrangement[4]$.
190
Note that the refinement in~$\orderedPartitionPoset$ and in~$\partitionPoset$ are in opposite direction.
191
192
The M\"obius function of the set partitions poset~$\partitionPoset$ is given by
193
\[
194
\mu_{\partitionPoset}(\pi, \omega) = \prod_{p \in \omega} (-1)^{\card{\pi[p]}-1}(\card{\pi[p]}-1)! \ ,
195
\]
196
where~$\pi[p]$ denotes the restriction of the partition~$\pi$ to the part~$p$ of the partition~$\omega$, and $\card{\pi[p]}$ denotes its number of parts.
197
See for instance~\cite{Birkhoff, Rota}.
198
The M\"obius polynomial of the braid arrangement~$\braidArrangement$ is given by
199
\[
200
\mobPol[\braidArrangement] = \sum_{k \in [n]} x^{k-1} S(n,k) \prod_{i \in [k-1]} (y-i) ,
201
\]
202
where~$S(n,k)$ denotes the Stirling number of the second kind \OEIS{A008277}, \ie the number of set partitions of~$[n]$ into~$k$ parts.
203
For instance
204
\begin{align*}
205
\mobPol[{\braidArrangement[1]}] & = 1 \\
206
\mobPol[{\braidArrangement[2]}] & = x y - x + 1 = x (y - 1) + 1 \\
207
\mobPol[{\braidArrangement[3]}] & = x^2 y^2 - 3 x^2 y + 2 x^2 + 3 x y - 3 x + 1 = x^2 (y - 1) (y - 2) + 3 x (y - 1) + 1\\
208
\mobPol[{\braidArrangement[4]}] & = x^3 y^3 - 6 x^3 y^2 + 11 x^3 y - 6 x^3 + 6 x^2 y^2 - 18 x^2 y + 12 x^2 + 7 x y - 7 x + 1 \\
209
& = x^3 (y - 1) (y - 2) (y - 3) + 6 x^2 (y - 1) (y - 2) + 7 x (y - 1) + 1.
210
\end{align*}
211
In particular, the characteristic polynomial of the braid arrangement~$\braidArrangement$ is given by
212
\[
213
\charPol[\braidArrangement] = (y-1) (y-2) \dots (y-n-1).
214
\]
215
Working in~$\R^n$ rather than in~$\HH$ would lead to an additional~$y$ factor in this formula, which might be more familiar to the reader.
216
See \cref{rem:essential}.
217
218
Finally, we will consider the evaluation of the M\"obius polynomial~$\mobPol[\braidArrangement]$ at~$y = 0$:
219
\[
220
\weirdPol[n] \eqdef \mobPol[\braidArrangement][x][0] = \sum_{k \in [n]} (-1)^{k-1} \, (k-1)! \, S(n,k) \, x^{k-1}.
221
\]
222
The coefficients of this polynomial are given by the sequence \OEIS{A028246}.
223
We just observe here that it is connected to the $\b{f}$-polynomial of~$\braidArrangement$.
224
225
\begin{lemma}
226
We have~$\weirdPol[n] = (1-x) \, \fPol[\braidArrangement]$.
227
\end{lemma}
228
229
\begin{proof}
230
This lemma is equivalent to the equality
231
\begin{equation*}
232
\sum_{k=1}^n (-1)^{k-1} (k-1)! \, S(n,k) \, x^{k-1} = (1-x) \sum_{k=1}^{n-1} (-1)^{k-1} \, k! \, S(n-1,k) \, x^{k-1}.
233
\end{equation*}
234
Distributing $(1-x)$ in the right hand side gives:
235
\begin{gather*}
236
(1-x) \sum_{k=1}^{n-1} (-1)^{k-1} \, k! \, S(n-1,k) \, x^{k-1} \\
237
= \sum_{k=1}^{n-1} k! \, S(n-1,k) \, (-x)^{k-1} + \sum_{k=1}^{n-1} k! \, S(n-1,k) \, (-x)^{k} \\
238
= \sum_{k=1}^{n-1} k! \, S(n-1,k) \, (-x)^{k-1} \hspace{7cm} \\[-.3cm] + \sum_{k=2}^{n} (k-1)! \, S(n-1,k-1) \, (-x)^{k-1} \\[-.2cm] \hspace{7cm}+ (n-1)! \, S(n-1, n-1) \, (-x)^{n-1} \\
239
= S(n-1,1) \, (-x)^0 + \sum_{k=2}^{n-1} (k-1)! \, \big( S(n-1,k-1) + k \, S(n-1,k) \big) \, (-x)^{k-1}.
240
\end{gather*}
241
The result thus follows from the inductive formula on Stirling numbers of the second kind
242
\[
243
S(n+1,k) = k \, S(n,k) + S(n,k-1)
244
\]
245
for $0<k<n$.
246
\end{proof}
247
248
%%%%%%%%%%%%%%%
249
250
\subsection{The $(\ell,n)$-braid arrrangement}
251
\label{subsec:multiBraidArrangement}
252
253
We now focus on the following specific hyperplane arrangements, illustrated in \cref{fig:multiBraidArrangements}.
254
We still denote by~$\HH$ the hyperplane of~$\R^n$ defined by~$\sum_{s \in [n]} x_s = 0$.
255
256
\begin{figure}[t]
257
\centerline{
258
\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c@{\hspace{.7cm}}c}
259
\includegraphics[scale=.5]{multiBraidArrangement1}
260
&
261
\includegraphics[scale=.5]{multiBraidArrangement2}
262
&
263
\includegraphics[scale=.5]{multiBraidArrangement3}
264
&
265
\includegraphics[scale=.5]{multiBraidArrangement4}
266
\\
267
$\ell = 1$ & $\ell = 2$ & $\ell = 3$ & $\ell = 4$
268
\end{tabular}
269
}
270
\caption{The $(\ell,3)$-braid arrangements for~$\ell \in [4]$.}
271
\label{fig:multiBraidArrangements}
272
\end{figure}
273
274
%\begin{definition}
275
%\label{def:multiBraidArrangement}
276
%The \defn{$(\ell,n)$-braid arrangement}~$\multiBraidArrangement$ is the arrangement in~$\HH$ obtained as the union of $\ell$ generically translated copies of the braid arrangement~$\braidArrangement$ (that is, the $\b{a}$-braid arrangement for some generic matrix~$\b{a} \in M_{\ell,n-1}(\R)$).
277
%\end{definition}
278
%
279
%This definition is slightly misleading, as the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ a priori depends on the (generic) translation vectors chosen for each copy.
280
%We will see that many combinatorial aspects of~$\multiBraidArrangement$, in particular its flat poset and thus its M\"obius, $f$- and $b$-polynomials, are in fact independent of the translation vectors as long as they are generic.
281
%However, the combinatorial description of the face poset of~$\multiBraidArrangement$ will depend on the translation vectors, so that we introduce the following more precise notation recording the translations.
282
%
283
%\begin{definition}
284
%A matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$ is \defn{generic} if any linear dependence among its coefficients~$\sum_{i,j} \lambda_{i,j} \, a_{i,j} = 0$ splits into $\ell$ linear dependences~$\sum_j \lambda_{i,j} \, a_{i,j} = 0$ for~$i \in [\ell]$.
285
%\end{definition}
286
%
287
%\begin{definition}
288
%\label{def:multiBraidArrangementPrecise}
289
%For any integers~$\ell,n \geq 1$, and any matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$, the \defn{$\b{a}$-braid arrangement}~$\multiBraidArrangement(\b{a})$ is the arrangement of hyperplanes~$\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ for all~${1 \le s < t \le n}$ and~$i \in [\ell]$, where $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$.
290
%\end{definition}
291
292
\begin{definition}
293
\label{def:multiBraidArrangementPrecise}
294
For any integers~$\ell,n \geq 1$, and any matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$, the \defn{$\b{a}$-braid arrangement}~$\multiBraidArrangement(\b{a})$ is the arrangement of the hyperplanes \linebreak $\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ for~${1 \le s < t \le n}$ and~$i \in [\ell]$, where $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$.
295
\end{definition}
296
297
In other words, the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ is the union of~$\ell$ copies of the braid arrangement~$\braidArrangement$ translated according to the matrix~$\b{a}$.
298
Of course, the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ highly depends on~$\b{a}$.
299
In this paper, we are interested in the case where~$\b{a}$ is generic in the following sense.
300
301
\begin{definition}
302
A matrix~$\b{a} \eqdef (a_{i,j}) \in M_{\ell,n-1}(\R)$ is \defn{generic} if for any~$i_1, \dots, i_k \in [\ell]$ and distinct $r_1, \dots, r_k \in [n]$, the equality~$\sum_{j \in [k]} A_{i_j, r_{j-1}, r_j} = 0$ implies~$i_1 = \dots = i_k$ (with the notation~$A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$ and the convention~$r_0 = r_k$).
303
\end{definition}
304
305
We will see that many combinatorial aspects of~$\multiBraidArrangement(\b{a})$, in particular its flat poset and thus its M\"obius, $f$- and $b$-polynomials, are in fact independent of the matrix~$\b{a}$ as long as it is generic.
306
We therefore consider the following definition.
307
308
\begin{definition}
309
\label{def:multiBraidArrangement}
310
The \defn{$(\ell,n)$-braid arrangement}~$\multiBraidArrangement$ is the arrangement in~$\HH$ obtained as the union of $\ell$ generically translated copies of the braid arrangement~$\braidArrangement$ (that is, any $\b{a}$-braid arrangement for some generic matrix~$\b{a} \in M_{\ell,n-1}(\R)$).
311
\end{definition}
312
313
%\begin{remark}
314
%\label{rem:multiBraidArrangement}
315
%In practice, consider the hyperplanes~$\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ for all~$1 \le s < t \le n$ and~$i \in [\ell]$, where $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$ for an arbitrary generic matrix~$(a_{i,j}) \in M_{\ell,n-1}(\R)$.
316
%\end{remark}
317
318
The objective of \cref{part:multiBraidArrangements} is to explore the combinatorics of these multiple braid arrangements.
319
We have split our presentation into two sections:
320
\begin{itemize}
321
\item In \cref{sec:flatPoset}, we describe the flat poset~$\flatPoset[\multiBraidArrangement]$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ in terms of $(\ell,n)$-partition forests (\cref{subsec:partitionForests}) and labeled $(\ell,n)$-rainbow forests (\cref{subsec:rainbowForests}), which enables us to derive its M\"obius, $f$- and $b$- polynomials (\cref{subsec:MobiusPolynomialMultiBraidArrangement}), from which we extract interesting formulas for the number of vertices (\cref{subsec:verticesMultiBraidArrangement}) and regions (\cref{subsec:regionsMultiBraidArrangement}). Note that all these results are independent of the translation matrix.
322
\item In \cref{sec:facePoset}, we describe the face poset~$\facePoset[\multiBraidArrangement(\b{a})]$ of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ in terms of ordered $(\ell,n)$-partition forests (\cref{subsec:orderedPartitionForests}). In contrast to the flat poset, this description of the face poset depends on the translation matrix~$\b{a}$. For a given choice of~$\b{a}$, we describe in particular the ordered $(\ell,n)$-partitions forests with a given underlying (unordered) $(\ell,n)$-partition forest (\cref{subsec:PFtoOPF}). We then give a criterion to decide whether a given ordered $(\ell,n)$-partition forest corresponds to a face of~$\multiBraidArrangement(\b{a})$ (\cref{subsec:criterionOPF}).
323
\end{itemize}
324
325
\begin{remark}
326
Note that each hyperplane of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is orthogonal to a root~$\b{e}_i-\b{e}_j$ of the type~$A$ root system.
327
Many such arrangements have been studied previously, for instance, the \defn{Shi arrangement}~\cite{Shi1, Shi2}, the \defn{Catalan arrangement}~\cite[Sect.~7]{PostnikovStanley}, the \defn{Linial arrangement}~\cite[Sect.~8]{PostnikovStanley}, the \defn{generic arrangement} of~\cite[Sect.~5]{PostnikovStanley}, or the \defn{discriminantal arrangements} of~\cite{ManinSchechtman,BayerBrandt}.
328
We refer to the work of A.~Postnikov and R.~Stanley~\cite{PostnikovStanley} and of O.~Bernardi~\cite{Bernardi} for much more references.
329
However, in all these examples, either the copies of the braid arrangement are perturbed, or they are translated non-generically.
330
We have not been able to find the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ properly treated in the literature.
331
\end{remark}
332
333
\begin{remark}
334
Part of our discussion on the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ could actually be developed for a hyperplane arrangement~$\arrangement^\ell$ obtained as the union of~$\ell$ generically translated copies of an arbitrary linear hyperplane arrangement~$\arrangement$.
335
Similarly to \cref{prop:flatPosetMultiBraidArrangement}, the flat poset~$\flatPoset[\arrangement^\ell]$ is isomorphic to the lower set of the $\ell$\ordinal{} Cartesian power of the flat poset~$\flatPoset$ induced by the $\ell$-tuples whose meet in the flat poset~$\flatPoset$ is the bottom element~$\b{0}$ (these are sometimes called strong antichains) and which are minimal for this property.
336
Similar to \cref{thm:MobiusPolynomialMultiBraidArrangement}, this yields a general formula for the M\"obius polynomial of~$\arrangement^\ell$ in terms of the M\"obius function of the flat poset~$\flatPoset$.
337
Here, we additionally benefit from the nice properties of the M\"obius polynomial of the braid arrangement~$\braidArrangement$ to obtain appealing formulas for the vertices, regions and bounded regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ (see \cref{thm:verticesMultiBraidArrangement,thm:verticesRefinedMultiBraidArrangement,thm:characteristicPolynomialMultiBraidArrangement,thm:regionsMultiBraidArrangement}).
338
We have therefore decided to restrict our attention to the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.
339
\end{remark}
340
341
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
342
343
\section{Flat poset and enumeration of~$\multiBraidArrangement$}
344
\label{sec:flatPoset}
345
346
In this section, we describe the flat poset of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ in terms of \mbox{$(\ell,n)$-partition} forests and derive explicit formulas for its $f$-vector.
347
Remarkably, the flat poset (and thus the M\"obius, $f$- and $b$- polynomials) of~$\multiBraidArrangement$ is independent of the translation vectors as long as they are generic.
348
349
%%%%%%%%%%%%%%%
350
351
\subsection{Partition forests}
352
\label{subsec:partitionForests}
353
354
We first introduce the main characters of this section, which will describe the combinatorics of the flat poset of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ of \cref{def:multiBraidArrangement}.
355
356
\begin{definition}
357
\label{def:intersectionHypergraph}
358
The \defn{intersection hypergraph} of a $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of set partitions of~$[n]$ is the $\ell$-regular $\ell$-partite hypergraph on all parts of all the partitions~$F_i$ for~${i \in [\ell]}$, with a hyperedge connecting the parts containing~$j$ for each~${j \in [n]}$.
359
\end{definition}
360
361
\begin{definition}
362
\label{def:partitionForests}
363
An \defn{$(\ell,n)$-partition forest} (\resp \defn{tree}) is a $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of set partitions of~$[n]$ whose intersection hypergraph is a hyperforest (\resp hypertree).
364
See \cref{fig:forests}.
365
The \defn{dimension} of~$\b{F}$ is~$\smash{{\dim(\b{F}) \eqdef n - 1 - \ell n + \sum_{i \in [\ell]} \card{F_i}}}$.
366
The \defn{$(\ell,n)$-partition forest poset} is the poset~$\forestPoset$ on $(\ell,n)$-partition forests ordered by componentwise refinement.
367
%
368
\begin{figure}
369
\centerline{\includegraphics[scale=.9]{forests}}
370
\caption{Some $(3,6)$-partition forests (top) with their intersection hypergraphs (middle) and the corresponding labeled $(3,6)$-rainbow forests (bottom). The last two are trees. The order of the colors in the bottom pictures is red, green, blue.}
371
\label{fig:forests}
372
\end{figure}
373
\end{definition}
374
375
In other words, $\forestPoset$ is the lower set of the $\ell$\ordinal{} Cartesian power of the partition poset~$\partitionPoset$ induced by $(\ell,n)$-partition forests.
376
Note that the maximal elements of~$\forestPoset$ are the $(\ell, n)$-partition trees.
377
378
The following statement is illustrated in \cref{fig:intersectionPosetMultiBraidArrangement32}.
379
%
380
\begin{figure}
381
\centerline{\includegraphics[scale=.9]{figures/intersectionPosetMultiBraidArrangement32Full}}
382
\caption{The $(2,3)$-braid arrangement $\multiBraidArrangement[3][2]$ (left), and its flat poset (right), where flats are represented as intersections of hyperplanes (top), as $(2,3)$-partitions forests (middle), and as labeled $(2,3)$-rainbow forests (bottom).}
383
\label{fig:intersectionPosetMultiBraidArrangement32}
384
\end{figure}
385
386
\begin{proposition}
387
\label{prop:flatPosetMultiBraidArrangement}
388
The flat poset~$\flatPoset[\multiBraidArrangement]$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is isomorphic to the $(\ell,n)$-partition forest poset.
389
\end{proposition}
390
391
\begin{proof}
392
Consider that~$\multiBraidArrangement$ is the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ for some generic matrix~$\b{a}$.
393
%Consider the hyperplanes~$\set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t}}$ described in \cref{def:multiBraidArrangementPrecise}.
394
In view of our discussion in \cref{subsec:braidArrangement}, observe that, for each~${i \in [\ell]}$, each set partition~$\pi$ of~$[n]$ corresponds to a $(\card{\pi})$-dimensional flat
395
\[
396
\Psi_i(\pi) \eqdef \set{\b{x} \in \HH}{x_s - x_t = A_{i,s,t} \text{ for all $s,t$ in the same part of $\pi$} }
397
\]
398
of the $i$\ordinal{} copy of the braid arrangement~$\braidArrangement$.
399
The flats of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ are thus all of the form
400
\[
401
\Psi(\b{F}) \eqdef \bigcap_{i \in [\ell]} \Psi_i(F_i)
402
\]
403
for certain $\ell$-tuples~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of set partitions of~$[n]$.
404
Since the matrix~$\b{a}$ is generic, $\Psi(\b{F})$ is non-empty if and only if the intersection hypergraph of~$\b{F}$ is acyclic.
405
Moreover, $\Psi(\b{F})$ is included in~$\Psi(\b{G})$ if and only if~$\b{F}$ refines~$\b{G}$ componentwise.
406
Hence, the flat poset of~$\multiBraidArrangement$ is isomorphic to the $(\ell,n)$-partition forest poset.
407
Finally, notice that the codimension of the flat~$\Psi(\b{F})$ is the sum of the codimensions of the flats~$\Psi_i(F_i)$ for~$i \in [\ell]$, so that~$\dim(\b{F}) \eqdef n - 1 - \ell n + \sum_{i \in [\ell]} \card{F_i} $ is indeed the dimension of the flat~$\Psi(\b{F})$.
408
\end{proof}
409
410
%%%%%%%%%%%%%%%
411
412
\pagebreak
413
\subsection{M\"obius polynomial}
414
\label{subsec:MobiusPolynomialMultiBraidArrangement}
415
416
We now derive from \cref{def:MobiusPolynomial,prop:flatPosetMultiBraidArrangement} the M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.
417
418
\begin{theorem}
419
\label{thm:MobiusPolynomialMultiBraidArrangement}
420
The M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given by
421
\[
422
\mobPol[\multiBraidArrangement] = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} y^{\card{G_i}} \prod_{p \in G_i} (-1)^{\card{F_i[p]}-1} (\card{F_i[p]}-1)! \; ,
423
\]
424
where~$\b{F} \le \b{G}$ ranges over all intervals of the $(\ell,n)$-partition forest poset~$\forestPoset$, and~$F_i[p]$ denotes the restriction of the partition~$F_i$ to the part~$p$ of~$G_i$.
425
\end{theorem}
426
427
\begin{proof}
428
Observe that for~$\b{F} \eqdef (F_1, \dots, F_\ell)$ and~$\b{G} \eqdef (G_1, \dots, G_\ell)$ in~$\forestPoset$, we have
429
\[
430
[\b{F}, \b{G}] = \prod_{i \in [\ell]} [F_i, G_i] \simeq \prod_{i \in [\ell]} \prod_{p \in G_i} \partitionPoset[{\card{F_i[p]}}].
431
\]
432
Recall that the M\"obius function is multiplicative:
433
\(
434
\mu_{P \times Q} \big( (p,q), (p,q) \big) = \mu_P(p,p) \cdot \mu_Q(q,q),
435
\)
436
for all~$p, p' \in P$ and~$q, q' \in Q$.
437
Hence, we obtain that
438
\[
439
\mu_{\forestPoset}(\b{F}, \b{G}) = \prod_{i \in [\ell]} \prod_{p \in G_i} (-1)^{\card{F_i[p]}-1} (\card{F_i[p]}-1)! .
440
\]
441
Hence, we derive from \cref{def:MobiusPolynomial,prop:flatPosetMultiBraidArrangement} that
442
\begin{align*}
443
\mobPol[\multiBraidArrangement]
444
& = \sum_{\b{F} \le \b{G}} \mu_{\forestPoset}(\b{F}, \b{G}) \, x^{\dim(\b{F})} \, y^{\dim(\b{G})} \\
445
& = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} y^{\card{G_i}} \prod_{p \in G_i} (-1)^{\card{F_i[p]}-1} (\card{F_i[p]}-1)! .
446
\qedhere
447
\end{align*}
448
\end{proof}
449
450
By using the polynomial
451
\[
452
\weirdPol[n] \eqdef \mobPol[\braidArrangement][x][0] = \sum_{k \in [n]} (-1)^{k-1} \, (k-1)! \, S(n,k) \, x^{k-1}
453
\]
454
introduced at the end of \cref{subsec:braidArrangement}, the M\"obius polynomial~$\mobPol[\multiBraidArrangement]$ can also be expressed as follows.
455
456
\begin{proposition}
457
\label{prop:alternativeFormulaMobiusPolynomialMultiBraidArrangement}
458
The M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given by
459
\[
460
\mobPol[\multiBraidArrangement] = x^{(n-1)(1-\ell)} \sum_{G \in \forestPoset} y^{n-1-\ell n+\sum_{i \in [\ell]} \card{G_i}} \prod_{i \in [\ell]} \weirdPol[\card{G_i}].
461
\]
462
\end{proposition}
463
464
\begin{proof}
465
As already mentioned, the $(\ell,n)$-partition forest poset~$\forestPoset$ is a lower set of the $\ell$\ordinal{} Cartesian power of the partition poset~$\partitionPoset$.
466
In other words, given a $(\ell,n)$-partition forest $\b{G} \eqdef (G_1, \dots, G_\ell)$, any $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of partitions satisfying~$F_i \le_{\partitionPoset[n]} G_i$ for all~$i \in [\ell]$ is a $(\ell,n)$-partition forest.
467
Hence, we obtain from \cref{def:MobiusPolynomial,prop:flatPosetMultiBraidArrangement} that
468
\begin{align*}
469
\mobPol[\multiBraidArrangement]
470
& = \sum_{G \in \forestPoset} y^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{G_i}} \prod_{i \in [\ell]} \sum_{F_i \leq_{\partitionPoset[n]} G_i } \mu_{\partitionPoset[n]}(F_i,G_i) \, x^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{F_i}}, \\
471
& = \sum_{G \in \forestPoset} y^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{G_i}} x^{(n-1)(1-\ell)} \prod_{i \in [\ell]} \sum_{\pi_i \in \partitionPoset[\card{G_i}]} \mu_{\partitionPoset[\card{G_i}]}(\pi_i,\hat{1}) \, x^{\card{\pi_i}-1},
472
\end{align*}
473
where $\hat{1}$ denotes the maximal element in $\partitionPoset[\card{G_i}]$ and $\pi_i$ is obtained from $F_i$ by merging elements in the same part of $G_i$.
474
The result follows since
475
\[
476
\weirdPol[\card{G_i}] = \sum_{\pi_i \in \partitionPoset[\card{G_i}]} \mu_{\partitionPoset[\card{G_i}]}(\pi_i,\hat{1}) \, x^{\card{\pi_i}-1}.
477
\qedhere
478
\]
479
%Hence, we obtain
480
%\[
481
%\mobPol[\multiBraidArrangement] = \sum_{G \in \forestPoset} y^{n-\ell n - 1 + \sum_{i \in [\ell]} \card{G_i}} x^{(n-1)(1-\ell)} \prod_{i \in [\ell]} \weirdPol[\card{G_i}].
482
%\qedhere
483
%\]
484
\end{proof}
485
486
From \cref{thm:Zaslavsky,thm:MobiusPolynomialMultiBraidArrangement}, we thus obtain the face numbers and bounded face numbers of~$\multiBraidArrangement$, whose first few values are gathered in \cref{table:fvectorMultiBraidArrangements}.
487
488
%\begin{table}
489
%\centerline{
490
% \begin{tabular}{c@{\hspace{.7cm}}c}
491
% \begin{tabular}[t]{c|cccc|c}
492
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
493
% \hline
494
% $1$ & $1$ &&&& $1$ \\
495
% $2$ & $2$ & $1$ &&& $3$ \\
496
% $3$ & $6$ & $6$ & $1$ && $13$ \\
497
% $4$ & $24$ & $36$ & $14$ & $1$ & $75$
498
% \end{tabular}
499
% &
500
% \begin{tabular}[t]{c|cccc|c}
501
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
502
% \hline
503
% $1$ & $1$ &&&& $1$ \\
504
% $2$ & $3$ & $2$ &&& $5$ \\
505
% $3$ & $17$ & $24$ & $8$ && $49$ \\
506
% $4$ & $149$ & $324$ & $226$ & $50$ & $749$
507
% \end{tabular}
508
% \\[2cm]
509
% \begin{tabular}[t]{c|cccc|c}
510
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
511
% \hline
512
% $1$ & $1$ &&&& $1$ \\
513
% $2$ & $0$ & $1$ &&& $1$ \\
514
% $3$ & $0$ & $0$ & $1$ && $1$ \\
515
% $4$ & $0$ & $0$ & $0$ & $1$ & $1$
516
% \end{tabular}
517
% &
518
% \begin{tabular}[t]{c|cccc|c}
519
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
520
% \hline
521
% $1$ & $1$ &&&& $1$ \\
522
% $2$ & $1$ & $2$ &&& $3$ \\
523
% $3$ & $5$ & $12$ & $8$ && $25$ \\
524
% $4$ & $43$ & $132$ & $138$ & $50$ & $363$
525
% \end{tabular}
526
% \\[2cm]
527
% $\ell = 1$ & $\ell = 2$
528
% \\[.8cm]
529
% \begin{tabular}[t]{c|cccc|c}
530
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
531
% \hline
532
% $1$ & $1$ &&&& $1$ \\
533
% $2$ & $4$ & $3$ &&& $7$ \\
534
% $3$ & $34$ & $54$ & $21$ && $109$ \\
535
% $4$ & $472$ & $1152$ & $924$ & $243$ & $2791$
536
% \end{tabular}
537
% &
538
% \begin{tabular}[t]{c|cccc|c}
539
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
540
% \hline
541
% $1$ & $1$ &&&& $1$ \\
542
% $2$ & $5$ & $4$ &&& $9$ \\
543
% $3$ & $57$ & $96$ & $40$ && $193$ \\
544
% $4$ & $1089$ & $2808$ & $2396$ & $676$ & $6969$
545
% \end{tabular}
546
% \\[2cm]
547
% \begin{tabular}[t]{c|cccc|c}
548
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
549
% \hline
550
% $1$ & $1$ &&&& $1$ \\
551
% $2$ & $2$ & $3$ &&& $5$ \\
552
% $3$ & $16$ & $36$ & $21$ && $73$ \\
553
% $4$ & $224$ & $684$ & $702$ & $243$ & $1853$
554
% \end{tabular}
555
% &
556
% \begin{tabular}[t]{c|cccc|c}
557
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
558
% \hline
559
% $1$ & $1$ &&&& $1$ \\
560
% $2$ & $3$ & $4$ &&& $7$ \\
561
% $3$ & $33$ & $72$ & $40$ && $145$ \\
562
% $4$ & $639$ & $1944$ & $1980$ & $676$ & $5239$
563
% \end{tabular}
564
% \\[2cm]
565
% $\ell = 3$ & $\ell = 4$
566
% \end{tabular}
567
% }
568
% \vspace{.3cm}
569
% \caption{The face numbers (top) and the bounded face numbers (bottom) of the $(\ell,n)$-braid arrangements for~$\ell, n \in [4]$.}
570
% \label{table:fvectorMultiBraidArrangements}
571
%\end{table}
572
573
\begin{table}[t]
574
\centerline{
575
\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c@{\hspace{2cm}}}
576
$\ell = 1$
577
&
578
\begin{tabular}[t]{c|cccc|c}
579
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
580
\hline
581
$1$ & $1$ &&&& $1$ \\
582
$2$ & $2$ & $1$ &&& $3$ \\
583
$3$ & $6$ & $6$ & $1$ && $13$ \\
584
$4$ & $24$ & $36$ & $14$ & $1$ & $75$
585
\end{tabular}
586
&
587
\begin{tabular}[t]{c|cccc|c}
588
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
589
\hline
590
$1$ & $1$ &&&& $1$ \\
591
$2$ & $0$ & $1$ &&& $1$ \\
592
$3$ & $0$ & $0$ & $1$ && $1$ \\
593
$4$ & $0$ & $0$ & $0$ & $1$ & $1$
594
\end{tabular}
595
\\[2.3cm]
596
$\ell = 2$
597
&
598
\begin{tabular}[t]{c|cccc|c}
599
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
600
\hline
601
$1$ & $1$ &&&& $1$ \\
602
$2$ & $3$ & $2$ &&& $5$ \\
603
$3$ & $17$ & $24$ & $8$ && $49$ \\
604
$4$ & $149$ & $324$ & $226$ & $50$ & $749$
605
\end{tabular}
606
&
607
\begin{tabular}[t]{c|cccc|c}
608
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
609
\hline
610
$1$ & $1$ &&&& $1$ \\
611
$2$ & $1$ & $2$ &&& $3$ \\
612
$3$ & $5$ & $12$ & $8$ && $25$ \\
613
$4$ & $43$ & $132$ & $138$ & $50$ & $363$
614
\end{tabular}
615
\\[2.3cm]
616
$\ell = 3$
617
&
618
\begin{tabular}[t]{c|cccc|c}
619
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
620
\hline
621
$1$ & $1$ &&&& $1$ \\
622
$2$ & $4$ & $3$ &&& $7$ \\
623
$3$ & $34$ & $54$ & $21$ && $109$ \\
624
$4$ & $472$ & $1152$ & $924$ & $243$ & $2791$
625
\end{tabular}
626
&
627
\begin{tabular}[t]{c|cccc|c}
628
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
629
\hline
630
$1$ & $1$ &&&& $1$ \\
631
$2$ & $2$ & $3$ &&& $5$ \\
632
$3$ & $16$ & $36$ & $21$ && $73$ \\
633
$4$ & $224$ & $684$ & $702$ & $243$ & $1853$
634
\end{tabular}
635
\\[2.3cm]
636
$\ell = 4$
637
&
638
\begin{tabular}[t]{c|cccc|c}
639
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
640
\hline
641
$1$ & $1$ &&&& $1$ \\
642
$2$ & $5$ & $4$ &&& $9$ \\
643
$3$ & $57$ & $96$ & $40$ && $193$ \\
644
$4$ & $1089$ & $2808$ & $2396$ & $676$ & $6969$
645
\end{tabular}
646
&
647
\begin{tabular}[t]{c|cccc|c}
648
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
649
\hline
650
$1$ & $1$ &&&& $1$ \\
651
$2$ & $3$ & $4$ &&& $7$ \\
652
$3$ & $33$ & $72$ & $40$ && $145$ \\
653
$4$ & $639$ & $1944$ & $1980$ & $676$ & $5239$
654
\end{tabular}
655
\end{tabular}
656
}
657
% \vspace{.3cm}
658
\caption{The face numbers (left) and the bounded face numbers (right) of the $(\ell,n)$-braid arrangements for~$\ell, n \in [4]$.}
659
\label{table:fvectorMultiBraidArrangements}
660
\end{table}
661
662
\begin{corollary}
663
\label{coro:fbvectorsMultiBraidArrangement}
664
The $f$- and $b$-polynomials of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ are given by
665
\begin{align*}
666
\fPol[\multiBraidArrangement] & = x^{n-1-\ell n}\sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} \prod_{p \in G_i} (\card{F_i[p]}-1)!\\
667
\text{and}\qquad
668
\bPol[\multiBraidArrangement] & = (-1)^\ell x^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\card{F_i}} \prod_{p \in G_i} -(\card{F_i[p]}-1)! ,
669
\end{align*}
670
where~$\b{F} \le \b{G}$ ranges over all intervals of the $(\ell,n)$-partition forest poset~$\forestPoset$, and~$F_i[p]$ denotes the restriction of the partition~$F_i$ to the part~$p$ of~$G_i$.
671
\end{corollary}
672
673
\begin{example}
674
For~$n = 1$, we have
675
\[
676
\mobPol[{\multiBraidArrangement[1][\ell]}] = \fPol[{\multiBraidArrangement[1][\ell]}] = \bPol[{\multiBraidArrangement[1][\ell]}] = 1.
677
\]
678
For~$n = 2$, we have
679
\[
680
\mobPol[{\multiBraidArrangement[2][\ell]}] = xy-\ell x+\ell,
681
\quad
682
\fPol[{\multiBraidArrangement[2][\ell]}] = (\ell+1)x+\ell
683
\quad\text{and}\quad
684
\bPol[{\multiBraidArrangement[2][\ell]}] = (\ell-1)x+\ell.
685
\]
686
The case~$n = 3$ is already more interesting.
687
Consider the set partitions
688
\[
689
P \eqdef \big\{ \{1\}, \{2\}, \{3\} \big\},
690
\quad
691
Q_i \eqdef \big\{ \{i\}, [3] \ssm \{i\} \big\} \text{\;\;for~$i \in [3]$},
692
\quad\text{and}\quad R \eqdef \big\{ [3] \big\}.
693
\]
694
Observe that the $(\ell,3)$-partition forests are all of the form
695
\begin{align*}
696
\b{F} & \eqdef P^\ell,
697
\\
698
\b{G}_i^p & \eqdef P^p Q_i P^{\ell-p-1}, % \text{ for } p \le \ell-1 \text{ and } i \in [3],
699
\\
700
\b{H}_{i,j}^{p,q} & \eqdef P^p Q_i P^{\ell-p-q-2} Q_j P^q \;\text{($i \ne j$)} % \text{ for } p + q \le \ell-2 \text{ and } i \ne j \in [3]
701
\\\text{or}\qquad
702
\b{K}^p & \eqdef P^p R P^{\ell-p-1}. % \text{ for } p \le \ell-1.
703
\end{align*}
704
(where we write a tuple of partitions of~$[3]$ as a word on~$\{P, Q_1, Q_2, Q_3, R\}$). %, and $p$ and $q$ are such that the total length is~$\ell$).
705
%\begin{gather*}
706
%\b{F} \eqdef (\underbrace{P, \dots, P}_\ell), \\
707
%\b{G}_i^p \eqdef (\underbrace{P, \dots, P}_p, Q_i, \underbrace{P, \dots, P}_{\ell-p-1}) \text{ for } p \le \ell-1 \text{ and } i \in [3],
708
%\\
709
%\b{H}_{i,j}^{p,q} \eqdef (\underbrace{P, \dots, P}_p, Q_i, \underbrace{P, \dots, P}_{\ell-p-q-2}, Q_j, \underbrace{P, \dots, P}_q) \text{ for } p + q \le \ell-2 \text{ and } i \ne j \in [3],
710
%\\
711
%\text{or}\quad
712
%\b{K}^p \eqdef (\underbrace{P, \dots, P}_p, R, \underbrace{P, \dots, P}_{\ell-p-1}) \text{ for } p \le \ell-1.
713
%\end{gather*}
714
Moreover, the cover relations in the $(\ell,3)$-partition forest poset are precisely the relations
715
\[
716
\b{F} \le \b{G}_i^p \hspace{-.4cm} \begin{array}{l} \rotatebox[origin=c]{45}{$\le$} \raisebox{.2cm}{$\b{H}_{i,j}^{p,q}$} \\[.1cm] \quad \le \b{K}^p \\[.1cm] \rotatebox[origin=c]{-45}{$\le$} \raisebox{-.2cm}{$\b{H}_{j,i}^{\ell-q-1, \ell-p-1}$} \end{array}
717
\]
718
for~$i \ne j$ and~$p, q$ such that~$p + q \le \ell-2$.
719
Hence, we have
720
\begin{align*}
721
\mobPol[{\multiBraidArrangement[3][\ell]}] & = x^2 y^2 - 3 \ell x^2 y + \ell (3 \ell - 1) x^2 + 3 \ell x y - 3 \ell (2 \ell - 1) x + \ell (3 \ell - 2) , \\
722
\fPol[{\multiBraidArrangement[3][\ell]}] & = (3 \ell^2 + 2 \ell + 1) x^2 + 6 \ell^2 x + \ell (3 \ell - 2), \\
723
\text{and}\qquad
724
\bPol[{\multiBraidArrangement[3][\ell]}] & = (3 \ell^2 - 4 \ell + 1) x^2 + 6 \ell (\ell - 1) x + \ell (3 \ell - 2).
725
\end{align*}
726
Observe that~$3 \ell^2 + 2 \ell + 1$ is~\OEIS{A056109}, that~$\ell (3 \ell - 2)$ is~\OEIS{A000567}, and that ${3 \ell^2 - 4 \ell + 1}$ is~\OEIS{A045944}.
727
%\vincenti{There is a weird connection between the first and the last. Namely, $3 \ell^2 - 4 \ell + 1 = 3 (\ell - 1)^2 + 2 (\ell - 1)$. Is there a bijective explanation on the arrangements?}
728
\end{example}
729
730
%%%%%%%%%%%%%%%
731
732
\subsection{Rainbow forests}
733
\label{subsec:rainbowForests}
734
735
In order to obtain more explicit formulas for the number of vertices and regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ in \cref{subsec:verticesMultiBraidArrangement,subsec:regionsMultiBraidArrangement}, we now introduce another combinatorial model for $(\ell,n)$-partition forests which is more adapted to their enumeration.
736
737
\begin{definition}
738
\label{def:rainbowForest}
739
An \defn{$\ell$-rainbow coloring} of a rooted plane forest~$F$ is an assignment of colors of~$[\ell]$ to the non-root nodes of~$F$ such that
740
\begin{enumerate}[(i)]
741
\item there is no monochromatic edge,
742
\item the colors of siblings are increasing from left to right.
743
\end{enumerate}
744
We denote by~$\|F\|$ the number of nodes of~$F$ and by~$\card{F}$ the number of trees of the forest~$F$ (\ie its number of connected components).
745
An \defn{$(\ell,n)$-rainbow forest} (\resp \defn{tree}) is a \mbox{$\ell$-rainbow} colored forest (\resp tree) with $\|F\| = n$ nodes.
746
We denote by~$\rainbowForests$ (\resp $\rainbowTrees$) the set of $(\ell,n)$-rainbow forests (\resp trees), and set~$\rainbowForests[][\ell] \eqdef \bigsqcup_n \rainbowForests$ (\resp $\rainbowTrees[][\ell] \eqdef \bigsqcup_n \rainbowTrees$).
747
\end{definition}
748
749
For instance, we have listed the $14$ $(2,4)$-rainbow trees in \cref{fig:rainbowTrees}\,(top).
750
This figure actually illustrates the following statement.
751
752
\begin{lemma}
753
\label{lem:FussCatalan}
754
The $(\ell,m)$-rainbow trees are counted by the \defn{Fuss-Catalan number}
755
\[
756
\card{\rainbowTrees[m][\ell]} = F_{\ell,m} \eqdef \frac{1}{(\ell-1)m+1} \binom{\ell m}{m} \qquad \text{\OEIS{A062993}}.
757
\]
758
\end{lemma}
759
760
\begin{proof}
761
We can transform a $\ell$-rainbow tree~$R$ to an $\ell$-ary tree~$T$ as illustrated in \cref{fig:rainbowTrees}.
762
Namely, the parent of a node~$N$ in~$T$ is the previous sibling colored as~$N$ in~$R$ if it exists, and the parent of~$N$ in~$R$ otherwise.
763
This classical map is a bijection from $\ell$-rainbow trees to $\ell$-ary trees, which are counted by the Fuss-Catalan numbers~\cite{Klarner, HiltonPedersen}.
764
%
765
\begin{figure}
766
\centerline{\includegraphics[scale=.7]{rainbowTrees}}
767
\caption{The $14$ $(2,4)$-rainbow trees (top) and $14$ binary trees (bottom), and the simple bijection between them (middle). The order of the colors is red, blue.}
768
\label{fig:rainbowTrees}
769
\end{figure}
770
\end{proof}
771
772
\begin{remark}
773
\label{rem:functionalEquationFussCatalan}
774
Recall that the corresponding generating function~$F_\ell(z) \eqdef \sum_{m \ge 0} F_{\ell,m} \, z^m$ satisfies the functional equation
775
\[
776
F_\ell(z) = 1 + z \, F_\ell(z)^\ell.
777
\]
778
\end{remark}
779
780
\begin{table}
781
\centerline{%\scalebox{.8}{
782
\begin{tabular}[t]{c|ccccccccc}
783
$m \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ \\
784
\hline
785
$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\
786
$2$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ \\
787
$3$ & $1$ & $5$ & $12$ & $22$ & $35$ & $51$ & $70$ & $92$ & $117$ \\
788
$4$ & $1$ & $14$ & $55$ & $140$ & $285$ & $506$ & $819$ & $1240$ & $1785$ \\
789
$5$ & $1$ & $42$ & $273$ & $969$ & $2530$ & $5481$ & $10472$ & $18278$ & $29799$ \\
790
$6$ & $1$ & $132$ & $1428$ & $7084$ & $23751$ & $62832$ & $141778$ & $285384$ & $527085$ \\
791
$7$ & $1$ & $429$ & $7752$ & $53820$ & $231880$ & $749398$ & $1997688$ & $4638348$ & $9706503$ \\
792
$8$ & $1$ & $1430$ & $43263$ & $420732$ & $2330445$ & $9203634$ & $28989675$ & $77652024$ & $184138713$ \\
793
$9$ & $1$ & $4862$ & $246675$ & $3362260$ & $23950355$ & $115607310$ & $430321633$ & $1329890705$ & $3573805950$
794
\end{tabular}
795
}%}
796
% \vspace{.3cm}
797
\caption{The Fuss-Catalan numbers~$F_{\ell,m} = \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$ for~$\ell,m \in [9]$. See \OEIS{A062993}.}
798
\end{table}
799
800
\begin{definition}
801
For a $(\ell,n)$-rainbow forest~$F$, we define
802
\[
803
\omega(F) \eqdef \prod_{i \in [\ell]} \prod_{N \in F} \card{C_i(N)}! ,
804
\]
805
where~$N$ ranges over all nodes of~$F$ and~$C_i(N)$ denotes the children of~$N$ colored by~$i$.
806
\end{definition}
807
808
\begin{definition}
809
\label{def:labelingRainbowForest}
810
A \defn{labeling} of a $(\ell,n)$-rainbow forest~$F$ is a bijective map from the nodes of~$F$ to~$[n]$ such that
811
\begin{enumerate}[(i)]
812
\item the label of each root is minimal in its tree,
813
\item the labels of siblings with the same color are increasing from left to right.
814
\end{enumerate}
815
\end{definition}
816
817
\begin{lemma}
818
\label{lem:labelingRainbowForest}
819
The number~$\lambda(F)$ of labelings of a $(\ell,n)$-rainbow forest~$F$ is given by
820
\[
821
\lambda(F) = \frac{n!}{\omega(F) \prod\limits_{T \in F} \|T\|} .
822
\]
823
\end{lemma}
824
825
\begin{proof}
826
Out of all~$n!$ bijective maps from the nodes of~$F$ to~$[n]$, only~$1/\prod_{T \in F} \|T\|$ satisfy Condition~(i) of \cref{def:labelingRainbowForest}, and only $1/\prod_{i \in [\ell]} \prod_{N \in F} \card{C_i(N)}! = 1/\omega(F)$ satisfy Condition~(ii) of \cref{def:labelingRainbowForest}.
827
\end{proof}
828
829
The following statement is illustrated in \cref{fig:forests}.
830
831
\begin{proposition}
832
\label{prop:bijectionForests}
833
There is a bijection from $(\ell,n)$-partition forests to labeled $(\ell,n)$-rainbow forests, such that if the partition forest~$\b{F}$ is sent to the labeled rainbow forest~$F$, then
834
\[
835
\dim(\b{F}) = \card{F}-1
836
\qquad\text{and}\qquad
837
\mu_{\forestPoset}(\HH, \b{F}) = (-1)^{n-\card{F}} \, \omega(F).
838
\]
839
\end{proposition}
840
841
\begin{proof}
842
From a labeled $(\ell,n)$-rainbow forest~$F$, we construct a $(\ell,n)$-partition forest~$\b{F} \eqdef (F_1, \dots, F_\ell)$ whose $i$\ordinal{} partition~$F_i$ has a part~$\{N\} \cup C_i(N)$ for each node~$N$ of~$F$ not colored~$i$.
843
Condition~(i) of \cref{def:rainbowForest} ensures that each $F_i$ is indeed a partition.
844
845
Conversely, start from a $(\ell,n)$-partition forest~$\b{F} \eqdef (F_1, \dots, F_i)$.
846
Consider the colored clique graph~$K_{\b{F}}$ on~$[n]$ obtained by replacing each part in~$F_i$ by a clique of edges colored by~$i$.
847
For each~$1 < j \le n$, there is a unique shortest path in~$K_{\b{F}}$ from the vertex~$j$ to the smallest vertex in the connected component of~$j$.
848
Define the parent~$p$ of~$j$ to be the next vertex along this path, and color the node~$j$ by the color of the edge between~$j$ and~$p$.
849
This defines a labeled $(\ell,n)$-rainbow forest~$F$.
850
851
Finally, observe that
852
\begin{align*}
853
\dim(\b{F}) & = n - 1 - \ell n + \sum_{i \in [\ell]} \card{F_i} = \card{F}-1, \qquad\text{and} \\
854
\mu_{\forestPoset}(\HH, \b{F}) & = \prod\limits_{i \in [\ell]} \prod\limits_{p \in F_i} (-1)^{\card{p}-1} (\card{p}-1) \\ & = \prod\limits_{i \in [\ell]} \prod\limits_{N \in F} (-1)^{\card{C_i(N)}} \card{C_i(N)}! = (-1)^{n-\card{F}} \, \omega(F).
855
\qedhere
856
\end{align*}
857
\end{proof}
858
859
We now transport via this bijection the partial order of the flat lattice on rainbow forests.
860
For a node~$a$ of a forest~$F$, we denote by $\operatorname{Root}(a)$ the root of the tree of~$F$ containing~$a$.
861
The following statement is illustrated in \cref{fig:CoverRelRF}, choosing~$c$ to be green, $a$ to be $5$ and $b$ to be $7$.
862
863
\begin{figure}
864
\centerline{\includegraphics[scale=1]{CoverRelRFFig}}
865
\vspace{-.3cm}
866
\caption{A covering relation described in \cref{prop:CoverRelRF}, choosing $c$ to be green, $a$ to be $5$ and $b$ to be $7$.}
867
\label{fig:CoverRelRF}
868
\end{figure}
869
870
\begin{proposition}
871
\label{prop:CoverRelRF}
872
In the flat poset~$\flatPoset[\multiBraidArrangement]$ labeled by rainbow forests using~\cref{prop:flatPosetMultiBraidArrangement,prop:bijectionForests}, a rainbow forest~$F$ is covered by a rainbow forest~$G$ if and only~$G$ can be obtained from $F$ by:
873
\begin{enumerate}
874
\item choosing a color $c$, and two vertices $a$ and $b$ not colored with~$c$ and with $\operatorname{Root}(a)<\operatorname{Root}(b)$,
875
\item shifting the colors along the path from~$\operatorname{Root}(b)$ to~$b$, so that each node along this path is now colored by the former color of its child and~$b$ is not colored anymore,
876
\item rerooting at~$b$ the tree containing~$b$ at~$b$, and coloring $b$ with~$c$,
877
\item adding an edge~$(a,b)$ and replacing the edge~$(b,e)$ by an edge~$(a,e)$ for each child $e$ of~$b$ colored with~$c$.
878
\end{enumerate}
879
\end{proposition}
880
881
\begin{proof}
882
Let us first remark that the graph obtained by these operations is indeed a rainbow forest.
883
First, we add an edge between two distinct connected components, so that the result is indeed acyclic.
884
Moreover, the condition on the color of $a$ and on the deletion of edges between $b$ and vertices of color $c$ ensures that we do not add an edge between two vertices of the same color.
885
Note that the parent of $b$ inherits the color of $b$ which is not $c$.
886
887
Let us recall that the cover relations in the flat poset~$\flatPoset[\multiBraidArrangement]$ are given in terms of $(\ell,n)$-partition forests by choosing a partition $\pi$ of the partition tuple (which corresponds directly to choosing a color), choosing two parts $\pi_a$ and $\pi_b$ in the partition~$\pi$, and merging them, without creating a loop in the intersection hypergraph.
888
889
By choosing two vertices in different connected components of the rainbow forest, we are sure that the intersection hypergraph obtained by adding an edge is still acyclic.
890
891
The last point that has to be explained is the link between the condition on the color of~$a$ and~$b$ and merging two parts in the same partition.
892
If one of the two nodes, say $a$ for instance is of color~$c$, then it belongs to the same part of $\pi$ as its parent $z$.
893
The merging is the same if we choose~$z$ which is not colored $c$.
894
Moreover, as $b$ is in a different connected component, the corresponding two parts are distinct in $\pi$.
895
Finally, a part is just a corolla so the merging corresponds to building a corolla with $a$, $b$ and their children of color $c$.
896
\end{proof}
897
898
We finally recast \cref{prop:alternativeFormulaMobiusPolynomialMultiBraidArrangement} in terms of rainbow forests.
899
900
\begin{proposition}
901
The M\"obius polynomial of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given by
902
\[
903
\mobPol[\multiBraidArrangement] = x^{(n-1)(1-\ell)} \sum_{G \in \rainbowForests} y^{n-1+\card{E(G)}} \prod_{i \in [\ell]} \weirdPol[n-\card{E(G,i)}].
904
\]
905
\end{proposition}
906
907
\begin{remark}
908
To further simplify this expression, we would need to count the number of rainbow forests with a prescribed number of colored edges.
909
However, this number does not admit a known multiplicative formula, up to our knowledge. When there is only one color, the corresponding sequence (counting non-colored forests on $n$ nodes and $k$ edges, rooted in the minimal label of each connected component) is \OEIS{A138464}.
910
\end{remark}
911
912
%%%%%%%%%%%%%%%
913
914
\subsection{Enumeration of vertices of $\multiBraidArrangement$}
915
\label{subsec:verticesMultiBraidArrangement}
916
917
We now use the labeled $(\ell,n)$-rainbow forests of \cref{subsec:rainbowForests} to derive more explicit formulas for the number of vertices of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.
918
The first few values are gathered in \cref{table:verticesMultiBraidArrangement}.
919
920
\begin{table}
921
\centerline{%\scalebox{.8}{
922
\begin{tabular}[t]{c|cccccccc}
923
$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\
924
\hline
925
$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ % & $1$ \\
926
$2$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\
927
$3$ & $1$ & $8$ & $21$ & $40$ & $65$ & $96$ & $133$ & $176$ \\ % & $225$ \\
928
$4$ & $1$ & $50$ & $243$ & $676$ & $1445$ & $2646$ & $4375$ & $6728$ \\ % & $9801$ \\
929
$5$ & $1$ & $432$ & $3993$ & $16384$ & $46305$ & $105456$ & $208537$ & $373248$ \\ % & $620289$ \\
930
$6$ & $1$ & $4802$ & $85683$ & $521284$ & $1953125$ & $5541126$ & $13119127$ & $27350408$ \\ % & $51883209$ \\
931
$7$ & $1$ & $65536$ & $2278125$ & $20614528$ & $102555745$ & $362797056$ & $1029059101$ & $2500000000$ \\ % & $5415228513$ \\
932
$8$ & $1$ & $1062882$ & $72412707$ & $976562500$ & $6457339845$ & $28500625446$ & $96889010407$ & $274371577992$ % \\ & $678770015625$ \\
933
% $9$ & $1$ & $20000000$ & $2681615217$ & $53971714048$ & $474659385665$ & $2614905943296$ & $10657046640625$ & $35184372088832$ & $99426586671873$
934
\end{tabular}
935
}%}
936
% \vspace{.3cm}
937
\caption{The numbers $f_0(\multiBraidArrangement) = \ell \big( (\ell-1) n + 1 \big)^{n-2}$ of vertices of~$\multiBraidArrangement$ for~$\ell,n \in [8]$.}
938
\label{table:verticesMultiBraidArrangement}
939
\end{table}
940
941
\begin{theorem}
942
\label{thm:verticesMultiBraidArrangement}
943
The number of vertices of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is
944
\[
945
f_0(\multiBraidArrangement) = \ell \big( (\ell-1) n + 1 \big)^{n-2}.
946
\]
947
\end{theorem}
948
949
\begin{proof}
950
By \cref{prop:flatPosetMultiBraidArrangement,prop:bijectionForests}, we just need to count the labeled $(\ell,n)$-rainbow trees.
951
A common reasoning for counting Cayley trees is the use of its Prüfer code defined by recursively pruning the smallest leaf while writing down the label of its parent.
952
This bijection can be adapted to colored Cayley trees by writing down the label of the parent colored by the color of the pruned leaf.
953
This leads to a bijection with certain colored words of length $n-1$.
954
Namely, there are two possibilities:
955
\begin{itemize}
956
\item either the pruned leaf is attached to the node~$1$ and it can have all $\ell$ colors,
957
\item or it is attached to one of the $n-1$ other nodes and it can only have $\ell-1$ colors.
958
\end{itemize}
959
Note that the last letter in the Prüfer code (obtained by removing the last edge) is necessarily the root $1$, with $\ell$ possible different colors.
960
Hence, there are
961
\[
962
\big( \ell+(n-1)(\ell-1) \big)^{n-2} \ell = \ell \big( (\ell-1) n + 1 \big)^{n-2}
963
\]
964
such words.
965
Similar ideas were used in~\cite{Lewis}.
966
\end{proof}
967
968
We can refine the formula of \cref{thm:verticesMultiBraidArrangement} according to the dimension of the flats of the different copies intersected to obtain the vertices of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.
969
970
\begin{theorem}
971
\label{thm:verticesRefinedMultiBraidArrangement}
972
For any~$k_1, \dots, k_\ell$ such that~$0 \le k_i \le n-1$ for~$i \in [\ell]$ and~${\sum_{i \in [\ell]} k_i = n-1}$, the number of vertices~$v$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ such that the smallest flat of the $i$\ordinal{} copy of~$\braidArrangement$ containing~$v$ has dimension~$n-k_i-1$ is given by
973
\[
974
n^{\ell-1} \binom{n-1}{k_1, \dots, k_\ell} \prod_{i \in [\ell]} (n-k_i)^{k_i-1}.
975
\]
976
\end{theorem}
977
978
\begin{proof}
979
By \cref{prop:flatPosetMultiBraidArrangement,prop:bijectionForests}, we just need to count the labeled $(\ell,n)$-rainbow trees with~$k_i$ nodes colored by~$i$.
980
Forgetting the labels, the $(\ell,n)$-rainbow trees with~$k_i$ nodes colored by~$i$ are precisely the spanning trees of the complete multipartite graph~$K_{k_1, \dots, k_\ell, 1}$ (where the last~$1$ stands for the uncolored root).
981
Using a Pr\"ufer code similar to that of the proof of \cref{thm:verticesMultiBraidArrangement}, R.~Lewis proved in~\cite{Lewis} that the latter are counted by~${n^{\ell-1} \prod_{i \in [\ell]} (n-k_i)^{k_i-1}}$.
982
Finally, the possible labelings are counted by the multinomial coefficient~$\binom{n-1}{k_1, \dots, k_\ell}$.
983
\end{proof}
984
985
%%%%%%%%%%%%%%%
986
987
\subsection{Enumeration of regions and bounded regions of $\multiBraidArrangement$}
988
\label{subsec:regionsMultiBraidArrangement}
989
990
We finally use the labeled $(\ell,n)$-rainbow forests of \cref{subsec:rainbowForests} to derive more explicit formulas for the number of regions and bounded regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$.
991
The first few values are gathered in \cref{table:regionsMultiBraidArrangement,table:boundedRegionsMultiBraidArrangement}.
992
We first compute the characteristic polynomial of~$\multiBraidArrangement$.
993
994
%\afterpage{
995
\begin{table}
996
\centerline{%\scalebox{.8}{
997
\begin{tabular}[t]{c|cccccccc}
998
$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\
999
\hline
1000
$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ % & $1$ \\
1001
$2$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ \\ % & $10$ \\
1002
$3$ & $6$ & $17$ & $34$ & $57$ & $86$ & $121$ & $162$ & $209$ \\ % & $262$ \\
1003
$4$ & $24$ & $149$ & $472$ & $1089$ & $2096$ & $3589$ & $5664$ & $8417$ \\ % & $11944$ \\
1004
$5$ & $120$ & $1809$ & $9328$ & $29937$ & $73896$ & $154465$ & $287904$ & $493473$ \\ % & $793432$ \\
1005
$6$ & $720$ & $28399$ & $241888$ & $1085157$ & $3442816$ & $8795635$ & $19376064$ & $38323753$ \\ % & $69841072$ \\
1006
$7$ & $5040$ & $550297$ & $7806832$ & $49075065$ & $200320816$ & $625812385$ & $1629858672$ & $3720648337$ \\ % & $7686190000$ \\
1007
$8$ & $40320$ & $12732873$ & $302346112$ & $2666534049$ & $14010892416$ & $53536186825$ & $164859458688$ & $434390214657$ % \\ & $1017282905344$ \\
1008
% $9$ & $362880$ & $343231361$ & $13682809216$ & $169423639713$ & $1146173002496$ & $5357227099105$ & $19506923076096$ & $59328538244801$ & $157507267166848$
1009
\end{tabular}
1010
}%}
1011
% \vspace{.3cm}
1012
\caption{The numbers $f_{n-1}(\multiBraidArrangement)$ of regions of~$\multiBraidArrangement$ for~$\ell,n \in [8]$.}
1013
\label{table:regionsMultiBraidArrangement}
1014
\end{table}
1015
%}
1016
1017
%\afterpage{
1018
\begin{table}
1019
\centerline{%\scalebox{.8}{
1020
\begin{tabular}[t]{c|cccccccc}
1021
$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\ % & $9$ \\
1022
\hline
1023
$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ \\ % & $1$ \\
1024
$2$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ \\ % & $8$ \\
1025
$3$ & $0$ & $5$ & $16$ & $33$ & $56$ & $85$ & $120$ & $161$ \\ % & $208$ \\
1026
$4$ & $0$ & $43$ & $224$ & $639$ & $1384$ & $2555$ & $4248$ & $6559$ \\ % & $9584$ \\
1027
$5$ & $0$ & $529$ & $4528$ & $17937$ & $49696$ & $111745$ & $219024$ & $389473$ \\ % & $644032$ \\
1028
$6$ & $0$ & $8501$ & $120272$ & $663363$ & $2354624$ & $6455225$ & $14926176$ & $30583847$ \\ % & $57255488$ \\
1029
$7$ & $0$ & $169021$ & $3968704$ & $30533409$ & $138995776$ & $464913325$ & $1268796096$ & $2996735329$ \\ % & $6353133184$ \\
1030
$8$ & $0$ & $4010455$ & $156745472$ & $1684352799$ & $9841053184$ & $40179437975$ & $129465630720$ & $352560518527$ % \\ & $846588258944$ \\
1031
% $9$ & $0$ & $110676833$ & $7216242688$ & $108413745057$ & $813420601856$ & $4055310777025$ & $15431698810368$ & $48461340225473$ & $131823966149632$
1032
\end{tabular}
1033
}%}
1034
% \vspace{.3cm}
1035
\caption{The numbers $b_{n-1}(\multiBraidArrangement)$ of bounded regions of~$\multiBraidArrangement$ for~$\ell,n \in [8]$.}
1036
\label{table:boundedRegionsMultiBraidArrangement}
1037
\end{table}
1038
%}
1039
1040
\begin{theorem}
1041
\label{thm:characteristicPolynomialMultiBraidArrangement}
1042
The characteristic polynomial~$\charPol[\multiBraidArrangement]$ of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ is given~by
1043
\[
1044
\charPol[\multiBraidArrangement] = \frac{(-1)^n n!}{y} \, [z^n] \, \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, y \, z^m}{m} \bigg) ,
1045
\]
1046
where~$\displaystyle F_{\ell,m} \eqdef \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$ is the Fuss-Catalan number.
1047
\end{theorem}
1048
1049
\begin{proof}
1050
By \cref{thm:MobiusPolynomialMultiBraidArrangement,prop:bijectionForests}, the characteristic polynomial~$\charPol[\multiBraidArrangement]$ is
1051
\[
1052
\charPol[\multiBraidArrangement] = \sum_{\b{F} \in \forestPoset} \mu_{\forestPoset}(\HH, \b{F}) \, y^{\dim(\b{F})} = \sum_{F \in \rainbowForests} \lambda(F) \, (-1)^{n-\card{F}} \, \omega(F) \, y^{\card{F}-1}.
1053
\]
1054
From \cref{lem:labelingRainbowForest}, we observe that
1055
\[
1056
\frac{\lambda(F) \, \omega(F) \, (-y)^{\card{F}} \, z^{\|F\|}}{\|F\|!} = \prod_{T \in F} \frac{-y \, z^{\|T\|}}{\|T\|} ,
1057
\]
1058
where $T$ ranges over the trees of~$F$.
1059
Now using that rainbow forests are exactly sets of rainbow trees, we obtain that
1060
\[
1061
\sum_{F \in \rainbowForests[][\ell]} \frac{ \lambda(F) \, \omega(F) \, (-y)^{\card{F}} \, z^{\|F\|}}{\|F\|!} = \sum_{F \in \rainbowForests[][\ell]} \prod_{T \in F} \frac{-y \, z^{\|T\|}}{\|T\|} = \exp \bigg( \sum_{T \in \rainbowTrees[][\ell]} \frac{-y \, z^{\|T\|}}{\|T\|} \bigg).
1062
\]
1063
From \cref{lem:FussCatalan}, we obtain that
1064
\[
1065
\exp \bigg( \sum_{T \in \rainbowTrees[][\ell]} \frac{-y \, z^{\|T\|}}{\|T\|} \bigg) = \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, y \, z^m}{m} \bigg).
1066
\]
1067
We conclude that
1068
\begin{align*}
1069
\charPol[\multiBraidArrangement]
1070
& = \sum_{F \in \rainbowForests} \lambda(F) \, (-1)^{n-\card{F}} \, \omega(F) \, y^{\card{F}-1} \\
1071
& = \frac{(-1)^n \, n!}{y} [z^n] \sum_{F \in \rainbowForests[][\ell]} \frac{ \lambda(F) \, \omega(F) \, (-y)^{\card{F}} \, z^{\|F\|}}{\|F\|!} \\
1072
& = \frac{(-1)^n n!}{y} \, [z^n] \, \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, y \, z^m}{m} \bigg).
1073
\qedhere
1074
\end{align*}
1075
\end{proof}
1076
1077
From the characteristic polynomial of~$\multiBraidArrangement$ and \cref{rem:characteristicPolynomial}, we obtain its numbers of regions and bounded regions.
1078
1079
\begin{theorem}
1080
\label{thm:regionsMultiBraidArrangement}
1081
The numbers of regions and of bounded regions of the $(\ell,n)$-braid arrangement~$\multiBraidArrangement$ are given by
1082
\begin{align*}
1083
f_{n-1}(\multiBraidArrangement)
1084
& = n! \, [z^n] \exp \Bigg( \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \Bigg) \\
1085
\text{and}\qquad
1086
b_{n-1}(\multiBraidArrangement)
1087
%& = - n! \, [z^n] \exp \Bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \Bigg)
1088
& = (n-1)! \, [z^{n-1}] \exp \bigg( (\ell-1) \sum_{m \ge 1} F_{\ell,m} \, z^m \bigg),
1089
\end{align*}
1090
where~$\displaystyle F_{\ell,m} \eqdef \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$ is the Fuss-Catalan number.
1091
\end{theorem}
1092
1093
\begin{proof}
1094
By \cref{rem:characteristicPolynomial}, we obtain from \cref{thm:characteristicPolynomialMultiBraidArrangement} that
1095
\begin{align*}
1096
f_{n-1}(\multiBraidArrangement) & = (-1)^{n-1} \charPol[\multiBraidArrangement][-1] = n! \, [z^n] \, \exp \bigg( \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \bigg), \\
1097
% \text{and}\qquad
1098
b_{n-1}(\multiBraidArrangement) & = (-1)^{n-1} \charPol[\multiBraidArrangement][1] = - n! \, [z^n] \, \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \bigg).
1099
\end{align*}
1100
To conclude, we thus just need to observe that
1101
\(
1102
U_\ell(z) = \frac{\partial}{\partial z} V_\ell(z)
1103
\)
1104
where
1105
\[
1106
U_\ell(z) \eqdef \exp \bigg( (\ell-1) \sum_{m \ge 1} F_{\ell,m} \, z^m \bigg)
1107
\qquad\text{and}\qquad
1108
V_\ell(z) \eqdef - \exp \bigg( - \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \bigg).
1109
\]
1110
For this, consider the generating functions
1111
\[
1112
F_\ell(z) \eqdef \sum_{m \ge 0} F_{\ell,m} \, z^m
1113
\qquad\text{and}\qquad
1114
G_\ell(z) \eqdef \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m}.
1115
\]
1116
Recall from \cref{rem:functionalEquationFussCatalan} that~$F_\ell(z)$ satisfies the functional equation
1117
\[
1118
F_\ell(z) = 1 + z \, F_\ell(z)^\ell.
1119
\]
1120
We thus obtain that
1121
\[
1122
F_\ell'(z) \big( 1 - \ell \, z \, F_\ell(z)^{\ell-1} \big) = F_\ell(z)^\ell
1123
\quad\text{and}\quad
1124
F_\ell(z) \big( 1 - \ell \, z \, F_\ell(z)^{\ell-1} \big) = 1 - (\ell-1) \, z \, F_\ell(z)^\ell.
1125
\]
1126
Combining these two equations, we get
1127
\begin{equation}
1128
\label{eq:diff}
1129
F_\ell(z)^{\ell+1} = F_\ell'(z) \big( 1 - (\ell-1) \, z \, F_\ell(z)^\ell \big).
1130
\end{equation}
1131
Observe now that
1132
\begin{equation}
1133
\label{eq:GF}
1134
z \, G_\ell'(z) = F_\ell(z) - 1 = z \, F_\ell(z)^\ell
1135
\qquad\text{and}\qquad
1136
G_\ell''(z) = \ell \, F_\ell(z)^{\ell-1} \, F_\ell'(z).
1137
\end{equation}
1138
Hence
1139
\[
1140
U_\ell(z) = \exp \big( (\ell-1) \, (F_\ell(z) - 1) \big) = \exp \big( (\ell-1) \, z \, G_\ell(z) \big)
1141
\]
1142
and
1143
\[
1144
V_\ell'(z) = \frac{\partial}{\partial z} - \exp \big( \! - G_\ell(z) \big) = G_\ell'(z) \exp \big( -G_\ell(z) \big).
1145
\]
1146
Consider now the function
1147
\[
1148
W_\ell(z) = V_\ell'(z) / U_\ell(z) = G_\ell'(z) \exp \big( \! - G_\ell(z) - (\ell-1) \, z \, G_\ell'(z) \big).
1149
\]
1150
Clearly, $W_\ell(0) = 1$.
1151
Moreover, using~\eqref{eq:GF}, we obtain that its derivative is
1152
\begin{align*}
1153
W_\ell'(z)
1154
& = \Big( G_\ell''(z) \big(1 - (\ell-1) \, z \, G_\ell'(z) \big) - \ell \, G_\ell'(z)^2 \Big) \exp \big( \! - G_\ell(z) - (\ell-1) \, z \, G_\ell'(z) \big) \\
1155
& = \ell \, F_\ell(z)^{\ell-1} \Big( F_\ell'(z) \big( 1 - (\ell-1) \, z \, F_\ell(z)^\ell \big) - F_\ell(z)^{\ell+1} \Big) \exp \big( \! - G_\ell(z) - (\ell-1) \, z \, G_\ell'(z) \big),
1156
\end{align*}
1157
which vanishes by~\eqref{eq:diff}.
1158
\end{proof}
1159
1160
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1161
1162
\section{Face poset and combinatorial description of~$\multiBraidArrangement(\b{a})$}
1163
\label{sec:facePoset}
1164
1165
In this section, we describe the face poset of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ in terms of ordered $(\ell,n)$-partition forests.
1166
This section highly depends on the choice of the translation matrix~$\b{a}$.
1167
1168
%%%%%%%%%%%%%%%
1169
1170
\subsection{Ordered partition forests}
1171
\label{subsec:orderedPartitionForests}
1172
1173
We now introduce the combinatorial objects that will be used to encode the faces of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ of \cref{def:multiBraidArrangementPrecise}.
1174
1175
\begin{definition}
1176
\label{def:orderedPartitionForest}
1177
An \defn{ordered $(\ell,n)$-partition forest} (\resp \defn{tree}) is an $\ell$-tuple \linebreak $\order{\b{F}} \eqdef (\order{F_1}, \dots, \order{F_\ell})$ of ordered set partitions of~$[n]$ such that the corresponding \linebreak $\ell$-tuple~$\b{F} \eqdef (F_1, \dots, F_\ell)$ of unordered set partitions of~$[n]$ forms an $(\ell,n)$-partition forest (\resp tree).
1178
The \defn{ordered $(\ell,n)$-partition forest poset} is the poset~$\orderedForestPoset$ on ordered $(\ell,n)$-partition forests ordered by componentwise refinement.
1179
In other words, $\orderedForestPoset$ is the subposet of the $\ell$\ordinal{} Cartesian power of the ordered partition poset~$\orderedPartitionPoset$ induced by ordered $(\ell,n)$-partition forests.
1180
Note that the maximal elements of~$\orderedForestPoset$ are the ordered $(\ell, n)$-partition trees.
1181
\end{definition}
1182
1183
The following statement is the analogue of \cref{prop:flatPosetMultiBraidArrangement}, and is illustrated in \cref{fig:B23a,fig:B23b}.
1184
1185
\begin{proposition}
1186
\label{prop:facePosetMultiBraidArrangement}
1187
The face poset~$\facePoset[\multiBraidArrangement(\b{a})]$ of the $\b{a}$-braid arrangement~$\multiBraidArrangement(\b{a})$ is isomorphic to an upper set~$\orderedForestPoset(\b{a})$ of the ordered $(\ell,n)$-partition forest poset~$\orderedForestPoset$.
1188
\end{proposition}
1189
1190
\begin{proof}
1191
The proof is based on that of \cref{prop:flatPosetMultiBraidArrangement}.
1192
A face of~$\multiBraidArrangement(\b{a})$ is an intersection of faces of the $\ell$ copies of~$\multiBraidArrangement$, hence corresponds to an $\ell$-tuple of ordered partitions of~$[n]$.
1193
Moreover, the flats supporting these faces intersect, so that the corresponding unordered partitions must form an $(\ell,n)$-partition forest.
1194
Hence, each face of~$\multiBraidArrangement(\b{a})$ corresponds to a certain ordered $(\ell,n)$-partition forest.
1195
Moreover, the inclusion of faces of~$\multiBraidArrangement(\b{a})$ translates to the componentwise refinement on ordered partitions.
1196
Finally, by genericity, it is immediate that we obtain an upper set of this componentwise refinement order.
1197
\end{proof}
1198
1199
\begin{figure}[p]
1200
\vspace*{.5cm}
1201
\centerline{\includegraphics[scale=1]{B23a}}
1202
\vspace*{.5cm}
1203
\caption{Labelings of the faces of the arrangement~$\multiBraidArrangement[3][2](\b{a})$ for~$\b{a} = \begin{bmatrix} 0 & 0 \\ -1 & -1 \end{bmatrix}$.}
1204
\label{fig:B23a}
1205
\end{figure}
1206
1207
\begin{figure}[p]
1208
\vspace*{.5cm}
1209
\centerline{\includegraphics[scale=1]{B23b}}
1210
\vspace*{.5cm}
1211
\caption{Labelings of the faces of the arrangement~$\multiBraidArrangement[3][2](\b{a})$ for~$\b{a} = \begin{bmatrix} 0 & 0 \\ 1 & -2 \end{bmatrix}$.}
1212
\label{fig:B23b}
1213
\end{figure}
1214
1215
We now fix a generic translation matrix~$\b{a} \eqdef (a_{i,j})$ and we still denote by $A_{i,s,t} \eqdef \smash{\sum_{s \le j < t} a_{i,j}}$ for all~$1 \le s < t \le n$ and~$i \in [\ell]$ (and often write~$A_{i,t,s}$ for~$-A_{i,s,t}$).
1216
The objective of this section is to describe
1217
\begin{itemize}
1218
\item the ordered $(\ell,n)$-partitions forests of the upper set~$\orderedForestPoset(\b{a})$ with a given underlying (unordered) $(\ell,n)$-partition forest (\cref{subsec:PFtoOPF}),
1219
\item a criterion to decide whether a given ordered $(\ell,n)$-partition forest belongs to the upper set~$\orderedForestPoset(\b{a})$, \ie corresponds to a face of~$\multiBraidArrangement(\b{a})$ (\cref{subsec:criterionOPF}).
1220
\end{itemize}
1221
1222
%%%%%%%%%%%%%%%
1223
1224
\subsection{From partition forests to ordered partition forests}
1225
\label{subsec:PFtoOPF}
1226
1227
In this section, we describe the ordered $(\ell,n)$-partitions forests~$\order{\b{F}}$ of the upper set~$\orderedForestPoset(\b{a})$ with a given underlying $(\ell,n)$-partition forest~$\b{F}$.
1228
We denote by~$cc(\b{F})$ the connected components of~$\b{F}$, meaning the partition of~$[n]$ given by the hyperedge labels of the connected components of the intersection hypergraph of~$\b{F}$.
1229
We first observe that the choice of~$\b{a}$ fixes the order of the parts in a common connected component of~$\b{F}$.
1230
1231
\begin{proposition}
1232
\label{prop:PFtoOPF1}
1233
Consider a $(\ell,n)$-partition forest~$\b{F} \eqdef (F_1, \dots, F_\ell)$, and two integers~$s,t \in [n]$ labeling two hyperedges in the same connected component of the intersection hypergraph of~$\b{F}$.
1234
Assume that the unique path from~$s$ to~$t$ in the hypergraph of~$\b{F}$ passes through the hyperedges labeled by~$s = r_0, \dots, r_q = t$ and through parts of the partitions~$F_{i_1}, \dots, F_{i_q}$.
1235
Then for any ordered $(\ell,n)$-partition forest~$\order{\b{F}} \eqdef (\order{F_1}, \dots, \order{F_\ell})$ of the upper set~$\orderedForestPoset(\b{a})$ with underlying $(\ell,n)$-partition \linebreak forest~$\b{F}$ and any~$i \in [\ell]$, the order of~$s$ and~$t$ in~$\order{F}_i$ is given by the sign \linebreak of~${A_{i,s,t} - \sum_{p \in [q]} A_{i_p, r_{p-1}, r_p}}$.
1236
\end{proposition}
1237
1238
\begin{proof}
1239
Consider any point~$\b{x}$ in the face of~$\multiBraidArrangement(\b{a})$ corresponding to~$\order{\b{F}}$.
1240
Along the path from~$s$ to~$t$, we have~$x_{r_{p-1}} - x_{r_p} = A_{i_p, r_{p-1}, r_p}$ for each~$p \in [q]$.
1241
Hence, we obtain that
1242
\[
1243
x_s - x_t = \sum_{p \in [q]} (x_{r_{p-1}} - x_{r_p}) = \sum_{p \in [q]} A_{i_p, r_{p-1}, r_p}.
1244
\]
1245
The order of~$s,t$ in~$\order{F}_i$ is given by the sign of~$A_{i,s,t} - (x_s - x_t)$, hence by the sign of ${A_{i,s,t} - \sum_{p \in [q]} A_{i_p, r_{p-1}, r_p}}$.
1246
\end{proof}
1247
1248
We now describe the different ways to order the parts in distinct connected components of~$\b{F}$.
1249
For this, we need the following posets.
1250
1251
\begin{definition}
1252
Consider a $(\ell,n)$-partition forest~$\b{F}$ and denote by~$cc(\b{F})$ the connected components of~$\b{F}$.
1253
For each pair~$s,t \in [n]$ in distinct connected components of~$cc(\b{F})$, we define the chain~$<_{s,t}$ on the $\ell$ triples~$(i,s,t)$ for~$i \in [\ell]$ given by the order of the values~$A_{i,s,t}$.
1254
The \defn{inversion poset}~$\Inv(\b{F}, \b{a})$ is then the poset obtained by quotienting the disjoint union of the chains~$<_{s,t}$ (for all~$s,t \in [n]$ in distinct connected components of~$cc(\b{F})$) by the equivalence relation~$(i,s,t) \equiv (i,s',t')$ if~$s$ and~$s'$ belong to the same part of~$F_i$ and~$t$ and~$t'$ belong to the same part of~$F_i$.
1255
We say that a subset~$X$ of~$\Inv(\b{F}, \b{a})$ is antisymmetric if~$(i,s,t) \in X \iff (i,t,s) \notin X$.
1256
\end{definition}
1257
1258
\begin{proposition}
1259
\label{prop:PFtoOPF2}
1260
The ordered $(\ell,n)$-partition forests of the upper set~$\orderedForestPoset(\b{a})$ with a given underlying $(\ell,n)$-partition forest~$\b{F}$ are in bijection with the antisymmetric lower sets of the inversion poset~$\Inv(\b{F}, \b{a})$.
1261
\end{proposition}
1262
1263
\begin{proof}
1264
Consider an ordered $(\ell,n)$-partition forest~$\order{\b{F}}$ of the upper set~$\orderedForestPoset(\b{a})$.
1265
Let~$\b{x}$ be any point of the face of~$\multiBraidArrangement(\b{a})$ corresponding to~$\order{\b{F}}$.
1266
For each pair~$s,t \in [n]$ in distinct connected components of~$cc(\b{F})$, let~$I_{s,t}(\order{\b{F}})$ be the set of indices~$i \in [\ell]$ such that~$x_s - x_t < A_{i,s,t}$.
1267
Note that~$I_{s,t}$ is by definition a lower set of the chain~$<_{s,t}$ of~$\Inv(\b{F}, \b{a})$.
1268
Hence, $I(\order{F}) \eqdef \bigcup_{s,t} I_{s,t} / {\equiv}$ is a lower set of~$\Inv(\b{F}, \b{a})$.
1269
Moreover, it is clearly antisymmetric since
1270
\[
1271
(i,s,t) \in I(\order{F}) \iff x_s - x_t < A_{i,s,t} \iff x_t - x_s > A_{i,t,s} \iff (i,t,s) \notin I(\order{F}).
1272
\]
1273
1274
Conversely, given an antisymmetric lower set~$I$ of~$\Inv(\b{F}, \b{a})$, we can reconstruct an ordered $(\ell,n)$-partition forest~$\order{\b{F}}$ by ordering each pair~$s,t \in [n]$ in~$\order{F}_i$
1275
\begin{itemize}
1276
\item according to \cref{prop:PFtoOPF1} (hence independently of~$I$) if $s$ and~$t$ belong to the same connected component of~$\b{F}$,
1277
\item according to~$I$ if~$s$ and~$t$ belong to distinct connected components of~$\b{F}$. Namely, we place the block of~$\order{F}_i$ containing~$s$ before the block of~$\order{F}_i$ containing~$t$ if and only if~$(i,s,t) \in I$.
1278
\end{itemize}
1279
It is then straightforward to check that the resulting ordered $(\ell,n)$-partition forest belongs to the upper set~$\orderedForestPoset(\b{a})$, by exhibiting a point~$\b{x}$ in of the corresponding face of~$\multiBraidArrangement(\b{a})$.
1280
\end{proof}
1281
1282
%%%%%%%%%%%%%%%
1283
1284
\subsection{A criterion for ordered partition forests}
1285
\label{subsec:criterionOPF}
1286
1287
We now consider a given ordered $(\ell,n)$-partition forest~$\order{F}$ and provide a criterion to decide if it belongs to the upper set~$\orderedForestPoset(\b{a})$ corresponding to the faces of~$\multiBraidArrangement(\b{a})$.
1288
For this, we need the following directed graph associated to~$\order{\b{F}}$.
1289
1290
\begin{definition}
1291
For an ordered partition~$\order{\pi} \eqdef \order{\pi}_1 | \cdots | \order{\pi}_k$ of~$[n]$, we denote by~$D_{\order{\pi}}$ the directed graph on~$[n]$ with an arc~$\max(\order{\pi}_j) \to \min(\order{\pi}_{j+1})$ for each~$j \in [k-1]$ and a cycle~${x_1 \to \dots \to x_p \to x_1}$ for each part~$\order{\pi}_j = \{x_1 < \dots < x_p\}$.
1292
Note that~$D_{\order{\pi}}$ has~$n$ vertices and~$n + k$ arcs.
1293
For an ordered $(\ell,n)$-partition forest~$\order{\b{F}} \eqdef (\order{F_1}, \dots, \order{F_\ell})$, we denote by~$D_{\order{\b{F}}}$ the superposition of the directed graphs~$D_{\order{F}_i}$ for~$i \in [\ell]$, where the arcs of~$D_{\order{F}_i}$ are labeled by~$i$.
1294
\end{definition}
1295
1296
\begin{proposition}
1297
\label{prop:characterizationOPFs}
1298
An ordered $(\ell,n)$-partition forest~$\order{\b{F}}$ belongs to the upper set~$\orderedForestPoset(\b{a})$ if and only if $\sum_{\alpha \in \gamma} A_{i(\alpha), s(\alpha), t(\alpha)} \ge 0$ for any (simple) oriented cycle~$\gamma$ in~$D_{\order{\b{F}}}$, where each arc~$\alpha \in \gamma$ has label~$i(\alpha)$, source~$s(\alpha)$, and target~$t(\alpha)$.
1299
\end{proposition}
1300
1301
\begin{proof}
1302
Consider an ordered $(\ell,n)$-partition forest~$\order{\b{F}} \eqdef (\order{F}_1, \dots, \order{F}_\ell)$.
1303
For each~$i \in [\ell]$, denote by
1304
\begin{itemize}
1305
\item $m_i$ the number of arcs of~$D_{\order{F}_i}$
1306
\item $M_i$ the incidence matrix of~$D_{\order{F}_i}$, with $m_i$ rows and $n$ columns, with a row for each arc~$\alpha$ of~$D_{\order{F}_i}$ containing a $-1$ in column~$s(\alpha)$, a $1$ in column~$t(\alpha)$, and $0$ elsewhere,
1307
\item $\b{z}_i$ the column vector in~$\R^{m_i}$ with a row for each arc~$\alpha$ of~$D_{\order{F}_i}$ containing the value~$A_{i(\alpha), s(\alpha), t(\alpha)}$.
1308
\end{itemize}
1309
Then a point~$\b{x} \in \R^n$ belongs to the face of the $i$\ordinal{} braid arrangement corresponding to~$\order{F}_i$ if and only if it satisfies~$M_i \, \b{x} \le \b{z}_i$.
1310
Hence, $\order{\b{F}}$ appears as a face of the $\b{a}$-braid arrangement if and only if there exists~$\b{x} \in \R^n$ such that~$M \, \b{x} \le \b{z}$, where~$M$ is the $(m \times n)$-matrix (where~$m \eqdef \sum_{i \in [\ell]} m_i$), obtained by piling the matrices~$M_i$ for~$i \in [\ell]$ and similarly, $\b{z}$ is the column vector obtained by piling the vectors~$\b{z}_i$.
1311
A direct application of the Farkas lemma (see \eg \cite[Prop.~1.7]{Ziegler}), there exists~$\b{x} \in \R^n$ such that~$M \, \b{x} \le \b{z}$ if and only if~$\b{c} \b{z} \ge 0$ for any~$\b{c} \in (\R^m)^*$ with~$\b{c} \ge \b{0}$ and~$\b{c} M = \b{0}$.
1312
Now it is classical that the left kernel of the incidence matrix of a directed graph is generated by its circuits (non-necessarily oriented cycles), and that the positive cone in this left kernel is generated by its oriented cycles.
1313
\end{proof}
1314
1315
\begin{remark}
1316
Note that we made some arbitrary choices here by choosing the arc from~$\max(\order{\pi}_j)$ to~$\min(\order{\pi}_{j+1})$ between two consecutive parts~$\order{\pi}_j$ and~$\order{\pi}_{j+1}$ and a cycle inside each part~$\order{\pi}_j$ (while we said that the order in each part is irrelevant).
1317
We could instead have considered all arcs connecting two elements of two consecutive parts, or two elements inside the same part.
1318
Our choices just limit the amount of oriented cycles in~$D_{\order{\pi}}$.
1319
\end{remark}
1320
1321