Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
GuillaumeLaplante-Anfossi
GitHub Repository: GuillaumeLaplante-Anfossi/Poissons
Path: blob/main/AMS/diag.tex
1017 views
1
\chapter{Diagonals of permutahedra}
2
\label{part:diagonalsPermutahedra}
3
4
In this second part, we study the combinatorics of the diagonals of the permutahedra.
5
In \cref{sec:cellularDiagonals}, we first recall the definition and some known facts about cellular diagonals of polytopes (\cref{subsec:cellularDiagonalsPolytopes}), which we immediately specialize to the classical permutahedron (\cref{sec:cellularDiagonalsPermutahedra}), and connect to \cref{part:multiBraidArrangements} to derive enumerative statements on the diagonals of permutahedra (\cref{subsec:enumerationDiagonalPermutahedra}).
6
In \cref{sec:operadicDiagonals}, we consider two particular diagonals, the $\LA$ and $\SU$ diagonals (\cref{subsec:LASUdiagonal}), we show that these are the only two operadic diagonals which induce the weak order (\cref{subsec:operadicProperty}), and that they are isomorphic (\cref{subsec:isos-LA-SU}).
7
Using results from \cref{sec:facePoset,sec:cellularDiagonals}, we then characterize their facets in terms of paths in $(2,n)$-partition trees (\cref{subsec:facets-operadic-diags}), and their vertices as pattern-avoiding pairs of permutations (\cref{subsec:vertices-operadic-diags}).
8
Finally, in \cref{sec:shifts}, we show that the geometric $\SU$ diagonal $\SUD$ is a topological enhancement of the original Saneblidze-Umble diagonal~\cite{SaneblidzeUmble} (\cref{subsec:topological-SU}).
9
In order to prove this result, we define different types of shifts that can be performed on the facets of the $\SU$ diagonal, and give several new equivalent definitions of it.
10
These descriptions are directly translated to the $\LA$ diagonal via isomorphism (\cref{subsec:shifts-under-iso}).
11
Moreover, we observe that the shifts define a natural lattice structure on the set of facets of operadic diagonals, that we call the \emph{shift lattice} (\cref{sec:Shift-lattice}).
12
Finally, we present the alternative matrix (\cref{subsec:matrix}) and cubical (\cref{sec:Cubical}) descriptions of the $\SU$ diagonal from \cite{SaneblidzeUmble,SaneblidzeUmble-comparingDiagonals}, provide proofs of their equivalence with the other descriptions, and give their $\LA$ counterparts.
13
14
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15
16
\section{Cellular diagonals}
17
\label{sec:cellularDiagonals}
18
19
%%%%%%%%%%%%%%%
20
21
\subsection{Cellular diagonals for polytopes}
22
\label{subsec:cellularDiagonalsPolytopes}
23
24
As discussed in the introduction, cellular approximations of the thin diagonal for families of polytopes are of fundamental importance in algebraic topology and geometry.
25
They allow one to define the cup product and thus define the ring structure on the cohomology groups of a topological space, and combinatorially on the Chow groups of a toric variety.
26
We now proceed to define thin, cellular, and geometric diagonals.
27
28
\begin{definition}
29
\label{def:thinDiagonal}
30
The \defn{thin diagonal} of a set $X$ is the map~$\delta : X \to X \times X$ defined \linebreak by $\delta(x) \eqdef (x,x)$ for all $x \in X$.
31
See \cref{fig:examplesDiagonals1}\,(left).
32
\end{definition}
33
34
\begin{definition}
35
\label{def:cellularDiagonal}
36
A \defn{cellular diagonal} of a $d$-dimensional polytope $P$ is a continuous map ${\Delta : P \to P \times P}$ such that
37
\begin{enumerate}
38
\item its image is a union of $d$-dimensional faces of $P\times P$ (\ie it is \defn{cellular}),
39
\item it agrees with the thin diagonal of~$P$ on the vertices of $P$, and
40
\item it is homotopic to the thin diagonal of~$P$, relative to the image of the vertices of~$P$.
41
\end{enumerate}
42
See \cref{fig:examplesDiagonals1}\,(middle left).
43
A cellular diagonal is said to be \defn{face coherent} if its restriction to a face of $P$ is itself a cellular diagonal for that face.
44
\end{definition}
45
46
A powerful geometric technique to define face coherent cellular diagonals on polytopes first appeared in~\cite{FultonSturmfels}, was presented in~\cite{MasudaThomasTonksVallette}, and was fully developed in~\cite{LaplanteAnfossi}.
47
We provide in \cref{thm:diagonal} the precise (but slightly technical) definition of these diagonals, even though we will only use the characterization of the faces in their image provided in \cref{thm:universalFormula}.
48
49
The key idea is that any vector $\b{v}$ in generic position with respect to $P$ defines a cellular diagonal of $P$.
50
For $\b{z}$ a point of $P$, we denote by $\rho_{\b{z}} P \eqdef 2\b{z}-P$ the reflection of $P$ with respect to the point~$\b{z}$.
51
52
\begin{definition}
53
The \defn{fundamental hyperplane arrangement}~$\mathcal{H}_P$ of a polytope~$P \subset \R^d$ is the set of all linear hyperplanes of~$\R^d$ orthogonal to the edges of $P\cap \rho_{\b{z}} P$ for all~$\b{z} \in P$.
54
See \cref{fig:examplesHyperplanes}.
55
\end{definition}
56
57
\begin{figure}
58
\centerline{
59
\includegraphics[scale=.38]{HypSimplex.png} \hspace{-.6cm}
60
\includegraphics[scale=.44]{HypCube.png} \hspace{-.3cm}
61
\includegraphics[scale=.38]{HypPermuto.png}
62
}
63
\caption{The fundamental hyperplane arrangements of the $3$-dimensional simplex (left), cube (middle), and permutahedron (right). The hyperplanes perpendicular
64
to edges of some intersection $P\cap \rho_z P$, which are \emph{not} edges of the polytope~$P$, are colored in blue. Left and rightmost illustrations from~\cite[Fig.~12]{LaplanteAnfossi}.}
65
\label{fig:examplesHyperplanes}
66
\end{figure}
67
68
A vector is \defn{generic with respect to~$P$} if it does not belong to the union of the hyperplanes of the fundamental hyperplane arrangement~$\mathcal{H}_P$.
69
In particular, such a vector is not perpendicular to any edge of $P$, and we denote by~$\min_{\b{v}}(P)$ (\resp $\max_{\b{v}}(P)$) the unique vertex of~$P$ which minimizes (\resp maximizes) the scalar product with~$\b{v}$.
70
Note that the datum of a polytope~$P$ together with a vector~$\b{v}$ generic with respect to~$P$ was called \defn{positively oriented polytope} in~\cite{MasudaThomasTonksVallette,LaplanteAnfossi,LaplanteAnfossiMazuir}.
71
72
\begin{theorem}
73
\label{thm:diagonal}
74
For any vector $\b{v} \in \R^d$ generic with respect to $P$, the tight coherent section~$\triangle_{(P,\b{v})}$ of the projection $P \times P \to P, (\b{x}, \b{y}) \mapsto (\b{x}+\b{y})/2$ selected by the vector~$(-\b{v}, \b{v})$ defines a cellular diagonal of~$P$.
75
More precisely, $\triangle_{(P,\b{v})}$ is given by the formula
76
\begin{align*}
77
\begin{array}{rlcl}
78
\triangle_{(P,\b{v})}\ : & P & \to & P\times P \\
79
& \b{z} & \mapsto & \bigl( \min_{\b{v}}(P\cap \rho_{\b{z}} P), \, \max_{\b{v}}(P\cap \rho_{\b{z}} P) \bigr) .
80
\end{array}
81
\end{align*}
82
\end{theorem}
83
84
\begin{definition}
85
\label{def:geometricDiagonal}
86
A \defn{geometric diagonal} of a polytope~$P$ is a diagonal of the form~$\triangle_{(P,\b{v})}$ for some vector~$\b{v} \in \R^d$ generic with respect to~$P$.
87
\end{definition}
88
89
Note that the geometric diagonal~$\triangle_{(P,\b{v})}$ only depends on the region of~$\mathcal{H}_P$ containing~$\b{v}$, see~\cite[Prop.~1.23]{LaplanteAnfossi}.
90
91
\begin{figure}
92
\centerline{\scalebox{1.25}{
93
\begin{tabular}{c@{\hspace{-.2cm}}c@{\hspace{-.2cm}}c@{\hspace{-.2cm}}c}
94
\includegraphics[scale=1.2]{diagonalSegment1} &
95
\includegraphics[scale=1.2]{diagonalSegment2} &
96
\raisebox{-.2cm}{\includegraphics[scale=1]{diagonalSegment3}} &
97
\raisebox{-.2cm}{\includegraphics[scale=1]{diagonalSegment4}}
98
\\
99
\includegraphics[scale=.9]{diagonalTriangle1} &
100
\includegraphics[scale=.9]{diagonalTriangle2} &
101
\includegraphics[scale=.6]{diagonalTriangle3} &
102
\includegraphics[scale=.6]{diagonalTriangle4}
103
\\
104
\includegraphics[scale=.9]{diagonalSquarre1} &
105
\includegraphics[scale=.9]{diagonalSquarre2} &
106
\includegraphics[scale=.6]{diagonalSquarre3} &
107
\includegraphics[scale=.6]{diagonalSquarre4}
108
\end{tabular}
109
}}
110
\caption{Cellular diagonals of the segment (top), the triangle (middle) and the square (bottom). For each of them, we have represented the thin diagonal of~$P$ (left, in blue), a cellular diagonal of~$P$ (middle left, in red) both in~$P \times P$, the associated polytopal subdivision of~$P$ (middle right) and the common refinement of the two copies of the normal fan of~$P$ (right) both in~$P$.}
111
\label{fig:examplesDiagonals1}
112
\end{figure}
113
114
\begin{figure}
115
\centerline{
116
\includegraphics[scale=.3]{diagonalSimplexGuillaume.png}
117
\includegraphics[scale=.35]{diagonalCubeGuillaume.png}
118
\includegraphics[scale=.3]{diagonalPermutahedronGuillaume.png}
119
}
120
\caption{The subdivisions induced by cellular diagonals of the $3$-dimensional simplex (left), cube (middle), and permutahedron (right). Right illustration from~\cite[Fig.~13]{LaplanteAnfossi}.}
121
\label{fig:examplesDiagonals2}
122
\end{figure}
123
124
Now the following \defn{universal formula}~\cite[Thm.~1.26]{LaplanteAnfossi} expresses combinatorially the faces in the image of the geometric diagonal~$\triangle_{(P,\b{v})}$.
125
Recall that the \defn{normal cone} of a face~$F$ of a polytope~$P$ in~$\R^d$ is the cone of directions~$\b{c} \in \R^d$ such that the maximum of the scalar product~$\dotprod{\b{c}}{\b{x}}$ over~$P$ is attained for some~$\b{x}$ in~$F$.
126
127
\begin{theorem}[{\cite[Thm.~1.26]{LaplanteAnfossi}}]
128
\label{thm:universalFormula}
129
Fix a vector $\b{v} \in \R^d$ generic with respect to~$P$.
130
For each hyperplane~$H$ of the fundamental hyperplane arrangement~$\mathcal{H}_P$, denote by~$H^{\b{v}}$ the open half space defined by~$H$ and containing~$\b{v}$.
131
The faces of~$P \times P$ in the image of the geometric diagonal~$\triangle_{(P,\b{v})}$ are the faces~$F \times G$ where~$F$ and~$G$ are faces of~$P$ such that either the normal cone of~$F$ intersects~$H^{-\b{v}}$ or the normal cone of~$G$ intersects~$H^{\b{v}}$, for each~$H \in \mathcal{H}_P$.
132
\end{theorem}
133
134
The image of $\triangle_{(P,\b{v})}$ is a union of pairs of faces $F \times G$ of the Cartesian product~$P \times P$.
135
By drawing the polytopes~${(F+G)/2}$ for all pairs of faces ${(F,G) \in \Ima \triangle_{(P,\b{v})}}$, we can visualize~$\triangle_{(P,\b{v})}$ as a polytopal subdivision of $P$.
136
See \cref{fig:examplesDiagonals1}\,(middle right) and \cref{fig:examplesDiagonals2}.
137
138
It turns out that the dual of this complex is just the common refinement of two translated copies of the normal fan of~$P$.
139
See \cref{fig:examplesDiagonals1}\,(right).
140
Recall that the \defn{normal fan} of~$P$ is the fan formed by the normal cones of all faces of~$P$.
141
We thus obtain the following statement.
142
143
\begin{proposition}[{\cite[Coro.~1.4]{LaplanteAnfossi}}]
144
\label{prop:diagonalCommonRefinement}
145
The inclusion poset on the faces in the image of the diagonal~$\triangle_{(P,\b{v})}$ is isomorphic to the reverse inclusion poset on the faces of the common refinement of two copies of the normal fan of~$P$, translated from each other by the vector~$\b{v}$.
146
\end{proposition}
147
148
Finally, the following statement relates the image of the diagonal~$\triangle_{(P, \b{v})}$ to the intervals of the poset obtained by orienting the skeleton of~$P$ in direction~$\b{v}$.
149
150
\begin{proposition}[{\cite[Prop. 1.17]{LaplanteAnfossi}}]
151
\label{prop:magicalFormula}
152
For any polytope $P$ and any generic vector~$\b{v}$, we have
153
\begin{equation}
154
\label{eq:magique}
155
\Ima\triangle_{(P, \b{v})} \quad \subseteq \bigcup_{\substack{F,G \text{ faces of } P \\ \max_{\b{v}}(F) \, \le \, \min_{\b{v}}(G)}} F \times G .
156
\end{equation}
157
\end{proposition}
158
159
\begin{remark}
160
\label{rem:magicalFormula}
161
For some polytopes such as the simplices~\cite{EilenbergMacLane}, the cubes~\cite{Serre}, the freehedra~\cite{Saneblidze-freeLoopFibration}, and the associahedra~\cite{MasudaThomasTonksVallette}, the reverse inclusion also holds (in the case of the simplices and the cubes, the diagonals are known as the \emph{Alexander--Whitney} map~\cite{EilenbergMacLane} and \emph{Serre} map~\cite{Serre}).
162
According to~\cite{MasudaThomasTonksVallette}, the resulting equality enhancing~(\ref{eq:magique}) was called \defn{magical formula} by J.-L. Loday.
163
This equality simplifies the computation of the $f$-vectors of the diagonals.
164
For instance, the number of $k$-dimensional faces in the diagonal of the $(n-1)$-dimensional simplex, cube, and associahedron are respectively given by
165
\begin{alignat*}{2}
166
f_k(\triangle_{\Simplex}) & = (k+1) \binom{n+1}{k+2} && \text{\OEIS{A127717}},
167
% choose k+2 points of [n] where 2 consecutive are distinguished and might be equal, and the rest is distinct
168
% this is the same as choosing k+2 points of [n+1], and the position of the consecutive pair of distinguished points among them
169
% hence (k+1) \binom{n+1}{k+2}
170
\\
171
f_k(\triangle_{\Cube}) & = \binom{n-1}{k} 2^k 3^{n-1-k} && \text{\OEIS{A038220},}
172
% choose a < b <= c < d in the boolean lattice such that |b-a| + |d-c| = k.
173
% choose the positions of the ones in (b-a) + (d-c) => \binom{n}{k}
174
% choose whether each of this ones is in (b-a) or in (d-c) => 2^k
175
% choose the values of b and c on the remaining n-k positions to be either 00, 01 or 11 => 3^(n-k)
176
\\
177
f_k(\triangle_{\Asso}) & = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1} \qquad && \text{\cite{BostanChyzakPilaud}.}
178
\end{alignat*}
179
Polytopes of greater complexity such as the multiplihedra~\cite{LaplanteAnfossiMazuir} or the operahedra~\cite{LaplanteAnfossi}, which include the permutahedra, do not possess this exceptional property, and the $f$-vectors of their diagonals are harder to compute.
180
\end{remark}
181
182
\begin{remark}
183
\label{rem:Fulton--Sturmfels}
184
This is in fact precisely the content of the \emph{Fulton--Sturmfels formula} for the intersection product on toric varieties~\cite[Thm.~4.2]{FultonSturmfels}, where the definition of cellular diagonals as tight coherent sections first appeared.
185
\end{remark}
186
187
To conclude, we define the opposite of a geometric diagonal.
188
189
\begin{definition}
190
\label{def:oppositeDiagonal}
191
The \defn{opposite} of the geometric diagonal~$\triangle \eqdef \triangle_{(P, \b{v})}$ for a vector~${\b{v} \in \R^d}$ generic with respect to $P$ is the geometric diagonal~$\triangle^{\op} \eqdef \triangle_{(P, -\b{v})}$ for the vector~$-\b{v}$.
192
Observe that
193
\[{
194
F \times G \in \Ima \triangle} \qquad\iff\qquad G \times F \in \Ima \triangle^{\op}.
195
\]
196
\end{definition}
197
198
%%%%%%%%%%%%%%%
199
200
\subsection{Cellular diagonals for the permutahedra}
201
\label{sec:cellularDiagonalsPermutahedra}
202
203
We now specialize the statements of \cref{subsec:cellularDiagonalsPolytopes} to the standard permutahedron.
204
We first recall its definition.
205
206
\begin{definition}
207
\label{def:permutahedron}
208
The \defn{permutahedron}~$\Perm$ is the polytope in~$\R^n$ defined equivalently as
209
\begin{itemize}
210
\item the convex hull of the points~$\sum_{i \in [n]} i \, \b{e}_{\sigma(i)}$ for all permutations~$\sigma$ of~$[n]$, see~\cite{Schoute},
211
\item the intersection of the hyperplane~$\smash{\bigset{\b{x} \in \R^n}{\sum_{i \in I} x_i = \binom{n+1}{2}}}$ with the affine halfspaces $\smash{\bigset{\b{x} \in \R^n}{\sum_{i \in I} x_i \ge \binom{\card{I}+1}{2}}}$ for all~${\varnothing \ne I \subsetneq [n]}$, see~\cite{Rado}.
212
\end{itemize}
213
The normal fan of the permutahedron~$\Perm$ is the fan defined by the braid arrangement~$\braidArrangement$.
214
In particular, the faces of~$\Perm$ correspond to the ordered partitions of~$[n]$.
215
Moreover, when oriented in a generic direction, the skeleton of the permutahedron~$\Perm$ is isomorphic to the Hasse diagram of the classical weak order on permutations of~$[n]$.
216
% when oriented in the direction~${\b{\omega} \eqdef (n,\dots,1) - (1,\dots,n) = \sum_{i \in [n]} (n+1-2i) \, \b{e}_i}$
217
See \cref{fig:permutahedron}.
218
%
219
\begin{figure}
220
\centerline{
221
\includegraphics[scale=.8]{permutahedronWeakOrder}
222
\qquad
223
\includegraphics[scale=.7]{weakOrder}
224
}
225
\caption{The permutahedron~$\Perm[4]$ (left) and the weak order on permutations of~$[4]$ (right).}
226
\label{fig:permutahedron}
227
\end{figure}
228
\end{definition}
229
230
The fundamental hyperplane arrangement of the permutahedron~$\Perm$ was described in~\cite[Sect.~3.1]{LaplanteAnfossi}.
231
As we will use the following set throughout the paper, we embed it in a definition.
232
233
\begin{definition}
234
\label{def:Un}
235
For~$n \in \N$, we define
236
\[
237
\Un(n) \eqdef \bigset{\{I,J\}}{I,J \subset [n] \text{ with } \card{I}=\card{J} \text{ and } I \cap J = \varnothing}.
238
\]
239
An \defn{ordering} of~$\Un(n)$ is a set containing exactly one of the two ordered pairs $(I,J)$ or $(J,I)$ for each $\{I,J\} \in \Un(n)$.
240
\end{definition}
241
242
\begin{proposition}[{\cite[Sect.~3.1]{LaplanteAnfossi}}]
243
The fundamental hyperplane arrangement of the permutahedron~$\Perm$ is given by the hyperplanes~$\bigset{\b{x} \in \R^n}{\sum\limits_{i \in I} x_i = \sum\limits_{j \in J} x_j}$ for all~$\{I,J\} \in \Un(n)$.
244
\end{proposition}
245
246
For a vector~$\b{v}$ generic with respect to~$\Perm$, we denote by~$\Or(\b{v})$ the ordering of~$\Un(n)$ such that~$\sum_{i \in I} v_i > \sum_{j \in J} v_j$ for all~$(I,J) \in \Or(\b{v})$.
247
Applying \cref{thm:universalFormula}, we next describe the faces in the image of the geometric diagonal~$\triangle_{(\Perm, \b{v})}$.
248
For this, the following definition will be convenient.
249
250
\begin{definition}
251
\label{def:domination}
252
For $I,J \subseteq [n]$ and an ordered partition $\sigma$ of~$[n]$ into $k$ blocks, we say that $I$~\defn{dominates} $J$ in~$\sigma$ if for all $\ell \in [k]$, the first~$\ell$ blocks of~$\sigma$ contain at least as many elements of~$I$ than of~$J$.
253
\end{definition}
254
255
\begin{theorem}[{\cite[Thm.~3.16]{LaplanteAnfossi}}]
256
\label{thm:IJ-description}
257
A pair~$(\sigma, \tau)$ of ordered partitions of~$[n]$ corresponds to a face in the image of the geometric diagonal~$\triangle_{(\Perm, \b{v})}$ if and only if, for all~$(I,J) \in \Or(\b{v})$, $J$ does not dominate~$I$ in~$\sigma$ or $I$ does not dominate~$J$ in~$\tau$.
258
\end{theorem}
259
260
As the normal fan of the permutahedron~$\Perm$ is the fan defined by the braid arrangement~$\braidArrangement$, we obtain by \cref{prop:diagonalCommonRefinement} the following connection between the diagonal of~$\Perm$ and the $(2,n)$-braid arrangement~$\multiBraidArrangement[2][n]$ studied in \cref{part:multiBraidArrangements}.
261
This connection is illustrated in \cref{fig:diagonalPermutahedron1}.
262
%
263
\begin{figure}
264
\centerline{\includegraphics[scale=1]{diagonalPermutahedron1}}
265
\caption{The duality between the $(2,3)$-braid arrangement~$\multiBraidArrangement[3][2]$ (left) and the diagonal of the permutahedron~$\Perm[3]$ (right).}
266
\label{fig:diagonalPermutahedron1}
267
\end{figure}
268
269
\begin{proposition}
270
\label{prop:diagonalPermutahedraMultiBraidArrangements}
271
The inclusion poset on the faces in the image of the diagonal~$\triangle_{(\Perm, \b{v})}$ is isomorphic to the reverse inclusion poset on the faces of the $(2,n)$-braid arrangement~$\multiBraidArrangement[2][n]$.
272
\end{proposition}
273
274
\begin{remark}
275
\label{rem:translationMatrix}
276
To be more precise, the diagonal~$\triangle_{(\Perm, \b{v})}$ is dual to the $\b{a}$-braid arrangement~$\multiBraidArrangement[2][n](\b{a})$ where the translation matrix~$\b{a}$ has two rows, with first row~${\b{a}_{1,j} = 0}$ and second row~$\b{a}_{2,j} = v_j-v_{j+1}$ for all~$j \in [n-1]$.
277
Since~$\b{v}$ is generic with respect to~$\Perm$, we have~$\sum_{i \in I} v_i \ne \sum_{j \in J} v_j$ for all~$(I,J) \in \Un(n)$, so that~$\b{a}$ is indeed generic.
278
\end{remark}
279
280
\begin{remark}
281
Similarly, the combinatorics of the $(\ell-1)$\ordinalst{} iteration of a diagonal of the permutahedron~$\Perm$ is given by the combinatorics of the $(\ell,n)$-braid arrangement.
282
\end{remark}
283
284
Finally, the permutahedron~$\Perm$ is not magical in the sense of \cref{prop:magicalFormula}.
285
See also \cref{exm:intervalsWeakOrderNotDiagonals}.
286
287
\begin{proposition}[{\cite[Sect.~3]{LaplanteAnfossi}}]
288
For any~$n > 3$ and any generic vector~$\b{v}$, the diagonal~$\triangle_{(\Perm, \b{v})}$ of the permutahedron~$\Perm$ does \emph{not} satisfy the magical formula.
289
Namely, we have the strict inclusion
290
\begin{equation*}
291
\Ima\triangle_{(\Perm, \b{v})} \quad \subsetneq \bigcup_{\substack{F,G \text{ faces of } \Perm \\ \max_{\b{v}}(F) \, \le \, \min_{\b{v}}(G)}} F \times G .
292
\end{equation*}
293
\end{proposition}
294
295
\begin{remark}
296
\label{rem:oppositeDiagonals}
297
Note that opposite diagonals have opposite orderings.
298
Namely, $\Or(-\b{v}) = \Or(\b{v})^{\op}$ where~$\Or^{\op} \eqdef \set{(J,I)}{(I,J) \in \Or}$.
299
\end{remark}
300
301
%%%%%%%%%%%%%%%
302
303
\subsection{Enumerative results on cellular diagonals of the permutahedra}
304
\label{subsec:enumerationDiagonalPermutahedra}
305
306
Relying on \cref{prop:diagonalPermutahedraMultiBraidArrangements}, we now specialize the results of \cref{part:multiBraidArrangements} to the case~$\ell = 2$ to derive enumerative results on the diagonals of the permutahedra.
307
308
Observe that one can easily compute the full M\"obius polynomials of the $(2,n)$-braid arrangements~$\multiBraidArrangement[n][2]$ from \cref{thm:MobiusPolynomialMultiBraidArrangement}:
309
\begin{align*}
310
\allowdisplaybreaks
311
\mobPol[{\multiBraidArrangement[1][2]}] & = 1 , \\
312
\mobPol[{\multiBraidArrangement[2][2]}] & = x y - 2 x + 2 , \\
313
\mobPol[{\multiBraidArrangement[3][2]}] & = x^2 y^2 - 6 x^2 y + 10 x^2 + 6 x y - 18 x + 8 , \\
314
\mobPol[{\multiBraidArrangement[4][2]}] & = x^3 y^3 - 12 x^3 y^2 + 52 x^3 y - 84 x^3 + 12 x^2 y^2 \\ & \quad - 96 x^2 y + 216 x^2 + 44 x y - 182 x + 50 , \\
315
\mobPol[{\multiBraidArrangement[5][2]}] & = x^4 y^4 - 20 x^4 y^3 + 160 x^4 y^2 - 620 x^4 y + 1008 x^4 \\ & \quad+ 20 x^3 y^3 - 300 x^3 y^2 + 1640 x^3 y - 3360 x^3 \\ & \quad+ 140 x^2 y^2 - 1430 x^2 y + 4130 x^2 + 410 x y - 2210 x + 432 .
316
\end{align*}
317
%which can be encoded in matrices as
318
%{\small
319
%\[
320
%\left(\begin{array}{r}
321
%1
322
%\end{array}\right)
323
%\left(\begin{array}{rr}
324
%2 & -2 \\
325
%0 & 1
326
%\end{array}\right)
327
%\left(\begin{array}{rrr}
328
%8 & -18 & 10 \\
329
%0 & 6 & -6 \\
330
%0 & 0 & 1
331
%\end{array}\right)
332
%\left(\begin{array}{rrrr}
333
%50 & -182 & 216 & -84 \\
334
%0 & 44 & -96 & 52 \\
335
%0 & 0 & 12 & -12 \\
336
%0 & 0 & 0 & 1
337
%\end{array}\right)
338
%\left(\begin{array}{rrrrr}
339
%432 & -2210 & 4130 & -3360 & 1008 \\
340
%0 & 410 & -1430 & 1640 & -620 \\
341
%0 & 0 & 140 & -300 & 160 \\
342
%0 & 0 & 0 & 20 & -20 \\
343
%0 & 0 & 0 & 0 & 1
344
%\end{array}\right)
345
%%\left(\begin{array}{r}
346
%%1
347
%%\end{array}\right)
348
%%\left(\begin{array}{rr}
349
%%2 & 0 \\
350
%%-2 & 1
351
%%\end{array}\right)
352
%%\left(\begin{array}{rrr}
353
%%8 & 0 & 0 \\
354
%%-18 & 6 & 0 \\
355
%%10 & -6 & 1
356
%%\end{array}\right)
357
%%\left(\begin{array}{rrrr}
358
%%50 & 0 & 0 & 0 \\
359
%%-182 & 44 & 0 & 0 \\
360
%%216 & -96 & 12 & 0 \\
361
%%-84 & 52 & -12 & 1
362
%%\end{array}\right)
363
%%\left(\begin{array}{rrrrr}
364
%%432 & 0 & 0 & 0 & 0 \\
365
%%-2210 & 410 & 0 & 0 & 0 \\
366
%%4130 & -1430 & 140 & 0 & 0 \\
367
%%-3360 & 1640 & -300 & 20 & 0 \\
368
%%1008 & -620 & 160 & -20 & 1
369
%%\end{array}\right)
370
%%\left(\begin{array}{rrrrrr}
371
%%4802 & 0 & 0 & 0 & 0 & 0 \\
372
%%-31922 & 4732 & 0 & 0 & 0 & 0 \\
373
%%82560 & -23100 & 1830 & 0 & 0 & 0 \\
374
%%-104400 & 41560 & -6210 & 340 & 0 & 0 \\
375
%%64800 & -32760 & 6960 & -720 & 30 & 0 \\
376
%%-15840 & 9568 & -2580 & 380 & -30 & 1
377
%%\end{array}\right)
378
%\]
379
%}
380
381
We now focus on the number of vertices, regions, and bounded regions of the $(2,n)$-braid arrangement~$\multiBraidArrangement[n][2]$, to obtain the number of facets, vertices, and internal vertices of the diagonal of the permutahedron~$\Perm$.
382
The first few values are gathered in \cref{table:enumerationDiagonalPermutahedra1,table:enumerationDiagonalPermutahedra2}.
383
384
%\afterpage{
385
\begin{table}[b]
386
\centerline{\scalebox{1}{
387
\begin{tabular}[t]{c|ccccccccccc}
388
$n$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $9$ & $\dots$ & OEIS \\
389
\hline
390
facets & $1$ & $2$ & $8$ & $50$ & $432$ & $4802$ & $65536$ & $1062882$ & $20000000$ & $\dots$ & \OEIS{A007334} \\
391
vertices & $1$ & $3$ & $17$ & $149$ & $1809$ & $28399$ & $550297$ & $12732873$ & $343231361$ & $\dots$ & \OEIS{A213507} \\
392
int. verts. & $1$ & $1$ & $5$ & $43$ & $529$ & $8501$ & $169021$ & $4010455$ & $110676833$ & $\dots$ & \OEIS{A251568}
393
\end{tabular}
394
}}
395
% \vspace{.3cm}
396
\caption{The numbers of facets, vertices, and internal vertices of the diagonal of the permutahedron~$\Perm$ for~$n \in [9]$.}
397
\label{table:enumerationDiagonalPermutahedra1}
398
\end{table}
399
%}
400
401
%\afterpage{
402
\begin{table}
403
\centerline{
404
\begin{tabular}{c@{\quad}c@{\quad}c@{\quad}c}
405
$n = 1$ & $n = 2$ & $n = 3$ & $n = 4$
406
\\
407
\begin{tabular}[t]{r|c}
408
\textbf{dim} & \textbf{0} \\
409
\hline
410
\textbf{0} & 1
411
\end{tabular}
412
&
413
\begin{tabular}[t]{r|cc}
414
\textbf{dim} & \textbf{0} & \textbf{1} \\
415
\hline
416
\textbf{0} & 3 & 1 \\
417
\textbf{1} & 1 &
418
\end{tabular}
419
&
420
\begin{tabular}[t]{r|ccc}
421
\textbf{dim} & \textbf{0} & \textbf{1} & \textbf{2} \\
422
\hline
423
\textbf{0} & 17 & 12 & 1 \\
424
\textbf{1} & 12 & 6 & \\
425
\textbf{2} & 1 & &
426
\end{tabular}
427
&
428
\begin{tabular}[t]{r|cccc}
429
\textbf{dim} & \textbf{0} & \textbf{1} & \textbf{2} & \textbf{3} \\
430
\hline
431
\textbf{0} & 149 & 162 & 38 & 1 \\
432
\textbf{1} & 162 & 150 & 24 & \\
433
\textbf{2} & 38 & 24 & & \\
434
\textbf{3} & 1 & & &
435
\end{tabular}
436
\end{tabular}
437
}
438
\vspace{.3cm}
439
\centerline{
440
\begin{tabular}{c@{\quad}c}
441
$n = 5$ & $n = 6$
442
\\
443
\begin{tabular}[t]{r|ccccc}
444
\textbf{dim} & \textbf{0} & \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} \\
445
\hline
446
\textbf{0} & 1809 & 2660 & 1080 & 110 & 1 \\
447
\textbf{1} & 2660 & 3540 & 1200 & 80 & \\
448
\textbf{2} & 1080 & 1200 & 270 & & \\
449
\textbf{3} & 110 & 80 & && \\
450
\textbf{4} & 1 & & & &
451
\end{tabular}
452
&
453
\begin{tabular}[t]{r|cccccc}
454
\textbf{dim} & \textbf{0} & \textbf{1} & \textbf{2} & \textbf{3} & \textbf{4} & \textbf{5} \\
455
\hline
456
\textbf{0} & 28399 & 52635 & 30820 & 6165 & 302 & 1 \\
457
\textbf{1} & 52635 & 90870 & 67580 & 7785 & 240 & \\
458
\textbf{2} & 30820 & 47580 & 20480 & 2160 & & \\
459
\textbf{3} & 6165 & 7785 & 2160 & && \\
460
\textbf{4} & 302 & 240 & & &&\\
461
\textbf{5} & 1 & & & &&
462
\end{tabular}
463
\end{tabular}
464
}
465
\caption{Number of pairs of faces in the cellular image of the diagonal of the permutahedron~$\Perm$ for~$n \in [6]$.}
466
\label{table:enumerationDiagonalPermutahedra2}
467
\end{table}
468
%}
469
470
\pagebreak
471
\begin{corollary}
472
\label{coro:enumerationDiagonalPermutahedra}
473
The diagonal of the permutahedron~$\Perm$ has
474
\begin{itemize}
475
\item $2 (n + 1)^{n-2}$ facets,
476
\item $n \binom{n-1}{k_1} (n-k_1)^{k_1-1} (n-k_2)^{k_2-1}$ facets corresponding to pairs~$(F_1, F_2)$ of faces of the permutahedron~$\Perm$ with~$\dim(F_1) = k_1$ and~$\dim(F_2) = k_2$ (thus~$k_1 + k_2 = n-1$),
477
\item $\displaystyle n! \, [z^n] \exp \bigg( \sum_{m \ge 1} \frac{C_m \, z^m}{m} \bigg)$ vertices,
478
\item $\displaystyle (n-1)! \, [z^{n-1}] \exp \bigg( \sum_{m \ge 1} C_m \, z^m \bigg)$ internal vertices,
479
\end{itemize}
480
where~$\displaystyle C_m \eqdef \frac{1}{m+1} \binom{2m}{m}$ denotes the $m$\ordinal{} Catalan number.
481
\end{corollary}
482
483
\begin{proof}
484
Use the duality between the $(2,n)$-braid arrangement~$\multiBraidArrangement[n][2]$ and the diagonal of the permutahedron~$\Perm$ (see \cref{prop:diagonalPermutahedraMultiBraidArrangements,fig:diagonalPermutahedron1}), and specialize \cref{thm:verticesMultiBraidArrangement,thm:verticesRefinedMultiBraidArrangement,thm:regionsMultiBraidArrangement} to the case~$\ell = 2$.
485
\end{proof}
486
487
\begin{remark}
488
For completeness, we provide an alternative simpler proof of the first point of \cref{coro:enumerationDiagonalPermutahedra}.
489
By \cref{prop:flatPosetMultiBraidArrangement}, we just need to count the $(2,n)$-partition trees.
490
Consider a $(2,n)$-partition tree~$\b{F} \eqdef (F_1,F_2)$ (hence~$\card{F_1} + \card{F_2} = n + 1$).
491
Consider the intersection tree~$T$ of~$\b{F}$ with vertices labeled by the parts of~$F_1$ and of~$F_2$ and edges labeled by~$[n]$, root~$T$ at the part of~$F_1$ containing vertex~$1$, forget the vertex labels of~$T$, and send each edge label of~$T$ to the next vertex away from the root, and label the root by~$0$.
492
See \cref{fig:tree}.
493
The result is a spanning tree of the complete graph~$K_{n+1}$ on~$\{0, \dots, n\}$ which must contain the edge~$(0,1)$ (because we have chosen the root to be the part of~$F_1$ containing~$1$).
494
%
495
%\afterpage{
496
\begin{figure}
497
\centerline{\includegraphics[scale=.9]{tree}}
498
\caption{The bijection from rooted $(\ell,n)$-partition trees (left) to spanning trees of~$K_{n+1}$ containing the edge~$(0,1)$ (right).}
499
\label{fig:tree}
500
\end{figure}
501
%}
502
%
503
Finally, by double counting the pairs~$(T,e)$ where $T$ is a spanning tree of~$K_{n+1}$ and $e$ is an edge of~$T$, we see that $n$ times the number of spanning trees of~$K_{n+1}$ equals $\binom{n+1}{2}$ times the number of spanning trees of~$K_{n+1}$ containing~$(0,1)$.
504
Hence, by Cayley's formula for spanning trees of~$K_{n+1}$, we obtain that the number of $(2,n)$-partition trees~is
505
\[
506
\frac{2n}{n(n+1)} (n+1)^{n-1} = 2 (n + 1)^{n-2}.
507
\]
508
\end{remark}
509
510
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
511
512
\section{Operadic diagonals}
513
\label{sec:operadicDiagonals}
514
515
This section is devoted to the combinatorics of two specific diagonals of the permutahedra, the $\LA$ and $\SU$ diagonals, which are shown to be the only operadic geometric diagonals of the permutahedra.
516
517
%%%%%%%%%%%%%%%
518
519
\subsection{The $\LA$ and $\SU$ diagonals}
520
\label{subsec:LASUdiagonal}
521
522
Recall from \cref{sec:cellularDiagonalsPermutahedra} that a geometric diagonal of the permutahedron~$\Perm$ gives a choice of ordering of the sets~$\Un(n)$ (see \cref{def:Un}).
523
As we consider in this section diagonals for all permutahedra, we now consider families of orderings.
524
525
\begin{definition}
526
An \defn{ordering} of $\Un \eqdef \{\Un(n)\}_{n \ge 1}$ is a family~$\Or \eqdef \{\Or(n)\}_{n \ge 1}$ where~$\Or(n)$ is an ordering of~$\Un(n)$ for each~$n \ge 1$.
527
\end{definition}
528
529
We will be focusing on the following two orderings and their corresponding diagonals.
530
531
\begin{definition}
532
The \defn{$\LA$} and~\defn{$\SU$ orderings} are defined by
533
\begin{itemize}
534
\item $\LA(n) \eqdef \set{(I,J)}{\{I,J\} \in \Un(n) \text{ and } \min(I\cup J) = \min I}$ and
535
\item $\SU(n) \eqdef \set{(I,J)}{\{I,J\} \in \Un(n) \text{ and } \max(I\cup J) = \max J}$.
536
\end{itemize}
537
\end{definition}
538
539
\begin{definition}
540
\label{def:LA-and-SU}
541
The \defn{$\LA$ diagonal} $\LAD$ (\resp \defn{$\SU$ diagonal} $\SUD$) of the permutahedron~$\Perm$ is the geometric diagonal~$\triangle_{(\Perm,\b{v})}$ given by any vector $\b{v} \in \R^n$ satisfying
542
\[
543
\sum_{i \in I} v_i > \sum_{j \in J} v_j,
544
\]
545
for all~$(I,J) \in \LA(n)$ (\resp $(I,J) \in \SU(n)$).
546
\end{definition}
547
548
First note that this definition makes sense, since vectors $\b{v}=(v_1,\ldots,v_n)$ such that $\Or(\b{v})$ is the $\LA$ or $\SU$ order do exist: take for instance $v_i\eqdef 2^{-i+1}$ for $\LAD$ and~$v_i \eqdef 2^n - 2^{i-1}$ for $\SUD$.
549
Second, note that the $\LA$ and $\SU$ diagonals coincide up to dimension $2$, but differ in dimension~$\ge 3$.
550
The former is illustrated in \cref{fig:LUSAdiagonals}, with the faces labeled by ordered $(2,3)$-partition forests.
551
552
\begin{figure}
553
\centerline{\includegraphics[scale=.85]{diagonalPermutahedron3}}
554
\caption{The $\LA$ (and~$\SU$) diagonal of~$\Perm[3]$ with faces labeled by ordered $(2,3)$-partition forests. (See also \cref{fig:B23a} for the dual hyperplane arrangement.)}
555
\label{fig:LUSAdiagonals}
556
\end{figure}
557
558
We will prove in \cref{thm:recover-SU} that $\SUD$ is a topological enhancement of the Saneblidze--Umble diagonal from~\cite{SaneblidzeUmble}.
559
The faces of the $\LA$ and $\SU$ diagonals are described by the following specialization of \cref{thm:IJ-description}.
560
561
\begin{theorem}
562
\label{thm:minimal}
563
A pair $(\sigma,\tau)$ of ordered partitions of $[n]$ is not a face of the $\LA$ diagonal~$\LAD$ if and only if there exists~$(I,J) \in \LA(n)$ such that~$J$ dominates~$I$ in~$\sigma$ and~$I$ dominates~$J$ in~$\tau$.
564
%\[
565
%(\sigma,\tau) \notin \LAD \iff \text{there is } (I,J) \in \LA(n) \text{ such that } J \text{ dominates } I \text{ in } \sigma \text{ and } I \text{ dominates } J \text{ in } \tau.
566
%\]
567
The same holds for the $\SU$ diagonal by replacing~$\LAD$ by $\SUD$ and $\LA(n)$ by $\SU(n)$.
568
\end{theorem}
569
570
%%%%%%%%%%%%%%%
571
572
\subsection{The operadic property}
573
\label{subsec:operadicProperty}
574
575
The goal of this section is to prove that the $\LA$ and $\SU$ diagonals are the only two operadic diagonals which induce the weak order on the vertices of the permutahedra (\cref{thm:unique-operadic}).
576
We start by properly defining operadic diagonals.
577
578
Let~$A \sqcup B = [n]$ be a partition of~$[n]$ where~$A \eqdef \{a_1,\dots,a_p\}$ and~$B \eqdef \{b_1,\dots,b_q\}$.
579
Recall that the ordered partition $B | A$ corresponds to a facet of the permutahedron~$\Perm$ defined by the inequality~$\sum_{b \in B} x_b \ge \binom{\card{B}+1}{2}$.
580
This facet is isomorphic to the Cartesian product
581
\[
582
(\Perm[p] +q \one_{[p]}) \times \Perm[q]
583
\]
584
of lower dimensional permutahedra, where the first factor is translated by~$q \one_{[p]} \eqdef q \sum_{i \in [p]} \b{e}_i$, via the permutation of coordinates
585
\begin{equation*}
586
\begin{matrix}
587
\Theta & : & \R^{p} \times \R^{q} & \overset{\cong}{\longrightarrow} & \R^{n} \\
588
& & (x_1,\ldots,x_p) \times (x_{p+1}, \ldots, x_{n}) & \longmapsto & (x_{\sigma^{-1}(1)},\ldots,x_{\sigma^{-1}(n)}) \ ,
589
\end{matrix}
590
\end{equation*}
591
where $\sigma$ is the $(p,q)$-shuffle defined by $\sigma(i) \eqdef a_i$ for~$i \in [p]$, and $\sigma(p+j)\eqdef b_j$ for~${j \in [q]}$.
592
Note that this map is a particular instance of the eponym map introduced in Point (5) of~\cite[Prop.~2.3]{LaplanteAnfossi}.
593
594
\begin{definition}
595
\label{def:operadicDiagonal}
596
A family of geometric diagonals \[\triangle \eqdef \{\triangle_n : \Perm \to \Perm \times \Perm\}_{n\geq 1}\] of the permutahedra is \defn{operadic} if for every face $A_1 | \ldots | A_k$ of the permutahedron $\Perm[\card{A_1}+\cdots + \card{A_k}]$, the map $\Theta$ induces a topological cellular isomorphism
597
\[
598
\triangle_{\card{A_1}} \times \ldots \times \triangle_{\card{A_k}} \cong \triangle_{\card{A_1} + \ldots + \card{A_k}} .
599
\]
600
\end{definition}
601
602
In other words, we require that the diagonal $\triangle$ commutes with the map $\Theta$, see~\cite[Sect.~4.2]{LaplanteAnfossi}.
603
At the algebraic level, this property is called ``comultiplicativity" in~\cite{SaneblidzeUmble}.
604
Note that in particular, such an isomorphism respects the poset structures.
605
606
We will now translate this operadic property for geometric diagonals to the corresponding orderings~$\Or$ of~$\Un$.
607
We need the following standardization map (this map is classical for permutations or words, but we use it here for pairs of sets).
608
609
\begin{definition}
610
The \defn{standardization} of a pair~$(I,J)$ of disjoint subsets of~$[n]$ is the only partition~$\std(I,J)$ of~$[\card{I}+\card{J}]$ where the relative order of the elements is the same as in~$(I,J)$.
611
More precisely, it is defined recursively by
612
\begin{itemize}
613
\item $\std(\varnothing, \varnothing) \eqdef (\varnothing, \varnothing)$, and
614
\item if~$k \eqdef \card{I}+\card{J}$ and~$\ell \eqdef \max(I \cup J)$ belongs to~$I$ (\resp $J$), then~$\std(I,J) = (U \cup \{k\}, V)$ (\resp $\std(I,J) \! = \! (U, V \cup \{k\})$) where~$(U,V) \! = \! \std(I \ssm \{\ell\}, J)$ (\resp ${(U,V) \! = \! \std(I, J \ssm \{\ell\})}$).
615
\end{itemize}
616
\end{definition}
617
618
For example, $\std(\{5,9,10\},\{6,8,12\}) = (\{1,4,5\},\{2,3,6\})$.
619
620
\begin{definition}
621
\label{def:operadicOrdering}
622
An ordering $\Or$ of $\Un$ is \defn{operadic} if every $\{I,J\} \in \Un$ satisfies the following two conditions
623
\begin{enumerate}
624
\item $\std(I,J) \in \Or$ implies~$(I,J) \in \Or$,
625
\item if there exist~$I'\subset I, J'\subset J$ such that $(I',J') \in \Or$ and $(I\ssm I',J\ssm J') \in \Or$, then~$(I,J) \in \Or$.
626
\end{enumerate}
627
We call \defn{indecomposables} of $\Or$ the pairs $(I,J) \in \Or$ for which the only subpair $(I',J')$ satisfying Condition (2) above is the pair $(I,J)$ itself.
628
\end{definition}
629
630
\begin{proposition}
631
\label{prop:equiv-operadic}
632
A geometric diagonal~$\triangle \eqdef \bigl( \triangle_{(\Perm, \b{v}_n)} \bigr)_{n \in \N}$ of the permutahedra is operadic if and only if its associated ordering~$\Or \eqdef \bigl( \Or(\b{v}_n) \bigr)_{n \in \N}$ is operadic.
633
\end{proposition}
634
635
\begin{proof}
636
Every operadic diagonal satisfies~\cite[Prop.~4.14]{LaplanteAnfossi}, which amounts precisely to an operadic ordering of $\Un$ in the sense of \cref{def:operadicOrdering}.
637
\end{proof}
638
639
We now turn to the study of the $\LA$ and $\SU$ orderings.
640
641
\begin{lemma}
642
\label{lem:operadic-ordering}
643
The $\LA$ and $\SU$ orderings are operadic, and their indecomposables are the pairs whose standardization are $(\{1\},\{2\})$ and
644
\begin{align}
645
(\{1,k+2,k+3,\dots,2k-1,2k\}, \{2,3,\dots,k+1\}) \tag{$\LA$} \label{eq:std-LA} \\
646
(\{k,k+1,\dots,2k-1\},\{1,2,3,\dots,k-1,2k\}) \tag{$\SU$}
647
\end{align}
648
for all~$k\geq 1$.
649
The opposite orderings $\LA^{op}$ and $\SU^{op}$ are also operadic, and generated by the opposite pairs.
650
\end{lemma}
651
652
\begin{proof}
653
We present the proof for the $\LA$ ordering, the proofs for the $\SU$ and opposite orders are similar.
654
First, we verify that $\LA$ is operadic.
655
Condition (1) follows from the fact that standardizing a pair preserves its minimal element.
656
Condition (2) also holds, since whenever $(I',J')$ and its complement are in $\LA$, we have $\min(I)=\min\{\min(I'),\min(I\ssm I')\}$, and thus $(I,J)$ itself is in~$\LA$.
657
658
Second, we compute the indecomposables.
659
Let $(I,J)$ be a pair with standardization (\ref{eq:std-LA}).
660
If we try to decompose $(I,J)$ as a non-trivial union, there is always one pair $(I',J')$ in this union for which~$\min (I\cup J) \notin I'$, so we have $\min ( I' \cup J') = \min J'$, which implies that $(I',J') \notin \LA$.
661
Thus, the pair~$(I,J)$ is indecomposable.
662
663
It remains to show that any pair $(I,J)$ in $\LA$ whose standardization is not of the form (\ref{eq:std-LA}) can be decomposed as a union of such pairs.
664
Let us denote by $(I_k,J_k)$ the standard form (\ref{eq:std-LA}) and let $(I,J)\in \LA$ be such that $\std(I,J) \neq (I_k,J_k)$.
665
Then there exists $i_2 \in I\ssm \min I$ such that $i_2 < \max J$.
666
This means that $(I,J)$ can be decomposed as a union: if we write it as $(\{i_1,\dots,i_k\},\{j_1,\dots,j_k\})$, where each set ordered smallest to largest, then we must have $\min (I\cup J)=i_1<i_2<j_k$, in which case $(\{i_2\},\{j_k\})$ and $(\{i_1,i_3,\dots,i_k\},\{j_1,\dots,j_{k-1}\})$ are both smaller $\LA$ pairs.
667
Then it must be the case that $\std((\{i_2\},\{j_k\})) = (\{1\},\{2\})$, and $\std((\{i_1,i_3,\dots,i_k\},\{j_1,\dots,j_{k-1}\}))$ is either $(I_{k-1},J_{k-1})$, or we can repeat this decomposition.
668
%This process must eventually terminate with the right-hand side reducing to $(I_l,J_l)$ for some $1 \leq l \leq k-1$.
669
%In other words, any ${(I,J) = (\{i_1,\dots,i_k\}, \{j_1,\dots,j_k\})}$ decomposes as
670
%\begin{align*}
671
% (I,J) = (\{i_2\},\{j_k\}) \sqcup (\{i_3\},\{j_{k-1}\}) \sqcup \dots \sqcup (\{i_{l+1} \},\{j_{k-l-1} \}) \sqcup (I',J')
672
%\end{align*}
673
%where $\std((I',J')) = (I_l,J_l)$, and $1\leq l \leq k$.
674
\end{proof}
675
676
\begin{remark}
677
We note that the decomposition in \cref{lem:operadic-ordering} is one of potentially many different decompositions of the pair $(I,J)$.
678
However, by definition of the $\LA$ order, for any decomposition $(I,J) = (\bigsqcup_{a\in A} I_a, \bigsqcup_{a \in A} J_a)$, we have $\std(I_a, J_a) \in \LA$ for all~$a \in A$.
679
As such, all decompositions of a pair $(I,J)$, order it the same way.
680
\end{remark}
681
682
\begin{proposition}
683
\label{prop:operadicOrdering}
684
The only operadic orderings of $\Un=\{\Un(n)\}_{n\geq 1}$ are the $\LA,\SU,\LA^{\op}$ and $\SU^{\op}$ orderings.
685
\end{proposition}
686
687
\begin{proof}
688
We build operadic orderings inductively, showing that the choices for~$\Un(n)$, $n\leq 4$ determine higher ones.
689
We prove the statement for the $\LA$ order, the $\SU$ and opposite orders are similar.
690
First, we decide to order the unique pair of $\Un(2)$ as $(\{1\},\{2\})$.
691
The operadic property then determines the orders of all the pairs of $\Un(3)$ and $\Un(4)$, except the pair $\{\{1,4\},\{2,3\}\}$, for which we choose the order $(\{1,4\},\{2,3\})$.
692
Now, we claim that all the higher choices are forced by the operadic property, and lead to the $\LA$ diagonal.
693
Starting instead with the orders~$(\{1\},\{2\})$ and $(\{2,3\},\{1,4\})$ would give the $\SU$ diagonal, and reversing the pairs would give the opposite orders.
694
695
Let $\ell \geq 2$ and suppose that for all $k\leq \ell$, we have given the pair \[\{I_k,J_k\} \eqdef \{\{1,k+2,{k+3},\dots,{2k-1},2k\},\{2,3,\dots,k+1\}\}\] the $\LA$ ordering $(I_k,J_k)$.
696
Then from \cref{lem:operadic-ordering}, we know that the only $\{I,J\}$ pair of order $\ell+1$ that will not decompose, and hence be specified by the already chosen conditions, is~$\{I_{\ell+1},J_{\ell+1}\}$.
697
As such, the only way we can vary from $\LA$ is to order this element in the opposite direction $(J_{\ell+1},I_{\ell+1})$.
698
We now consider a particular decomposable pair $\{I'_m,J'_m\}$ where ${I'_m \eqdef I_m \sqcup \{3\} \ssm \{m+2\}}$ and~$J'_m \eqdef J_m \sqcup \{m+2\} \ssm \{3\}$, of order $m \eqdef \ell+2$, that will lead to a contradiction (see \cref{ex:Non-coherent order contradiction}).
699
On the one side, we can decompose $\{I'_m,J'_m\} = \{I_a \cup I_b, J_a \cup J_b\}$ with $I_a \eqdef \{1,m+3,\dots,2m\}, J_a \eqdef \{4,5,\dots,m+2\}, I_b \eqdef \{3\}$ and $J_b \eqdef \{2\}$.
700
By hypothesis, we have the orders $(J_a,I_a)$ and $(J_b,I_b)$ which imply the order $(J'_m,I'_m)$ since our ordering is operadic.
701
On the other side, we can decompose $\{I'_m,J'_m\} = \{I_c \cup I_d, J_c \cup J_d\}$, where $I_c \eqdef \{1,m+3,\dots, 2m-1\},$ $J_c \eqdef \{2,5,\dots,m+1\}$, $I_d \eqdef \{3, 2m\}$ and $J_d \eqdef \{4, m+2\}$.
702
By hypothesis, we have the orders $(I_c,J_c)$ and $(I_d,J_d)$, which imply that $(I'_m,J'_m)$ since our ordering is operadic.
703
We arrived at a contradiction.
704
Thus, the only possible operadic choice of ordering for $\{I_{\ell+1},J_{\ell+1}\}$ is the $\LA$ ordering, which finishes the proof.
705
\end{proof}
706
707
\begin{example}
708
\label{ex:Non-coherent order contradiction}
709
To illustrate our proof of \cref{prop:operadicOrdering}, consider an operadic ordering $\Or$ for which the $\LA$ ordering holds for pairs of order $1$ and $2$, but is reversed for pairs of order $3$, \ie
710
\begin{align*}
711
(\{1\}, \{2\}) \in \Or, \quad (\{1,4\}, \{2,3\}) \in \Or, \text{ and } (\{2, 3, 4\}, \{1, 5, 6 \}) \in \Or.
712
\end{align*}
713
Then, the pair $\{I'_4,J'_4\}=\{\{1, 3, 7, 8\}, \{2, 4, 5, 6\}\}$ admits two different orientations.
714
In particular,
715
\begin{align*}
716
(\{ 4, 5, 6 \} , \{1, 7, 8\}) \in \Or \text{ and } (\{2\}, \{3\}) \in \Or & \Longrightarrow (\{2, 4, 5, 6\}, \{1, 3, 7, 8\} ) \in \Or \ \text{and} \\
717
(\{1, 7\}, \{2, 5\}) \in \Or \text{ and } (\{3, 8\}, \{4, 6\}) \in \Or & \Longrightarrow (\{1, 3, 7, 8\}, \{2, 4, 5, 6\}) \in \Or.
718
\end{align*}
719
\end{example}
720
721
Combining \cref{prop:equiv-operadic} with \cref{prop:operadicOrdering}, we get the main result of this section.
722
Recall that a vector induces the weak order on the vertices of the standard permutahedron if and only if it has strictly decreasing coordinates (see \cref{def:permutahedron}).
723
724
\begin{theorem}
725
\label{thm:unique-operadic}
726
There are exactly four operadic geometric diagonals of the permutahedra, given by the $\LA$ and $\SU$ diagonals, and their opposites~$\LA^{\op}$ and~$\SU^{\op}$.
727
The $\LA$ and $\SU$ diagonals are the only operadic geometric diagonals which induce the weak order on the vertices of the permutahedron.
728
\end{theorem}
729
730
\begin{remark}
731
This answers by the negative a conjecture regarding unicity of diagonals on the permutahedra, raised at the beginning of~\cite[Sect.~3]{SaneblidzeUmble}, and could be seen as an alternative statement.
732
See \cref{sec:shifts} where we prove that the geometric $\SU$ diagonal is a topological enhancement of the $\SU$ diagonal from~\cite{SaneblidzeUmble}.
733
\end{remark}
734
735
%%%%%%%%%%%%%%%
736
737
\subsection{Isomorphisms between operadic diagonals}
738
\label{subsec:isos-LA-SU}
739
740
Let $P$ be a centrally symmetric polytope, and let $s : P \to P$ be its involution, given by taking a point $\b{p} \in P$ to its reflection $s(\b{p})$ with respect to the center of symmetry of $P$.
741
Note that this map is cellular, and induces an involution on the face lattice of $P$.
742
For the permutahedron~$\Perm$, this face poset involution is given in terms of ordered partitions of~$[n]$ by the map~$A_1 | \cdots | A_k \mapsto A_k | \cdots | A_1$.
743
744
The permutahedron~$\Perm$ possesses another interesting symmetry, namely, the cellular involution ${r : \Perm \to \Perm}$ which sends a point $p \in \Perm$ to its reflection with respect to the hyperplane of equation \[ \sum_{i=1}^{\lfloor n/2 \rfloor}x_i = \sum_{i=1}^{\lfloor n/2 \rfloor}x_{n-i+1} . \]
745
This involution also respects the face poset structure.
746
In terms of ordered partitions, it replaces each block $A_j$ in $A_1 | \cdots | A_k$ by the block $r(A_j) \eqdef \set{r(i)}{i \in A_j}$ where~$r(i) \eqdef n-i+1$.
747
748
The involution $t : P \times P \to P \times P$, sending $(x,y)$ to~$(y,x)$, takes a cellular diagonal to another cellular diagonal.
749
As we have already remarked in \cref{def:oppositeDiagonal}, this involution sends a geometric diagonal~$\triangle$ to its opposite~$\triangle^{\op}$.
750
%As we have already remarked in \cref{subsec:LASUdiagonal}, in the case of the permutahedron it sends $\LAD$ to $(\LAD)^\op$ and $\SUD$ to $(\SUD)^\op$.
751
752
\begin{theorem}
753
\label{thm:bijection-operadic-diagonals}
754
For the permutahedron~$\Perm$, the involutions $t$ and $rs \times rs$ are cellular isomorphisms between the four operadic diagonals, through the following commutative diagram
755
\begin{center}
756
\begin{tikzcd}
757
\LAD \arrow[r,"t"] \arrow[d,"rs \times rs"']&
758
(\LAD)^{\op}\arrow[d,"rs \times rs"]\\
759
\SUD \arrow[r,"t"'] &
760
(\SUD)^\op
761
\end{tikzcd}
762
\end{center}
763
Moreover, they induce poset isomorphisms at the level of the face lattices.
764
\end{theorem}
765
766
\begin{proof}
767
The result for the transpositions $t$ and the commutativity of the diagram are straightforward, so we prove that $rs\times rs$ is a cellular isomorphism respecting the poset structure.
768
First, since $r(\min(I\cup J))=\max(r(I) \cup r(J))$, we observe that the map $(I,J) \mapsto (r(J),r(I))$ defines a bijection between $\LA(n)$ and $\SU(n)$.
769
Then, if $\sigma$ is an ordered partition such that $I$ dominates $J$ in $\sigma$ (\cref{def:domination}), it must be the case that $J$ dominates $I$ in $s\sigma$, and consequently $rJ$ dominates $rI$ in $rs\sigma$.
770
As such, the domination characterization of the diagonals (\cref{thm:minimal}), tells us~$(\sigma,\tau) \in \LAD$ if and only if $(rs(\sigma),rs(\tau)) \in \SUD$.
771
Finally, since both $t,r$ and $s$ preserve the poset structures, so does their composition, which finishes the proof.
772
\end{proof}
773
774
\begin{remark} \label{rem:Alternate Isomorphism}
775
There is a second, distinct isomorphism given by $t(r\times r)$.
776
This follows from the fact that $s\times s:\LAD \to (\LAD)^{\op}$ is an isomorphism (and also for $s\times s:\SUD \to (\SUD)^{\op}$ ), as such the composite
777
\begin{center}
778
\begin{tikzcd}
779
t(r\times r):\LAD \arrow[r,"s\times s"] &
780
(\LAD)^{\op}\arrow[r,"rs \times rs"] &
781
(\SUD)^\op \arrow[r,"t"] & \SUD
782
\end{tikzcd}
783
\end{center}
784
is also an isomorphism.
785
This second isomorphism has the conceptual benefit of sending left shift operators to left shift operators (and right to right), see \cref{prop:trr is an isomorphism of shifts}.
786
\end{remark}
787
788
%%%%%%%%%%%%%%%
789
790
\subsection{Facets of operadic diagonals}
791
\label{subsec:facets-operadic-diags}
792
793
We now aim at describing the facets of the $\LA$ and $\SU$ diagonals.
794
We have seen in \cref{subsec:multiBraidArrangement} that facets of any diagonal of the permutahedron~$\Perm$ are in bijection with $(2,n)$-partition trees, that is, pairs of unordered partitions of $[n]$ whose intersection graph is a tree.
795
These pairs of partitions were first studied and called \defn{essential complementary partitions} in~\cite{Chen, ChenGoyal, KajitaniUenoChen}.
796
Specializing \cref{prop:PFtoOPF1}, we now explain how to order these pairs of partitions to get the facets of $\LAD$ and $\SUD$.
797
798
\begin{theorem}
799
\label{thm:facet-ordering}
800
Let $(\sigma,\tau)$ be a pair of ordered partitions of $[n]$ whose underlying intersection graph is a $(2,n)$-partition tree.
801
The pair~$(\sigma,\tau)$ is a facet of the $\LA$ (\resp $\SU$) diagonal if and only if the minimum (\resp maximum) of every directed path between two consecutive blocks of $\sigma$ or $\tau$ is oriented from $\sigma$ to $\tau$ (\resp from $\tau$ to $\sigma$).
802
\end{theorem}
803
804
\begin{proof}
805
We specialize \cref{prop:PFtoOPF1} to the $\LA$ diagonal, the proof for the $\SU$ diagonal is similar.
806
Let $\b{v}$ be a vector inducing the $\LA$ diagonal as in \cref{def:LA-and-SU}.
807
Without loss of generality, we place the first copy of the braid arrangement centered at $0$, and the second copy centered at $\b{v}$.
808
From \cref{def:multiBraidArrangementPrecise,rem:translationMatrix}, we get that $A_{1,s,t}=0$ and $A_{2,s,t}=v_s-v_t$ for any edges $s,t$.
809
We treat the case of two consecutive blocks $A$ and $B$ of $\sigma$, the analysis for $\tau$ is similar.
810
The directed path between $A$ and $B$ is a sequence of edges $r_0,r_1,\dots,r_q$.
811
Let us denote by $I \eqdef \{r_0,r_2,\dots\}$ de set of edges directed from $\sigma$ to $\tau$, and by $J \eqdef \{r_1,r_3,\dots\}$ its complement.
812
According to \cref{prop:PFtoOPF1}, the order between $A$ and $B$ is determined by the sign of $A_{1,r_0,r_q}- \sum_{p \in [q]} A_{i_p,r_{p-1},r_p}$, where $i_p$ is the copy of the block adjacent to both edges $r_{p-1}$ and $r_p$.
813
Thus, the order between $A$ and $B$ is determined by the sign of $\sum_{i \in I} v_i - \sum_{j \in J} v_j$, which according to the definition of $\LAD$ is positive whenever $\min(I\cup J) \in I$.
814
Thus, the pair $(\sigma,\tau) \in \LAD$ if and only if the minimum of every directed path between two consecutive blocks of $\sigma$ or $\tau$ is oriented from $\sigma$ to $\tau$.
815
\end{proof}
816
817
In the rest of the paper, we shall represent ordered $(2,n)$-partition trees $(\sigma,\tau)$ of facets by drawing $\sigma$ on the left, and $\tau$ on the right, with their blocks from top to bottom.
818
The conditions ``oriented from $\sigma$ to $\tau$" in the preceding Theorem then reads as ``oriented from left to right", an expression we shall adopt from now on.
819
820
\begin{example}
821
\label{ex:ECbijection}
822
Below are the two orderings of the $(2,7)$-partition tree $\{15,234,6,7\} \times \{13,2,46,57\}$ giving facets of the $\LA$ (left) and $\SU$ (right) diagonals, obtained via \cref{thm:facet-ordering}.
823
Note that ordered partitions should be read from top to bottom.
824
\begin{center}
825
\begin{tikzpicture}[scale=.7]
826
\node[anchor=east] (1) at (-1.5, -1) {$15$};
827
\node[anchor=east] (2) at (-1.5, -2) {$7$};
828
\node[anchor=east] (3) at (-1.5, -3) {$234$};
829
\node[anchor=east] (4) at (-1.5, -4) {$6$};
830
%
831
\node[anchor=west] (5) at (1.5, -1) {$57$};
832
\node[anchor=west] (6) at (1.5, -2) {$46$};
833
\node[anchor=west] (7) at (1.5, -3) {$13$};
834
\node[anchor=west] (8) at (1.5, -4) {$2$};
835
%
836
\draw[thick] (1.east) -- (5.west);
837
\draw[thick] (1.east) -- (7.west);
838
\draw[thick] (2.east) -- (5.west);
839
\draw[thick] (3.east) -- (6.west);
840
\draw[thick] (3.east) -- (7.west);
841
\draw[thick] (3.east) -- (8.west);
842
\draw[thick] (4.east) -- (6.west);
843
\end{tikzpicture}
844
$\quad$
845
\begin{tikzpicture}[scale=.7]
846
\node[anchor=east] (7) at (-1.5, -4) {$7$};
847
\node[anchor=east] (6) at (-1.5, -3) {$6$};
848
\node[anchor=east] (234) at (-1.5, -2) {$234$};
849
\node[anchor=east] (15) at (-1.5, -1) {$15$};
850
%
851
\node[anchor=west] (2) at (1.5, -4) {$2$};
852
\node[anchor=west] (13) at (1.5, -3) {$13$};
853
\node[anchor=west] (46) at (1.5, -2) {$46$};
854
\node[anchor=west] (57) at (1.5, -1) {$57$};
855
%
856
\draw[thick] (2.west) -- (234.east);
857
\draw[thick] (13.west) -- (15.east);
858
\draw[thick] (13.west) -- (234.east);
859
\draw[thick] (46.west) -- (234.east);
860
\draw[thick] (46.west) -- (6.east);
861
\draw[thick] (57.west) -- (15.east);
862
\draw[thick] (57.west) -- (7.east);
863
\end{tikzpicture}
864
\end{center}
865
In the $\LA$ facet (left), we have $7 < 234$, since in the path between the two vertices $7 \xrightarrow{7} 57 \xrightarrow{5} 15 \xrightarrow{1} 13 \xrightarrow{3} 234$, the minimum $1$ is oriented from left to right.
866
In this case, we have $(I,J)=(\{1,7\},\{3,5\})$.
867
Similarly, the path $57 \xrightarrow{5} 15 \xrightarrow{1} 13 \xrightarrow{3} 234 \xrightarrow{4} 46$ imposes that $57 < 46$, for $(I,J)=(\{1,4\},\{3,5\})$.
868
\end{example}
869
870
\begin{remark}
871
Note that forgetting the order in a facet of $\LAD$, and then ordering again the $(2,n)$-partition tree to obtain a facet of $\SUD$, provides a bijection between facets that was not considered in \cref{subsec:isos-LA-SU}.
872
However, this map is not defined on the other faces.
873
\end{remark}
874
875
\begin{example}
876
The isomorphism $rs\times rs$ from \cref{thm:bijection-operadic-diagonals} sends the $\LA$ facet from \cref{ex:ECbijection}\,(left) to the following $\SU$ facet\,(right).
877
\begin{center}
878
\begin{tikzpicture}[scale=.7]
879
\node[anchor=east] (1) at (-1.5, -1) {$15$};
880
\node[anchor=east] (2) at (-1.5, -2) {$7$};
881
\node[anchor=east] (3) at (-1.5, -3) {$234$};
882
\node[anchor=east] (4) at (-1.5, -4) {$6$};
883
%
884
\node[anchor=west] (5) at (1.5, -1) {$57$};
885
\node[anchor=west] (6) at (1.5, -2) {$46$};
886
\node[anchor=west] (7) at (1.5, -3) {$13$};
887
\node[anchor=west] (8) at (1.5, -4) {$2$};
888
%
889
\draw[thick] (1.east) -- (5.west);
890
\draw[thick] (1.east) -- (7.west);
891
\draw[thick] (2.east) -- (5.west);
892
\draw[thick] (3.east) -- (6.west);
893
\draw[thick] (3.east) -- (7.west);
894
\draw[thick] (3.east) -- (8.west);
895
\draw[thick] (4.east) -- (6.west);
896
%
897
\end{tikzpicture}
898
\raisebox{3.4em}{$\xrightarrow{rs\times rs}$}
899
\begin{tikzpicture}[scale=.7]
900
\node[anchor=east] (5) at (-1.5, -4) {$37$};
901
\node[anchor=east] (6) at (-1.5, -3) {$1$};
902
\node[anchor=east] (7) at (-1.5, -2) {$456$};
903
\node[anchor=east] (8) at (-1.5, -1) {$2$};
904
%
905
\node[anchor=west] (1) at (1.5, -4) {$13$};
906
\node[anchor=west] (2) at (1.5, -3) {$24$};
907
\node[anchor=west] (3) at (1.5, -2) {$57$};
908
\node[anchor=west] (4) at (1.5, -1) {$6$};
909
%
910
\draw[thick] (1.west) -- (5.east);
911
\draw[thick] (1.west) -- (6.east);
912
\draw[thick] (2.west) -- (7.east);
913
\draw[thick] (2.west) -- (8.east);
914
\draw[thick] (3.west) -- (5.east);
915
\draw[thick] (3.west) -- (7.east);
916
\draw[thick] (4.west) -- (7.east);
917
\end{tikzpicture}
918
\end{center}
919
Moreover, it sends the path $57 \xrightarrow{5} 15 \xrightarrow{1} 13 \xrightarrow{3} 234 \xrightarrow{4} 46 $ to the path $24 \xrightarrow{4} 456 \xrightarrow{5} 57 \xrightarrow{7} 37 \xrightarrow{3} 13$, where the maximum $7$ is oriented from right to left, witnessing the fact that $24 < 13$.
920
The associated $(I,J)=(\{1,4 \},\{3,5\})$ becomes $(r(J),r(I))=(\{3,5 \},\{4,7\})$.
921
\end{example}
922
923
924
%%%%%%%%%%%%%%%
925
926
\subsection{Vertices of operadic diagonals}
927
\label{subsec:vertices-operadic-diags}
928
929
We are now interested in characterizing the vertices that occur in an operadic diagonal as pattern-avoiding pairs of partitions of $[n]$.
930
These pairs form a strict subset of the weak order intervals.
931
We first need the following Lemma, which follows directly from the definition of domination (\cref{def:domination}).
932
933
\pagebreak
934
935
\begin{lemma}
936
\label{lem:Coherent Domination}
937
Let $\sigma$ be an ordered partition of $[n]$ and let $I,J \subseteq [n]$ be such that $I$ dominates $J$ in~$\sigma$.
938
For an element $i$ in $I$ or $J$, we denote by $\sigma^{-1}(i)$ the index of the block containing it in $\sigma$.
939
Then, for any $i \in I,j \in J$, we have $I\ssm i$ dominates $J\ssm j$ in $\sigma$ if and only if
940
\begin{enumerate}
941
\item either~$\sigma^{-1}(j) < \sigma^{-1}(i)$ (meaning that $j$ comes strictly before $i$ in $\sigma$),
942
\item or for all $k$ between $\sigma^{-1}(i)$ and $\sigma^{-1}(j)$, the first $k$ blocks of $\sigma$ contain strictly more elements of $I$ than of $J$.
943
\end{enumerate}
944
\end{lemma}
945
946
% As before, we represent a permutation $\sigma: [n] \to [n]$ by the non-commutative word~$\sigma(1)\cdots \sigma(n)$.
947
948
\begin{definition}
949
For $k\leq n$, a permutation $\tau$ of $[k]$ is a \defn{pattern} of a permutation $\sigma$ of $[n]$ if there exists a subset $I \eqdef \{i_1 < \dots < i_k\} \subset [n]$ so that the permutation~$\tau$ gives the relative order of the entries of~$\sigma$ at positions in~$I$, \ie $\tau_u < \tau_v \eqdef \sigma_{i_u} < \sigma_{i_v}$.
950
We say that $\sigma$ \defn{avoids} $\tau$ if $\tau$ is not a pattern~of~$\sigma$.
951
\end{definition}
952
953
\begin{example}
954
The pairs of permutations $(\sigma,\tau)$ avoiding the patterns $(21,12)$ are precisely the intervals of the weak order.
955
\end{example}
956
957
\begin{theorem}
958
\label{thm:patterns}
959
A pair of permutations of $[n]$ is a vertex of the $\LA$ (\resp $\SU$) diagonal if and only if for any~$k\geq 1$ and for any $(I,J) \in \LA(k)$ (\resp $\SU(k)$) of size $\card{I}=\card{J}=k$ it avoids~the~patterns
960
\begin{align}
961
(j_1 i_1 j_2 i_2 \cdots j_k i_k,\ i_2 j_1 i_3 j_2 \cdots i_k j_{k-1} i_1 j_k), \tag{LA} \label{eq:pattern} \\
962
\text{ \resp } (j_1 i_1 j_2 i_2 \cdots j_k i_k, \ i_1 j_k i_2 j_1 \cdots i_{k-1} j_{k-2}i_k j_{k-1}), \tag{SU}
963
\end{align}
964
where $I=\{i_1,\dots,i_k\}$, $J=\{j_1,\dots,j_k\}$ and $i_1=1$ (\resp $j_k=2k$).
965
\end{theorem}
966
967
\begin{example}\label{exm:intervalsWeakOrderNotDiagonals}
968
For each $k \ge 1$, there are $\binom{2k-1}{k-1,k}(k-1)!k!$ avoided standardized patterns.
969
For~$k=1$, both diagonals avoid $(21,12)$, so the vertices are intervals of the weak order.
970
For~$k=2$,
971
\begin{itemize}
972
\item $\LA$ avoids the patterns
973
$(3142,2314)$, $(4132,2413)$,
974
$(2143,3214)$, $(4123,3412)$,
975
$(2134,4213)$, $(3124,4312)$.
976
\item $\SU$ avoids the patterns
977
$(1243,2431)$, $(1342,3421)$,
978
$(2143,1432)$, $(2341,3412)$,
979
$(3142,1423)$, $(3241,2413)$.
980
\end{itemize}
981
As such, the vertices of $\LA$ and $\SU$ are a strict subset of all intervals of the weak order.
982
Here is an illustration of the patterns avoided for $k=4$.
983
The $\LA$ pattern is drawn on the left, the $\SU$ pattern is drawn on the right, and they are in bijection under the isomorphism $t(r\times r)$ (\cref{subsec:isos-LA-SU}), where the bijection between elements is $(i_1,i_2,i_3,i_4)\mapsto (j'_4,j'_1,j'_2,j'_3)$ and $(j_1,j_2,j_3,j_4)\mapsto (i'_1,i'_2,i'_3,i'_4)$.
984
\begin{center}
985
\begin{tikzpicture}[scale=.65]
986
\node[anchor=east] (0) at (-1.5, 0) {$j_1$};
987
\node[anchor=east] (1) at (-1.5, -1) {$i_1$};
988
\node[anchor=east] (2) at (-1.5, -2) {$j_2$};
989
\node[anchor=east] (3) at (-1.5, -3) {$i_2$};
990
\node[anchor=east] (4) at (-1.5, -4) {$j_3$};
991
\node[anchor=east] (5) at (-1.5, -5) {$i_3$};
992
\node[anchor=east] (6) at (-1.5, -6) {$j_4$};
993
\node[anchor=east] (7) at (-1.5, -7) {$i_4$};
994
%
995
\node[anchor=west] (8) at (1.5, 0) {$i_2$};
996
\node[anchor=west] (9) at (1.5, -1) {$j_1$};
997
\node[anchor=west] (10) at (1.5, -2) {$i_3$};
998
\node[anchor=west] (11) at (1.5, -3) {$j_2$};
999
\node[anchor=west] (12) at (1.5, -4) {$i_4$};
1000
\node[anchor=west] (13) at (1.5, -5) {$j_3$};
1001
\node[anchor=west] (14) at (1.5, -6) {$i_1$};
1002
\node[anchor=west] (15) at (1.5, -7) {$j_4$};
1003
%
1004
\draw[thick, green] (0.east) -- (9.west);
1005
\draw[thick, blue, dashed] (1.east) -- (14.west);
1006
\draw[thick, green] (2.east) -- (11.west);
1007
\draw[thick, blue] (3.east) -- (8.west);
1008
\draw[thick, green] (4.east) -- (13.west);
1009
\draw[thick, blue] (5.east) -- (10.west);
1010
\draw[thick, green] (6.east) -- (15.west);
1011
\draw[thick, blue] (7.east) -- (12.west);
1012
%
1013
\end{tikzpicture}
1014
\raisebox{7em}{$\xrightarrow{t(r\times r)}$}
1015
\begin{tikzpicture}[scale=.65]
1016
\node[anchor=east] (0) at (-1.5, 0) {$j'_1$};
1017
\node[anchor=east] (1) at (-1.5, -1) {$i'_1$};
1018
\node[anchor=east] (2) at (-1.5, -2) {$j'_2$};
1019
\node[anchor=east] (3) at (-1.5, -3) {$i'_2$};
1020
\node[anchor=east] (4) at (-1.5, -4) {$j'_3$};
1021
\node[anchor=east] (5) at (-1.5, -5) {$i'_3$};
1022
\node[anchor=east] (6) at (-1.5, -6) {$j'_4$};
1023
\node[anchor=east] (7) at (-1.5, -7) {$i'_4$};
1024
%
1025
\node[anchor=west] (8) at (1.5, 0) {$i'_1$};
1026
\node[anchor=west] (9) at (1.5, -1) {$j'_4$};
1027
\node[anchor=west] (10) at (1.5, -2) {$i'_2$};
1028
\node[anchor=west] (11) at (1.5, -3) {$j'_1$};
1029
\node[anchor=west] (12) at (1.5, -4) {$i'_3$};
1030
\node[anchor=west] (13) at (1.5, -5) {$j'_2$};
1031
\node[anchor=west] (14) at (1.5, -6) {$i'_4$};
1032
\node[anchor=west] (15) at (1.5, -7) {$j'_3$};
1033
%
1034
\draw[thick, green] (0.east) -- (11.west);
1035
\draw[thick, blue] (1.east) -- (8.west);
1036
\draw[thick, green] (2.east) -- (13.west);
1037
\draw[thick, blue] (3.east) -- (10.west);
1038
\draw[thick, green] (4.east) -- (15.west);
1039
\draw[thick, blue] (5.east) -- (12.west);
1040
\draw[thick, green, dashed] (6.east) -- (9.west);
1041
\draw[thick, blue] (7.east) -- (14.west);
1042
%
1043
\end{tikzpicture}
1044
\end{center}
1045
The alternate isomorphism $t(s\times s)$, provides an alternate way to establish a bijection between these two patterns.
1046
The avoided patterns for higher $k$ extend this crisscrossing shape.
1047
1048
\end{example}
1049
1050
\begin{proof}[Proof of \cref{thm:patterns}]
1051
We give the proof for the $\LA$ diagonal, the one for the $\SU$ diagonal is similar, and can be obtained by applying either of the two isomorphisms of \cref{subsec:isos-LA-SU}.
1052
According to \cref{thm:IJ-description}, we have $(\sigma,\tau) \notin \LAD$ if and only if there is an $(I,J)$ such that~$J$ dominates~$I$ in $\sigma$ and~$I$ dominates $J$ in $\tau$.
1053
It is clear that if a pair of permutations $(\sigma,\tau)$ contains a pattern of the form~(\ref{eq:pattern}), then the associated $(I,J)$ satisfies the domination condition.
1054
Thus, we just need to show the reverse implication.
1055
We proceed by induction on the cardinality $\card{I} = \card{J}$.
1056
The case of cardinality $1$ is clear.
1057
Now suppose that for all $(I,J)$ of size $\card{I} = \card{J} \le m-1$, we have if~$J$ dominates $I$ in $\sigma$ and $I$ dominates $J$ in $\tau$, then $(\sigma,\tau)$ contains a pattern of the form~(\ref{eq:pattern}).
1058
1059
We need to show that this is still true for the pairs $(I,J)$ of size $\card{I} = \card{J} = m$.
1060
Firstly, we need only consider standardized $I,J$ conditions, and pairs of permutations of $[2m]$.
1061
Indeed, if we define $(\sigma',\tau') \eqdef \std(\sigma \cap (I\cup J),\tau \cap (I\cup J))$, and $(I',J')\eqdef\std(I',J')$,
1062
then if $(\sigma,\tau)$ satisfies the $(I,J)$ domination condition, this implies $(\sigma',\tau')$ satisfies $(I',J')$.
1063
Conversely, if $(\sigma',\tau')$ has a pattern, then this implies $(\sigma,\tau)$ has the same pattern, which yields the indicated simplification.
1064
1065
Let $(\sigma,\tau)$ be such a pair of permutations.
1066
Suppose the leftmost element $i_1$ of $I$ in $\sigma$ is not $1$, and let us write $j_1$ for the leftmost element of $J$ in $\tau$.
1067
Consider the pair ${(I',J') \eqdef (I\ssm \{i_1\}, J \ssm \{j_1\})}$.
1068
Using both cases of \cref{lem:Coherent Domination}, we have $J'$ dominates $I'$ in $\sigma$, and $I'$ dominates $J'$ in $\tau$, and we can thus conclude by induction that $(\sigma,\tau)$ contains a smaller pattern.
1069
1070
So, we assume the leftmost element of $I$ in $\sigma$ is $i_1=1$, and for $n\geq1$ we prove that,
1071
\begin{enumerate}[(a)]
1072
\item If $(\sigma,\tau)=(j_1 i_1 j_2 i_2 \dots j_{n-1} i_{n-1} w i_{n} w', \ i_2 j_1 i_3 j_2 \dots i_{n}j_{n-1}w'') $, and $j_n$ is the leftmost element of $J\ssm \{j_1, \dots, j_{n-1}\}$ in $\tau$, then either $w = j_n$, or it matches a smaller pattern.
1073
\item If $(\sigma,\tau)=(j_1 i_1 j_2 i_2 \dots j_{n-1} i_{n-1} w'', \ i_2 j_1 i_3 j_2 \dots i_{n-1}j_{n-2} w j_{n-1} w'')$, and $i_n$ is the leftmost element of ${I\ssm \{i_1, \dots, i_{n-1}\}}$ in $\sigma$, then either $w = i_n$, or it matches a smaller pattern.
1074
\end{enumerate}
1075
We prove (a), the proof of (b) proceeds similarly.
1076
Let $j_n$ be the leftmost element of $J\ssm \{j_1, \dots, j_{n-1} \}$ in $\tau$.
1077
If $w\neq j_n$, then either (i) $w$ consists of multiple elements of $J$ including $j_n$, or (ii) $j_n$ comes after $i_n$ in $\sigma$.
1078
Now consider the pair $(I',J') \eqdef (I\ssm \{i_n\}, J \ssm \{j_n\})$.
1079
As was the case for the proof that $i_1=1$, we have $I'$ dominates $J'$ in $\tau$.
1080
To prove that $J'$ dominates $I'$ in $\sigma$, we split by the cases.
1081
In case (i), we may apply condition $(2)$ of \cref{lem:Coherent Domination}.
1082
In case (ii), either $i_n$ comes before~$j_n$, in which case we meet condition $(1)$ of \cref{lem:Coherent Domination}, or $j_n$ comes before $i_n$.
1083
In this last situation, we have condition $(2)$ of \cref{lem:Coherent Domination} holds as $i_n$ is the leftmost element of~${I\ssm \{i_1, \dots, i_{n-1}\}}$ in $\sigma$.
1084
Thus, if $w \neq j_n$, by the inductive hypothesis, we match a smaller pattern.
1085
1086
Finally, using statements (a) and (b) above, we can inductively generate $(\sigma,\tau)$, determining $j_1$ via (a), then $i_2$ via (b), then $j_2$ via (a), and so on.
1087
This inductive process fully generates $\sigma$, and places all elements of $\tau$ except $i_1$, yielding $\tau=i_2 j_1 i_3 j_2 \cdots i_k j_{k-1} w j_k w''$.
1088
However, as $j_k$ must be dominated by an element of $I$, this forces $w = i_1$ and $w'' =\varnothing$, completing the proof.
1089
\end{proof}
1090
1091
\subsection{Relation to the facial weak order}
1092
\label{sec:facial-weak-order}
1093
1094
There is a natural lattice structure on all ordered partitions of~$[n]$ which extends the weak order on permutations of~$[n]$.
1095
This lattice was introduced in~\cite{KrobLatapyNovelliPhanSchwer}, where it is called \emph{pseudo-permutahedron} and defined on packed words rather than ordered partitions.
1096
It was later generalized to arbitrary finite Coxeter groups in~\cite{PalaciosRonco, DermenjianHohlwegPilaud}, where it is called \emph{facial weak order} and expressed in more geometric terms.
1097
We now recall a definition of the facial weak order on ordered partitions, and use the vertex characterization of the preceding section to show all faces of the $\LA$ and $\SU$ diagonal are intervals of this order.
1098
1099
\begin{definition}[\cite{KrobLatapyNovelliPhanSchwer,PalaciosRonco,DermenjianHohlwegPilaud}]
1100
The \defn{facial weak order} on ordered partitions is the transitive closure of the relations
1101
\begin{align}
1102
\sigma_1|\dots|\sigma_k \; < \; \sigma_1|\cdots|\sigma_i \sqcup \sigma_{i+1}|\cdots|\sigma_k \quad & \text{for any } \sigma_1|\dots|\sigma_k \text{ with } \max \sigma_i < \min \sigma_{i+1}, \label{eq:facial weak 1}\\
1103
\sigma_1|\cdots|\sigma_i \sqcup \sigma_{i+1}|\cdots|\sigma_k \; < \; \sigma_1|\dots|\sigma_k \quad & \text{for any } \sigma_1|\dots|\sigma_k \text{ with } \min \sigma_i > \max \sigma_{i+1}. \label{eq:facial weak 2}
1104
\end{align}
1105
\end{definition}
1106
1107
The facial weak order recovers the weak order on permutations as illustrated in \cref{fig:Hasse diagram Perm3}.
1108
\begin{figure}
1109
\begin{tikzpicture}[xscale=1.3, yscale=1.5]
1110
\node (1) at (-1, -.5) {$3|12$};
1111
\node (2) at (-2, -1) {$3|1|2$};
1112
\node (3) at (-2, -2) {$13|2$};
1113
\node (4) at (-2, -3) {$1|3|2$};
1114
\node (5) at (-1, -3.5) {$1|23$};
1115
%
1116
\node (6) at (1, -.5) {$23|1$};
1117
\node (7) at (2, -1) {$2|3|1$};
1118
\node (8) at (2, -2) {$2|13$};
1119
\node (9) at (2, -3) {$2|1|3$};
1120
\node (10) at (1, -3.5) {$12|3$};
1121
%
1122
\node (11) at (0, 0) {$3|2|1$};
1123
\node (12) at (0, -2) {$123$};
1124
\node (13) at (0, -4) {$1|2|3$};
1125
%
1126
\draw[thick] (1) -- (2);
1127
\draw[thick] (2) -- (3);
1128
\draw[thick] (3) -- (4);
1129
\draw[thick] (4) -- (5);
1130
%
1131
\draw[thick] (6) -- (7);
1132
\draw[thick] (7) -- (8);
1133
\draw[thick] (8) -- (9);
1134
\draw[thick] (9) -- (10);
1135
%
1136
\draw[thick] (1) -- (11);
1137
\draw[thick] (6) -- (11);
1138
%
1139
\draw[thick] (1) -- (12);
1140
\draw[thick] (5) -- (12);
1141
\draw[thick] (6) -- (12);
1142
\draw[thick] (10) -- (12);
1143
%
1144
\draw[thick] (5) -- (13);
1145
\draw[thick] (10) -- (13);
1146
\end{tikzpicture}
1147
\caption{The Hasse diagram of the facial weak order for $\Perm[3]$.}
1148
\label{fig:Hasse diagram Perm3}
1149
\end{figure}
1150
1151
\begin{proposition}
1152
If $(\sigma,\tau)\in \LAD$, or $(\sigma,\tau)\in \SUD$, then $\sigma \leq \tau$ under the facial weak order.
1153
\end{proposition}
1154
1155
\begin{proof}
1156
By \cref{prop:magicalFormula}, the faces $(\sigma,\tau)$ satisfy $\max_{\mathbf{v}} \sigma \leq \min_{\mathbf{v}} \tau$ under the weak order.
1157
Thus, if we can show that $\sigma\leq \max_{\mathbf{v}} \sigma$ and $\min_{\mathbf{v}} \tau \leq \tau$ under the facial weak order, then the result immediately follows.
1158
If $\sigma$ is a face of the permutahedra, then under both the $\LA$, and $\SU$ orientation vectors, the vertex $\max_{\mathbf{v}} \sigma$ is given by writing out each block of $\sigma$ in decreasing order, and the vertex $\min_{\mathbf{v}} \sigma$ is given by writing out each block of $\sigma$ in increasing order.
1159
Then under the facial weak order
1160
$\sigma \leq \max_{\mathbf{v}} \sigma$, as repeated applications of \cref{eq:facial weak 2} shows that a block of elements is smaller than those same elements arranged in decreasing order.
1161
Similarly $\min_{\mathbf{v}} \sigma \leq \sigma$, as repeated applications of \cref{eq:facial weak 1} shows that a sequence of increasing elements is smaller than those same elements in a block.
1162
\end{proof}
1163
1164
\begin{example}
1165
The facet $13|24|57|6 \times 3|17|456|2 \in \SUD$, satisfies the inequality through the vertices
1166
\begin{align*}
1167
13|24|57|6 < 3|1|4|2|7|5|6 < 3|1|7|4|5|6|2 < 3|17|456|2 \, .
1168
\end{align*}
1169
\end{example}
1170
1171
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1172
1173
\section{Shift lattices}
1174
\label{sec:shifts}
1175
1176
In this section, we prove that the geometric $\SU$ diagonal $\SUD$ agrees at the cellular level with the original Saneblidze-Umble diagonal defined in~\cite{SaneblidzeUmble}.
1177
This involves some shift operations on facets of the diagonal, which are interesting on their own right, and lead to lattice and cubic structures.
1178
The proof is technical and proceeds in several steps: we introduce two additional combinatorial descriptions of the diagonal, that we call the $1$-shift and $m$-shift $\SU$ diagonals, and show the sequence of equivalences
1179
\begin{center}
1180
\begin{tikzcd}
1181
\text{original $\SUD$} \arrow[r,leftrightarrow,"\ref{prop:iso-original-shift-diagonals}"]&
1182
\text{$1$-shift $\SUD$} \arrow[r,leftrightarrow,"\ref{prop:iso-1-to-m-shift}"]&
1183
\text{$m$-shift $\SUD$} \arrow[r,leftrightarrow,"\ref{prop:iso-shift-IJ-diagonals}"]&
1184
\text{geometric $\SUD$} .
1185
\end{tikzcd}
1186
\end{center}
1187
Throughout this section, we borrow notation from~\cite{SaneblidzeUmble-comparingDiagonals}.
1188
1189
%%%%%%%%%%%%%%%
1190
1191
\subsection{Topological enhancement of the original $\SU$ diagonal}
1192
\label{subsec:topological-SU}
1193
1194
We proceed to introduce different versions of the $\SU$ diagonal, and to prove that all these notions coincide.
1195
1196
%%%%%%%%%%%%%%%
1197
1198
\subsubsection{Strong complementary pairs}
1199
1200
We start by the following definition.
1201
1202
\begin{definition}
1203
\label{def:strong-complementary-pairs}
1204
A \defn{strong complementary pair}, or~\defn{$\SCP$} for short, is a pair $(\sigma,\tau)$ of ordered partitions of $[n]$ where $\sigma$ is obtained from a permutation of $[n]$ by merging the adjacent elements which are decreasing, and $\tau$ is obtained from the same permutation by merging the adjacent elements which are increasing.
1205
\end{definition}
1206
1207
We denote by $\SCP(n)$ the set of $\SCP$s of $[n]$, which is in bijection with the set of permutations of $[n]$.
1208
As is clear from the definition, the intersection graph of a $\SCP$ is a $(2,n)$-partition tree.
1209
1210
\begin{example}
1211
\label{ex:strong-complementary}
1212
The $\SCP$ associated to the permutation $3|1|7|4|2|5|6$ is
1213
\begin{center}
1214
\begin{tikzpicture}[scale=.7]
1215
\node (p) at (0, 0) {$13|247|5|6 \times 3|17|4|256$};
1216
\node[anchor=east] (1) at (-1.5, -1) {$13$};
1217
\node[anchor=east] (2) at (-1.5, -2) {$247$};
1218
\node[anchor=east] (3) at (-1.5, -3) {$5$};
1219
\node[anchor=east] (4) at (-1.5, -4) {$6$};
1220
%
1221
\node[anchor=west] (5) at (1.5, -1) {$3$};
1222
\node[anchor=west] (6) at (1.5, -2) {$17$};
1223
\node[anchor=west] (7) at (1.5, -3) {$4$};
1224
\node[anchor=west] (8) at (1.5, -4) {$256$};
1225
%
1226
\draw[thick] (1.east) -- (5.west);
1227
\draw[thick] (1.east) -- (6.west);
1228
\draw[thick] (2.east) -- (6.west);
1229
\draw[thick] (2.east) -- (7.west);
1230
\draw[thick] (2.east) -- (8.west);
1231
\draw[thick] (3.east) -- (8.west);
1232
\draw[thick] (4.east) -- (8.west);
1233
%
1234
\end{tikzpicture}
1235
\end{center}
1236
Observe that the permutation can be read off the intersection graph of the SCP by a vertical down slice through the edges.
1237
\end{example}
1238
1239
\begin{notation}
1240
For a $(2,n)$-partition tree $(\sigma,\tau)$, we denote by $\sigma_{i,j}$ (\resp $\tau_{i,j}$) the unique oriented path between blocks $\sigma_{i}$ and $\sigma_j$ (\resp $\tau_{i}$ and $\tau_j$).
1241
Note that we make a slight abuse in notation, as the path $\sigma_{i,j}$ also depends on $\tau$.
1242
\end{notation}
1243
1244
We can immediately characterize the paths between adjacent blocks in $\SCP$s.
1245
1246
\begin{proposition}
1247
\label{lem:SCP-path-desc}
1248
For any $\SCP$ $(\sigma,\tau)$, we have
1249
\begin{enumerate}
1250
\item $ \sigma_{i,i+1} = ( \min \sigma_i, \max \sigma_{i+1} )$ and $\min \sigma_i< \max \sigma_{i+1}$, and
1251
\item $ \tau_{i,i+1} = ( \max \tau_i, \min \tau_{i+1} )$ and $\min \tau_{i+1}< \max \tau_{i}$.
1252
\end{enumerate}
1253
As a consequence, all $\SCP$s are in both $\LAD$ and $\SUD$, and constitute precisely the set of facets~$(\sigma,\tau)$ of these diagonals such that $\max_{\b{v}}(\sigma) = \min_{\b{v}}(\tau)$.
1254
\end{proposition}
1255
\begin{proof}
1256
First, the path description of $(\sigma,\tau)$ is a straightforward observation.
1257
Second, since the minima of these paths are traversed from left to right, and the maxima from right to left, \cref{thm:facet-ordering} implies that $\SCP$s are in both geometric operadic diagonals~$\LAD$ and~$\SUD$.
1258
Third, the fact that these constitute the facets $(\sigma,\tau) \in \LAD$ or $\SUD$ satisfying $\max_{\b{v}}(\sigma) = \min_{\b{v}}(\tau)$ can be seen as follows.
1259
The maximal (\resp minimal) vertex of a face $\sigma$ of the permutahedron with respect to the weak order, is obtained by ordering the elements of each block of $\sigma$ in decreasing (\resp increasing) order.
1260
Thus, it is clear that the original permutation giving rise to a $\SCP$ $(\sigma,\tau)$ is the permutation $\max_{\b{v}}(\sigma)=\min_{\b{v}}(\tau)$, for any vector $\b{v}$ inducing the weak order.
1261
Since both diagonals agree with this order on the vertices, we have that $\SCP$s are indeed facets of $\LAD$ and $\SUD$ with the desired property.
1262
The fact that these are \emph{all} the facets with this property follows from the bijection between $\SCP(n)$ and the permutations of~$[n]$.
1263
\end{proof}
1264
1265
1266
%%%%%%%%%%%%%%%
1267
1268
\subsubsection{Shifts and the $\SU$ diagonals}
1269
\label{subsec:SU-shifts}
1270
1271
We recall the definition of the original $\SU$ diagonal of~\cite{SaneblidzeUmble}, based on the exposition given in~\cite{SaneblidzeUmble-comparingDiagonals}.
1272
We then introduce two variants of this definition, the $1$-shift and $m$-shift $\SU$ diagonals, which will be shown to be equivalent to the original one.
1273
1274
\begin{definition}
1275
\label{def:subset shifts}
1276
Let $\sigma=\sigma_1| \cdots |\sigma_k$ be an ordered partition, and let~$M \subsetneq \sigma_{i}$ be a non-empty subset of the block $\sigma_i$.
1277
For $m\geq 1$, the \defn{right $m$-shift} $R_M$, moves the subset $M$, $m$ blocks to the right, \ie
1278
\begin{align*}
1279
R_M(\sigma) \eqdef \sigma_1 | \cdots | \sigma_i \ssm M | \cdots | \sigma_{i+m} \cup M | \cdots | \sigma_k
1280
\end{align*}
1281
while the \defn{left $m$-shift} $L_M$, moves the subset $M$, $m$ blocks to the left, \ie
1282
\begin{align*}
1283
L_M(\sigma) \eqdef \sigma_1 | \cdots | \sigma_{i-m} \cup M | \cdots | \sigma_{i} \ssm M | \cdots | \sigma_k .
1284
\end{align*}
1285
\end{definition}
1286
1287
\begin{definition}
1288
\label{def:movable-subsets}
1289
Let $\sigma$ denote either one of the two ordered partitions of $[n]$ in an ordered \mbox{$(2,n)$-partition} tree, and let $M \subsetneq \sigma_i$.
1290
The right $m$-shift $R_M$ (\resp the left $m$-shift $L_M$) is
1291
\begin{enumerate}
1292
\item \defn{block-admissible} if $\min \sigma_i \notin M$ and $\min M > \max \sigma_{i+m}$ (\resp $\min M > \max \sigma_{i-m}$),
1293
\item \defn{path-admissible} if $\min M > \max \sigma_{i,i+m}$ (\resp $\min M > \max \sigma_{i,i-m}$).
1294
\end{enumerate}
1295
\end{definition}
1296
1297
\begin{remark}
1298
\label{rem:inverses}
1299
Observe that for a given subset $M$, an inverse to the right $m$-shift $R_M$ (\resp left $m$-shift $L_M$) is given by the left $m$-shift $L_M$ (\resp right $m$-shift $R_M$).
1300
Moreover, one $m$-shift is path-admissible if and only if its inverse is.
1301
\end{remark}
1302
1303
\begin{example}\label{ex:1-shift example}
1304
Performing the $1$-shifts $R_7$ and $L_{56}$ (they are both block and path admissible) of the $\SCP$~$(\sigma,\tau)$ of \cref{ex:strong-complementary}, one obtains the pair~$R_{7}(\sigma) \times L_{56}(\tau)$, as illustrated below.
1305
\begin{center}
1306
\begin{tikzpicture}[scale=.7]
1307
\node (p) at (0, 0) {$13|247|5|6 \times 3|17|4|256$};
1308
\node[anchor=east] (1) at (-1.5, -1) {$13$};
1309
\node[anchor=east] (2) at (-1.5, -2) {$247$};
1310
\node[anchor=east] (3) at (-1.5, -3) {$5$};
1311
\node[anchor=east] (4) at (-1.5, -4) {$6$};
1312
%
1313
\node[anchor=west] (5) at (1.5, -1) {$3$};
1314
\node[anchor=west] (6) at (1.5, -2) {$17$};
1315
\node[anchor=west] (7) at (1.5, -3) {$4$};
1316
\node[anchor=west] (8) at (1.5, -4) {$256$};
1317
%
1318
\draw[thick] (1.east) -- (5.west);
1319
\draw[thick] (1.east) -- (6.west);
1320
\draw[thick] (2.east) -- (6.west);
1321
\draw[thick] (2.east) -- (7.west);
1322
\draw[thick] (2.east) -- (8.west);
1323
\draw[thick] (3.east) -- (8.west);
1324
\draw[thick] (4.east) -- (8.west);
1325
\end{tikzpicture}
1326
\quad
1327
\raisebox{3.4em}{$\xrightarrow{R_{7} \times L_{56}}$}
1328
\quad
1329
\begin{tikzpicture}[scale=.7]
1330
\node (p) at (0, 0) {$13|24|57|6 \times 3|17|456|2$};
1331
\node[anchor=east] (1) at (-1.5, -1) {$13$};
1332
\node[anchor=east] (2) at (-1.5, -2) {$24$};
1333
\node[anchor=east] (3) at (-1.5, -3) {$57$};
1334
\node[anchor=east] (4) at (-1.5, -4) {$6$};
1335
%
1336
\node[anchor=west] (5) at (1.5, -1) {$3$};
1337
\node[anchor=west] (6) at (1.5, -2) {$17$};
1338
\node[anchor=west] (7) at (1.5, -3) {$456$};
1339
\node[anchor=west] (8) at (1.5, -4) {$2$};
1340
%
1341
\draw[thick] (1.east) -- (5.west);
1342
\draw[thick] (1.east) -- (6.west);
1343
\draw[thick] (3.east) -- (6.west);
1344
\draw[thick] (2.east) -- (7.west);
1345
\draw[thick] (2.east) -- (8.west);
1346
\draw[thick] (3.east) -- (7.west);
1347
\draw[thick] (4.east) -- (7.west);
1348
\end{tikzpicture}
1349
\end{center}
1350
\end{example}
1351
1352
We shall concentrate on three families of shifts: block-admissible $1$-shifts of subsets of various sizes, path-admissible $1$-shifts of singletons, and path-admissible $m$-shifts of singletons, for various $m\geq 1$,
1353
and show that specific sequences generate the same diagonal.
1354
1355
\begin{definition}
1356
\label{def:SU-admissible}
1357
Let $\sigma$ denote either one of the two ordered partitions of $[n]$ in an ordered \mbox{$(2,n)$-parti}\-tion tree, and let~$\b{M} = (M_1,\dots,M_p)$ with ${M_1 \subsetneq \sigma_{i_1}, \dots, M_p \subsetneq \sigma_{i_p}}$ for some~$p \ge 1$.
1358
Then the sequence of right shifts~$R_\mathbf{M}(\sigma) \eqdef R_{M_p} \dots R_{M_1}(\sigma)$ is
1359
\begin{enumerate}
1360
\item \defn{block-admissible} if we have $1\leq i_1 < i_2 < \dots < i_p \leq k-1$, and each $R_{M_j}$ is a block-admissible $1$-shift,
1361
\item \defn{path-admissible} if each $R_{M_j}$ is a path-admissible $m_j$-shift, for some ${m_j \geq 1}$.
1362
\end{enumerate}
1363
Admissible sequences of left shifts are defined similarly and are denoted by $L_\mathbf{M}(\tau)$.
1364
\end{definition}
1365
1366
By convention, we declare the empty sequence of shift operators to be admissible, and to act by the identity, \ie we have $R_{\mathbf{\varnothing}}(\sigma) \eqdef \sigma$ and $L_{\mathbf{\varnothing}} (\tau) \eqdef \tau$.
1367
1368
\begin{definition}
1369
\label{def:classical-SU}
1370
The facets of the \defn{original $\SU$ diagonal}, the \defn{$1$-shift $\SU$ diagonal} and the \defn{$m$-shift $\SU$ diagonal} are defined by the formula
1371
\begin{align*}
1372
\SUD([n]) = \bigcup_{(\sigma,\tau)} \bigcup_{\mathbf{M}, \mathbf{N}} R_\mathbf{M}(\sigma)\times L_\mathbf{N}(\tau)
1373
\end{align*}
1374
where the unions are taken over all $\SCP$s $(\sigma, \tau)$ of $[n]$, and respectively over all block-admissible sequences of subset $1$-shifts $\b{M},\b{N}$, over all path-admissible sequences of singleton $1$-shifts, and over all path-admissible sequences of singleton $m_j$-shifts, for various $m_j \ge 1$.
1375
\end{definition}
1376
1377
\begin{remark}
1378
Observe that the left (\resp right) shifts acts on the right (\resp left) ordered partition.
1379
In the analogous description for the $\LA$ diagonal $\LAD$ obtained at in \cref{subsec:shifts-under-iso}, left and right shifts act on the left and right ordered partitions, respectively.
1380
\end{remark}
1381
1382
%%%%%%%%%%%%%%%
1383
1384
\subsubsection{First isomorphism between $\SU$ diagonals}
1385
1386
We start by analyzing the original $\SU$ diagonal.
1387
1388
\begin{proposition}
1389
\label{prop:SU-preserves-max}
1390
Block-admissible sequences of subset $1$-shifts, defining the original $\SU$ diagonal, conserve
1391
\begin{enumerate}
1392
\item the maximal element of any path between two blocks of the same ordered partition,
1393
\item the direction in which this element is traversed.
1394
\end{enumerate}
1395
In particular, for a pair of ordered partitions $(R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$ obtained via a block-admissible sequence of $1$-shifts from a $\SCP$~$(\sigma,\tau)$, we have
1396
\begin{align}
1397
\label{eq:max-1}
1398
\max R_{\mathbf{M}}(\sigma)_{i,j} = \max \sigma_{i,j} \qquad \text{and} \qquad \max L_{\mathbf{N}}(\tau)_{i,j} = \max \tau_{i,j} \tag{P}
1399
\end{align}
1400
and consequently
1401
\begin{align}
1402
\label{eq:max-2}
1403
\max R_{\mathbf{M}}(\sigma)_{i,i+1} = \max \sigma_{i+1} \qquad \text{and}\qquad \max L_{\mathbf{N}}(\tau)_{i,i+1} = \max \tau_{i} . \tag{B}
1404
\end{align}
1405
\end{proposition}
1406
1407
Note that in \cref{eq:max-1}, the maxima $\max \sigma_{i,j}$ and $\max \tau_{i,j}$ are maxima of \emph{paths}, while in \cref{eq:max-2} the maxima $\max \sigma_{i+1}$ and $\max \tau_{i}$ are maxima of \emph{blocks}.
1408
1409
\begin{proof}
1410
We consider the right shift operator; the left shift operator proceeds similarly.
1411
Let us start with Point (1).
1412
As $\SCP$s trivially meet the above conditions, we will prove the result inductively by assuming that the result holds for $(R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$, and then showing that applying a block-admissible operator $R_{M_k}$, for $M_k\subsetneq \sigma_k$,
1413
conserves the maximal elements of paths.
1414
By the inductive hypothesis, we know that $\max R_{\mathbf{M}}(\sigma)_{k,k+1}= \max \sigma_{k+1}$.
1415
As $R_{M_k}$ is an admissible operator, we know two things: firstly that $\min M_k > \max R_{\mathbf{M}}(\sigma)_{k+1}$, and secondly that $\max \sigma_{k+1} = \max R_{\mathbf{M}}(\sigma)_{k+1}$, as $k$ is greater than the maximal index used by $\mathbf{M}$.
1416
So combining these, we know that
1417
\begin{align}
1418
\label{eq:shift-subset-dominates}
1419
\min M_k > \max R_{\mathbf{M}}(\sigma)_{k+1} = \max \sigma_{k+1} = \max R_{\mathbf{M}}(\sigma)_{k,k+1} . \tag{W}
1420
\end{align}
1421
A key consequence of this inequality is that the intersection graph of $(R_{M_k}R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$ is a bipartite tree conditional on $(R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$ being a bipartite tree: the shift will not disconnect the graph as none of the shifted elements are in the path $R_{\mathbf{M}}(\sigma)_{k,k+1}$.
1422
So, it is legitimate to speak of unique paths between blocks.
1423
1424
We now explicitly explore how the shift operator $R_{M_k}$ alters paths.
1425
Throughout the rest of this proof, we use the following shorthand: we denote by $\delta_{k,k+1} \eqdef R_{\mathbf{M}}(\sigma)_{k,k+1}$ the path between the $k$\ordinal{} and $(k+1)$\ordinalst{} blocks in $(R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$, and by $\delta_{k+1,k}$ the same path reversed.
1426
Let~$\gamma$ be any path between two blocks of $(R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$, and let~$\gamma'$ be the path between the same blocks, by indices, in $(R_{M_k}R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$.
1427
There are four cases to consider.
1428
\begin{enumerate}[i)]
1429
\item the path $\gamma$ does not contain an element of $M_k$.
1430
In this case, it is unaffected by the shift, so $\gamma' = \gamma$.
1431
We note that in light of \cref{eq:shift-subset-dominates}, the path $\delta_{k,k+1}$ meets this case.
1432
1433
\item the path $\gamma$ contains one element $m\in M_k$, \ie it is of the form $\gamma = \alpha m \beta$, with $\alpha$ or $\beta$ possibly empty.
1434
We assume that $m$ is incoming to $R_\mathbf{M}(\sigma)_{k}$, the case when it is outgoing is similar.
1435
We must have $\alpha \cap \delta_{k,k+1}=\varnothing$, since otherwise there would be an oriented loop from $R_\mathbf{M}(\sigma)_{k}$ to itself.
1436
For the same reason, $\beta \cap \delta_{k,k+1}$ must be connected and starting at $R_\mathbf{M}(\sigma)_{k}$.
1437
Then there are two cases to consider:
1438
\begin{enumerate}
1439
\item the path $\beta$ does not use any steps of $\delta_{k,k+1}$, in which case $\gamma' = \alpha m \delta_{k+1,k} \beta$.
1440
This is a path in the tree of $(R_{M_k}R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$ with no repeated steps, as such it must be the unique minimal path.
1441
1442
\item the path $\beta$ uses steps of $\delta_{k,k+1}$, in which case $\gamma' = \alpha m (\delta_{k+1,k}\ssm \beta)(\beta \ssm \delta_{k+1,k})$.
1443
This follows, as we know that $\beta$ must follow the path $\delta_{k,k+1}$ for some time before diverging ($\beta$ could also be a subset of $\delta_{k,k+1}$, in which case it will never diverge).
1444
As such, the path $(\delta_{k+1,k}\ssm \beta)$ reaches the point of divergence from $R_{\mathbf{M}}(\sigma)_{k+1}$ instead of $R_{\mathbf{M}}(\sigma)_{k}$, and the path $(\beta \ssm \delta_{k+1,k})$ completes the rest of the route unchanged.
1445
\end{enumerate}
1446
1447
\item the path $\gamma$ contains two elements of $M_k$.
1448
In this case we still have $\gamma'=\gamma$ (in path elements) but $\gamma'$ will step through the $(k+1)$\ordinalst{} block instead of $\gamma$ stepping through the $k$\ordinal{} block.
1449
1450
\item the path $\gamma$ contains more than two elements of $M_k$.
1451
This is impossible, as $\gamma$ would not be a minimal path on a tree.
1452
1453
\end{enumerate}
1454
Observe that all (non-trivial or non-contradictory) paths $\gamma'$ contain $m \geq \min M_k$ and either some addition or deletion by $\delta_{k,k+1}$.
1455
It thus follows from \cref{eq:shift-subset-dominates} that $\max \gamma' = \max \gamma$, since in each case, the maximal element will either be $m$, or in $\alpha$, or in $\beta$.
1456
This finishes the proof of Point~(1).
1457
1458
For Point (2), we need to see that the maximal element $\max \gamma = \max \gamma'$ is traversed in the same direction.
1459
It is immediate for cases (i), (ii.a) and (iii); the condition is empty in the case~(iv).
1460
For the case (ii.b) it follows from the observation that the number of steps of $\beta \cap \delta_{k,k+1}$ and~$\delta_{k,k+1} \ssm \beta$ have the same parity: since~$\delta_{k,k+1}$ has an even number of steps, either they both have an even number of steps, or an odd number, which completes the proof.
1461
\end{proof}
1462
1463
\begin{corollary}
1464
\label{cor:SU-1-shift-preserves-max}
1465
Path-admissible sequences of singleton $1$-shifts, defining the $1$-shift $\SU$ diagonal, conserve
1466
\begin{enumerate}
1467
\item the maximal element of any path between two blocks of the same ordered partition,
1468
\item the direction in which this element is traversed.
1469
\end{enumerate}
1470
\end{corollary}
1471
1472
\begin{proof}
1473
By the definition of path-admissible $1$-shifts (\cref{def:SU-admissible}), the outer inequality of \cref{eq:shift-subset-dominates} holds by assumption.
1474
As such, can run the proof of \cref{prop:SU-preserves-max} \emph{mutatis mutandis}.
1475
\end{proof}
1476
1477
We are now in position to show that the $1$-shift and $m$-shift descriptions are equivalent.
1478
1479
%Combining \cref{cor:SU-1-shift-preserves-max} and \cref{prop:iso-1-to-m-shift}
1480
1481
\begin{proposition}
1482
\label{prop:iso-1-to-m-shift}
1483
The $1$-shift and $m$-shift $\SU$ diagonals coincide.
1484
\end{proposition}
1485
1486
\begin{proof}
1487
It is clear that any path-admissible sequence of $1$-shifts is a path-admissible sequence of $m$-shifts, and thus that the facets of the $1$-shift $\SU$ diagonal are facets of the $m$-shift $\SU$ diagonal.
1488
For the reverse inclusion, we need to show that any $m$-shift can be re-expressed as a path-admissible sequence of $1$-shifts.
1489
We proceed by induction, and consider only the case of right shifts, the case of left shifts is similar.
1490
For right $1$-shifts, there is nothing to prove.
1491
Let $(\sigma,\tau)$ be a pair of ordered partitions which has been generated only by $k$-shifts, for~$k<m$.
1492
We wish to show that any path-admissible right $m$-shift $R_\rho^m$ on $\sigma$ can be decomposed as a path-admissible $1$-shift $R_\rho^{1}$ followed by a path-admissible $(m-1)$-shift $R_\rho^{m-1}$, which yields the result by induction.
1493
As $R_\rho^{m}$ is path-admissible, we know that $\rho > \max \sigma_{i,i+m}$, and we want to show that
1494
$\rho>\max \sigma_{i,i+m}\geq \max \sigma_{i,i+1}, \max R_\rho^{1}(\sigma)_{i+1,i+m}$.
1495
\begin{center}
1496
\begin{tikzpicture}[scale=0.7]
1497
\node[anchor=east] (1) at (-0.5,0) {$\sigma_i$};
1498
\coordinate (2) at (1,0);
1499
\node[anchor=south] (3) at (1,1.5) {$\sigma_{i+1}$};
1500
\node[anchor=west] (4) at (2.5,0) {$\sigma_{i+m}$};
1501
\draw[thick,->] (1.east) -- node[below] {$\alpha$} (2);
1502
\draw[thick,->] (2) -- node[left] {$\beta$} (3.south);
1503
\draw[thick,->] (2) -- node[below] {$\gamma$} (4.west);
1504
\end{tikzpicture}
1505
\end{center}
1506
We define the oriented paths $\alpha \eqdef \sigma_{i,i+1}\ssm \sigma_{i+1,i+m}$, $\beta \eqdef \sigma_{i,i+1}\ssm \sigma_{i,i+m}$ and $\gamma \eqdef \sigma_{i,i+m}\ssm \sigma_{i,i+1}$, as illustrated above.
1507
Suppose that $\beta$ is not empty, and moreover that $\max\sigma_{i+1,i+m}>\max\sigma_{i,i+m}$ or $\max \sigma_{i,i+1}> \max \sigma_{i,i+m}$.
1508
Then we must have that $\max \beta> \max \alpha, \max \gamma$.
1509
However, $\max\beta$ cannot be the maximum of both $\sigma_{i,i+1}$ and $\sigma_{i+1,i+m}$.
1510
Indeed, in this case, it would be traversed in two opposite directions, which is impossible since by the induction hypothesis $(\sigma,\tau)$ can be generated by $1$-shifts, and by \cref{cor:SU-1-shift-preserves-max} these conserve the maximal elements of paths and their direction.
1511
We thus have $\max \sigma_{i,i+m}\geq \max\sigma_{i,i+1}, \max \sigma_{i+1,i+m}$, and applying \cref{cor:SU-1-shift-preserves-max} again yields $\max \sigma_{i,i+m}\geq \max R_\rho^{1}(\sigma)_{i+1,i+m}$ as required.
1512
\end{proof}
1513
1514
We stress that \cref{eq:shift-subset-dominates} holds for $m$-shifts without us needing to perform shifts in increasing order, or requiring $\min M_k > \max R_{\mathbf{M}}(\sigma)_{k+1}$.
1515
We are now ready to prove that the $m$-shift description is equivalent to the original one.
1516
1517
\begin{theorem}
1518
\label{prop:iso-original-shift-diagonals}
1519
The original and $m$-shift $\SU$ diagonals coincide.
1520
\end{theorem}
1521
1522
\begin{proof}
1523
Since $m$-shift and $1$-shift diagonals are equivalent (\cref{prop:iso-1-to-m-shift}), it suffices to show that the $1$-shift and original $\SU$ diagonals coincide.
1524
We analyze the right shift operator, the case of the left shift is similar.
1525
First, we observe that any block-admissible right shift $R_{M}(\sigma)$, for~$M\subsetneq\sigma_k$, can be decomposed into a series of singleton right $1$-shifts; since $\min M > \max \sigma_{k,k+1}$ by the proof of \cref{prop:SU-preserves-max}, we can shift the elements of $M$ to the right, one after the other (in any order!).
1526
This shows that any facet of the original $\SU$ diagonal is also a facet in the $1$-shift $\SU$ diagonal.
1527
1528
For the reverse inclusion, we proceed by induction.
1529
We are required to show that if we apply a right $1$-shift to $(R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$, say $(R_{\rho}R_{\mathbf{M}}(\sigma),L_{\mathbf{N}}(\tau))$, then this can be re-expressed as a well-defined subset shift operation $(R_{\mathbf{M'}}(\sigma),L_{\mathbf{N}}(\tau))$.
1530
Suppose that prior to the $1$-shift, the element $\rho$ lives in block $\ell$, then we must have
1531
\begin{align*}
1532
1 \leq i_1 < \cdots < i_j \leq \ell < i_{j+1} <\cdots< i_p \leq k-1
1533
\end{align*}
1534
for some $j$.
1535
If $i_j < \ell$, then we have $R_{\rho}R_{\mathbf{M}}(\sigma) = R_{M_{p}}\cdots R_{\{\rho\}}R_{M_{j}}\cdots R_{M_{1}}(\sigma)$, and we are done.
1536
Otherwise, if $i_j = \ell$, we set $M'_{j} \eqdef M_{j} \cup \{\rho \}$.
1537
It is clear that ${R_{\rho}R_{\mathbf{M}}(\sigma) = R_{M_{p}}\cdots R_{M'_{j}}\cdots R_{M_{1}}(\sigma)}$, however, we need to check that $R_{M'_{j}}$ is block-admissible, \ie that $\min M_{j}' > \max (R_{M_{j-1}}\cdots R_{M_{1}}(\sigma))_{i_j+1}$.
1538
If we have~$\rho > \min M_{j}$, then we are done since in this case $\min M_{j}'=\min M_{j}$ and $R_{M_{j}}$ is block-admissible.
1539
Otherwise, we have $\rho=\min M_{j}'$.
1540
Since by definition block-admissible shift operators do not move the minimal element of a block, we have $\rho > \min R_{\mathbf{M}}(\sigma)_{i_j}= \min (R_{M_{j-1}}\cdots R_{M_{1}}(\sigma))_{i_j}$.
1541
Then, by induction, \cref{prop:SU-preserves-max} shows that $\rho>\max \sigma_{i_j+1} = \max (R_{M_{j-1}}\cdots R_{M_{1}}(\sigma))_{i_j + 1}$, where the equality follows as $i_1<\cdots<i_j$.
1542
This proves that $R_{M'_{j}}$ is block-admissible, completing the inductive proof.
1543
\end{proof}
1544
1545
%%%%%%%%%%%%%%%
1546
1547
\subsubsection{Inversions}
1548
\label{subsec:inversions}
1549
1550
Our next goal is to prove the equivalence between the $m$-shift and geometric $\SU$ diagonals (\cref{prop:iso-shift-IJ-diagonals}).
1551
As a tool for this proof, we now study \emph{inversions}, or crossings in the partition trees of the geometric $\SU$ diagonal.
1552
1553
\begin{definition}\label{def:inverions}
1554
Let $\sigma$ be an ordered partition.
1555
\begin{itemize}
1556
\item The \defn{inversions} of an ordered partition are $I(\sigma):= \{(i,j): i<j \land \sigma^{-1}(j)<\sigma^{-1}(i) \}$.
1557
\item The \defn{anti-inversions} of an ordered partition are $J(\sigma):= \{(i,j): i<j \land \sigma^{-1}(i)< \sigma^{-1}(j) \}$.
1558
\end{itemize}
1559
We then define the \defn{inversions of an ordered partition pair} $I((\sigma,\tau)):=I(\tau)\cap J(\sigma)$.
1560
\end{definition}
1561
In words, the inversions of an ordered partition pair are those $i<j$ pairs in which $j$ comes in an earlier block than $i$ in $\tau$, and $i$ comes in an earlier block than $j$ in $\sigma$.
1562
1563
\begin{proposition}
1564
\label{p:crossings}
1565
The set of inversions of a facet of the geometric $\SU$ diagonal is in bijection with its set of edge crossings.
1566
Moreover, under this bijection, strong complementary pairs correspond to facets with no crossings.
1567
\end{proposition}
1568
1569
\begin{proof}
1570
For the first part of the statement,
1571
we note that crossings are clearly produced by both $I(\tau)\cap J(\sigma)$ and $I(\sigma)\cap J(\tau)$ (i.e. in the second case $j$ appears before $i$ in $\sigma$ and $i$ before $j$ in $\tau$).
1572
However, the later cannot occur in a facet of the geometric $\SUD$; this follows immediately from the $(I,J)$-conditions for $\card{I} = \card{J} = 1$.
1573
The second part of the statement follows from the fact that facets of the diagonal $\SUD$ with no crossings are in bijection with permutations.
1574
By definition (\cref{def:strong-complementary-pairs}), from a partition one obtains a $\SCP$, which is in the geometric $\SUD$ (\cref{lem:SCP-path-desc}).
1575
In the other way around, given a $\SCP$, one can read-off the partition in the associated tree, which has no crossings, by a vertical down-slice of edges (\cref{ex:strong-complementary}).
1576
\end{proof}
1577
1578
See \cref{fig: Inversion and lattice counter example} for an example of this bijection.
1579
1580
\begin{definition}
1581
We say that an edge crossing is an \defn{adjacent crossing} if the two crossing elements are in adjacent blocks of the partition tree (\ie they are in blocks of the form $\sigma_i|\sigma_{i+1}$ or $\tau_i|\tau_{i+1}$).
1582
\end{definition}
1583
1584
\begin{lemma}
1585
\label{lem:adjacent-crossing}
1586
A facet $(\sigma,\tau)$ of the geometric $\SU$ diagonal has a crossing if and only if it has an adjacent crossing.
1587
\end{lemma}
1588
1589
\begin{proof}
1590
An adjacent crossing is clearly a crossing.
1591
In the other direction, suppose there is a crossing between an element of $\sigma_i$ and an element of $\sigma_j$.
1592
If $\sigma_i$ and $\sigma_j$ are not adjacent, then the ``triangle" produced by the crossing elements encloses another $\sigma_k$ such that $i<k<j$, and this produces other crossings. We may repeat this process until an adjacent crossing is found.
1593
\end{proof}
1594
1595
1596
1597
%%%%%%%%%%%%%%%
1598
1599
\subsubsection{Second isomorphism between $\SU$ diagonals}
1600
\label{sec:Iso m-shifts to IJ}
1601
1602
We now aim at showing that the $m$-shift and the geometric $\SU$ diagonal coincide (\cref{thm:unique-operadic}).
1603
Recall from \cref{rem:inverses} that left and right path-admissible $m$-shifts are inverses to one another.
1604
1605
\begin{proposition}
1606
\label{lem:IJ-closed-under-shifts}
1607
Let $(\sigma,\tau)$ be a facet of the geometric $\SU$ diagonal $\SUD$.
1608
Then, any pair of ordered partitions obtained by applying a path-admissible $m$-shift to $(\sigma,\tau)$ is also in the geometric $\SU$ diagonal.
1609
\end{proposition}
1610
1611
\begin{proof}
1612
We consider a right path-admissible shift $R_\rho$, the left shift and dual result proceeds similarly.
1613
Combining \cref{cor:SU-1-shift-preserves-max} and \cref{prop:iso-1-to-m-shift}, we have that the maxima of paths between consecutive vertices in $(R_{\rho}(\sigma),\tau)$ are the same as the ones in $(\sigma,\tau)$, and are moreover traversed in the same direction.
1614
Thus, all maxima of paths in $(R_{\rho}(\sigma),\tau)$ are traversed from right to left, and hence by \cref{thm:facet-ordering}, we have that $(R_{\rho}(\sigma),\tau)$ is in the geometric $\SU$ diagonal.
1615
\end{proof}
1616
1617
\begin{lemma}
1618
\label{lem:inverse-to-SCP}
1619
Any facet $(\sigma,\tau)$ of the geometric $\SU$ diagonal $\SUD$ is mapped to a $\SCP$ by a path-admissible sequence of inverse $m$-shifts.
1620
\end{lemma}
1621
1622
\begin{proof}
1623
We show that any facet $(\sigma,\tau)$ which has a crossing, and is hence not a $\SCP$, admits an inverse shift operation.
1624
This shows that a finite number of inverse shift operations converts any facet to a $\SCP$ (if $\sigma$ is an ordered partition of $n$ with $k$ blocks, then clearly less than $n^k$ inverse shifts are possible).
1625
We consider the following partition of the set of facets with crossings, illustrated by example in \cref{ex:proof-inverse-shift}.
1626
\begin{enumerate}
1627
\item All adjacent blocks are connected by paths of length $2$.
1628
\item There exist adjacent blocks which are connected by a path of length $2k$ for $k>1$.
1629
\begin{enumerate}
1630
\item The maximal step of this path is not the last step.
1631
\item The maximal step of this path is the last step.
1632
\begin{enumerate}
1633
\item The $\tau$ block containing the maximal step is not the greatest block.
1634
\item The $\tau$ block containing the maximal step is the greatest block.
1635
\end{enumerate}
1636
\end{enumerate}
1637
\end{enumerate}
1638
In Case $(1)$, as $(\sigma,\tau)$ has a crossing, it has an adjacent crossing by \cref{lem:adjacent-crossing}.
1639
This adjacent crossing is of the following form (we illustrate the case where the crossing happens on the left, the case when it happens on the right is similar):
1640
\begin{center}
1641
\begin{tikzpicture}[scale=.6]
1642
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_i$};
1643
\node[anchor=east] (2) at (-1.5, -2) {$\sigma_{i+1}$};
1644
%
1645
\node[anchor=west] (4) at (1.5, 0) {$\tau_j$};
1646
\node[anchor=west] (5) at (1.5, -2) {$\tau_{k}$};
1647
%
1648
\draw[thick] (1.east) -- (5.west);
1649
\draw[thick] (2.east) -- (5.west);
1650
\draw[thick] (2.east) -- (4.west);
1651
\node (6) at (1.1, -0.7) {$\rho$};
1652
\node (7) at (0, -1.6) {$b$};
1653
\node (8) at (-1.1, -0.7) {$c$};
1654
\end{tikzpicture}
1655
\quad
1656
\raisebox{1.9em}{$\xrightarrow{R^{-1}_{\rho}}$}
1657
\quad
1658
\begin{tikzpicture}[scale=.6]
1659
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_i \sqcup \rho$};
1660
\node[anchor=east] (2) at (-1.5, -2) {$\sigma_{i+1}\ssm \rho$};
1661
%
1662
\node[anchor=west] (4) at (1.5, 0) {$\tau_j$};
1663
\node[anchor=west] (5) at (1.5, -2) {$\tau_{k}$};
1664
%
1665
\draw[thick] (1.east) -- (4.west);
1666
\draw[thick] (1.east) -- (5.west);
1667
\draw[thick] (2.east) -- (5.west);
1668
\node (6) at (0.9, -0.4) {$\rho$};
1669
\node (7) at (0, -1.6) {$b$};
1670
\node (8) at (-1.1, -0.7) {$c$};
1671
\end{tikzpicture}
1672
\end{center}
1673
By the path characterization of the geometric $\SU$ diagonal (\cref{thm:facet-ordering}), the fact that $\tau_j < \tau_k$ implies that $\rho > b$, and the fact that $\sigma_i < \sigma_{i+1}$ implies that $b>c$.
1674
Thus, we have $\rho > \max \sigma_{i,i+1}$, which implies that a path-admissible left shift $R_\rho^{-1}$ can be performed.
1675
1676
In Case $(2.a)$, consider the two adjacent blocks say $\sigma_i|\sigma_{i+1}$ (the $\tau$ case is similar), let $\rho \eqdef \max \sigma_{i,i+1}$ denote the maximum of the path between them, and let $m\geq 1$ be such that $\rho$ steps into $\sigma_{i+1+m}$.
1677
Since $\max \sigma_{i,i+1+m} = \max \sigma_{i,i+1}= \rho$ the definition of the geometric $\SU$ diagonal implies that the block $\sigma_{i+1+m}$ comes after the block $\sigma_{i}$, and by assumption after the block $\sigma_{i+1}$.
1678
Thus, we know that $m > 1$, and using dashed lines to denote paths of length $\geq 1$ we have the following picture
1679
\begin{center}
1680
\begin{tikzpicture}[scale=.6]
1681
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_i$};
1682
\node[anchor=east] (2) at (-1.5, -1.5) {$\sigma_{i+1}$};
1683
\node[anchor=east] (3) at (-1.5, -3) {$\sigma_{i+1+m}$};
1684
%
1685
\node[anchor=west](4) at (1.5, 0) {$\hphantom{.}$};
1686
\node[anchor=west](5) at (1.5, -1.5) {$\hphantom{.}$};
1687
%
1688
\draw[thick,dashed] (1.east) -- (4.west);
1689
\draw[thick,dashed] (2.east) -- (5.west);
1690
\draw[thick] (3.east) -- (4.west);
1691
\draw[thick,dashed] (3.east) -- (5.west);
1692
%
1693
\node (6) at (1.1, -0.9) {$\rho$};
1694
\end{tikzpicture}
1695
\raisebox{2.15em}{$\xrightarrow{R^{-1}_{\rho}}$}
1696
\begin{tikzpicture}[scale=.6]
1697
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_i$};
1698
\node[anchor=east] (2) at (-1.5, -1.5) {$\sigma_{i+1}\sqcup \rho$};
1699
\node[anchor=east] (3) at (-1.5, -3) {$\sigma_{i+1+m}\ssm \rho$};
1700
%
1701
\node[anchor=west] (4) at (1.5, 0) {$\hphantom{.}$};
1702
\node[anchor=west] (5) at (1.5, -1.5) {$\hphantom{.}$};
1703
%
1704
\draw[thick,dashed] (1.east) -- (4.west);
1705
\draw[thick,dashed] (2.east) -- (5.west);
1706
\draw[thick] (2.east) -- (4.west);
1707
\draw[thick,dashed] (3.east) -- (5.west);
1708
%
1709
\node (6) at (1.1, -0.7) {$\rho$};
1710
\end{tikzpicture}
1711
\end{center}
1712
As we have $\rho=\max \sigma_{i,i+1} > \max\sigma_{i+1+m,i+1}$, an inverse $m$-shift operation can be performed.
1713
1714
In the Case $(2.b.i)$, there exists $j,m>0$ such that $\tau_{j-m}$ is the block of $\tau$ which contains the maximal element $\rho$, and $\tau_j$ is any greater block on the path from $\sigma_i$ to $\sigma_{i+1}$.
1715
Then we may apply the following inverse $m$-shift operator.
1716
\begin{center}
1717
\begin{tikzpicture}[scale=.6]
1718
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_i$};
1719
\node[anchor=east] (2) at (-1.5, -2) {$\sigma_{i+1}$};
1720
%
1721
\node[anchor=west] (3) at (1.5, 0) {$\tau_{j-m}$};
1722
\node[anchor=west] (4) at (1.5, -2) {$\tau_{j}$};
1723
%
1724
\draw[thick, dashed] (1.east) -- (4.west);
1725
\draw[thick] (2.east) -- (3.west);
1726
\draw[thick, dashed] (3.west) -- (4.west);
1727
\node (6) at (-0.6, -1.8) {$\rho$};
1728
\end{tikzpicture}
1729
\raisebox{1.8em}{$\xrightarrow{L_\rho^{-1}}$}
1730
\begin{tikzpicture}[scale=.6]
1731
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_i$};
1732
\node[anchor=east] (2) at (-1.5, -2) {$\sigma_{i+1}$};
1733
%
1734
\node[anchor=west] (3) at (1.5, 0) {$\tau_{j-m} \ssm \rho$};
1735
\node[anchor=west] (4) at (1.5, -2) {$\tau_{j} \sqcup \rho$};
1736
%
1737
\draw[thick, dashed] (1.east) -- (4.west);
1738
\draw[thick] (2.east) -- (4.west);
1739
\draw[thick, dashed] (3.west) -- (4.west);
1740
\node (6) at (-0.9, -1.6) {$\rho$};
1741
\end{tikzpicture}
1742
\end{center}
1743
1744
There remains to be treated Case $(2.b.ii)$.
1745
We consider the path $\sigma_{i,i+1} \eqdef (i_1,j_1,i_2,\dots,i_{k},\rho)$ to be of length $2k$, $k>1$.
1746
We denote by $\tau_j$ the block of $\tau$ containing the maximal step $\rho$ of this path, which by hypothesis is the last block of $\tau$.
1747
Let $\sigma_{i-n}$ be the last block of $\sigma$ which is attained by the path $\sigma_{i,i+1}$ before the block $\sigma_{i+1}$.
1748
We must have $n>1$, since $\rho$ is the last step and $\sigma_i|\sigma_{i+1}$ are adjacent blocks.
1749
The situation can be pictured as on the left.
1750
\begin{center}
1751
\begin{tikzpicture}[scale=.6]
1752
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_{i-n}$};
1753
\node[anchor=east] (2) at (-1.5, -1.5) {$\sigma_{i}$};
1754
\node[anchor=east] (3) at (-1.5, -3) {$\sigma_{i+1}$};
1755
%
1756
\node[anchor=west] (4) at (1.5, 0) {$\tau_{j-m}$};
1757
\node[anchor=west] (5) at (1.5, -1.5) {$\tau_j$};
1758
%
1759
\draw[thick,dashed] (1.east) -- (4.west);
1760
\draw[thick] (1.east) -- (5.west);
1761
\draw[thick,dashed] (2.east) -- (4.west);
1762
\draw[thick] (3.east) -- (5.west);
1763
%
1764
\node (6) at (1.1, -2.1) {$\rho$};
1765
\node (7) at (1.1, -0.8) {$i_k$};
1766
\end{tikzpicture}
1767
\raisebox{2.15em}{$\xrightarrow{L_{\rho'}^{-1}}$}
1768
\begin{tikzpicture}[scale=.6]
1769
\node[anchor=east] (1) at (-1.5, 0) {$\sigma_{i-n}$};
1770
\node[anchor=east] (2) at (-1.5, -1.5) {$\sigma_{i}$};
1771
\node[anchor=east] (3) at (-1.5, -3) {$\sigma_{i+1}$};
1772
%
1773
\node[anchor=west] (4) at (1.5, 0) {$\tau_{j-m}\ssm \rho'$};
1774
\node[anchor=west] (5) at (1.5, -1.5) {$\tau_j \sqcup \rho'$};
1775
%
1776
\draw[thick,dashed] (1.east) -- (4.west);
1777
\draw[thick] (1.east) -- (5.west);
1778
\draw[thick,dashed] (2.east) -- (5.west);
1779
\draw[thick] (3.east) -- (5.west);
1780
%
1781
\node (6) at (1.1, -2.1) {$\rho$};
1782
\node (7) at (1.1, -0.8) {$i_k$};
1783
\end{tikzpicture}
1784
\end{center}
1785
Now let $\rho' \eqdef \max\sigma_{i,i-n}$ be the maximum of the path $\sigma_{i,i-n}=(i_1,j_1,i_2,\dots,i_{k-1},j_{k-1})$, and let~$\tau_{j-m}$, $m\geq 1$ be the block of $\tau$ containing $\rho'$.
1786
We want to show that an inverse left $m$-shift can bring $\rho'$ back to $\tau_j$, \ie we need $\rho' > \max \tau_{j-m,j}$.
1787
As $\rho'\eqdef \max \sigma_{i,i-n}$, and apart from the step $i_k$ we have $\tau_{j-m,j}\subset \sigma_{i,i-n}$, we just need to show that $\rho' > i_k$.
1788
To see that this is indeed the case, it suffices to look at the last steps $$\tau_l \overset{j_{k-1}}{\longrightarrow} \sigma_{i-n} \overset{i_{k}}{\longrightarrow} \tau_j \overset{\rho}{\longrightarrow} \sigma_{i+1}$$ of the path $\sigma_{i,i+1}$.
1789
By the definition of the geometric $\SU$ diagonal, the fact that $\tau_l < \tau_j$ implies that $j_{k-1} > i_k$, and thus that $\rho' > i_k$, which finishes the proof.
1790
\end{proof}
1791
1792
\begin{example}
1793
\label{ex:proof-inverse-shift}
1794
Here are examples of each of the cases in the proof of \cref{lem:inverse-to-SCP}.
1795
We display cases $(1)$, $(2.a)$, $(2.b.i)$ and, $(2.b.ii)$ respectively, reading the diagrams from top-left to bottom-right.
1796
1797
\begin{center}
1798
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1799
\node[anchor=east] (1) at (-1.5, -1) {$1$};
1800
\node[anchor=east] (2) at (-1.5, -2) {$23$};
1801
%
1802
\node[anchor=west] (4) at (1.5, -1) {$3$};
1803
\node[anchor=west] (5) at (1.5, -2) {$12$};
1804
%
1805
\draw[thick] (1.east) -- (5.west);
1806
\draw[thick] (2.east) -- (5.west);
1807
\draw[thick] (2.east) -- (4.west);
1808
\end{tikzpicture}
1809
\raisebox{1.3em}{$\xrightarrow{R^{-1}_{3}}$}
1810
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1811
\node[anchor=east] (1) at (-1.5, -1) {$13$};
1812
\node[anchor=east] (2) at (-1.5, -2) {$2$};
1813
%
1814
\node[anchor=west] (4) at (1.5, -1) {$3$};
1815
\node[anchor=west] (5) at (1.5, -2) {$12$};
1816
%
1817
\draw[thick] (1.east) -- (4.west);
1818
\draw[thick] (1.east) -- (5.west);
1819
\draw[thick] (2.east) -- (5.west);
1820
\end{tikzpicture}
1821
1822
\vspace{.5cm}
1823
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1824
\node[anchor=east] (1) at (-1.5, -1) {$1$};
1825
\node[anchor=east] (2) at (-1.5, -2) {$2$};
1826
\node[anchor=east] (3) at (-1.5, -3) {$34$};
1827
%
1828
\node[anchor=west] (4) at (1.5, -1) {$14$};
1829
\node[anchor=west] (5) at (1.5, -2) {$23$};
1830
%
1831
\draw[thick] (1.east) -- (4.west);
1832
\draw[thick] (2.east) -- (5.west);
1833
\draw[thick] (3.east) -- (4.west);
1834
\draw[thick] (3.east) -- (5.west);
1835
\end{tikzpicture}
1836
\raisebox{2.15em}{$\xrightarrow{R^{-1}_{4}}$}
1837
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1838
\node[anchor=east] (1) at (-1.5, -1) {$1$};
1839
\node[anchor=east] (2) at (-1.5, -2) {$24$};
1840
\node[anchor=east] (3) at (-1.5, -3) {$3$};
1841
%
1842
\node[anchor=west] (4) at (1.5, -1) {$14$};
1843
\node[anchor=west] (5) at (1.5, -2) {$23$};
1844
%
1845
\draw[thick] (1.east) -- (4.west);
1846
\draw[thick] (2.east) -- (4.west);
1847
\draw[thick] (2.east) -- (5.west);
1848
\draw[thick] (3.east) -- (5.west);
1849
\end{tikzpicture}
1850
1851
\vspace{.5cm}
1852
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1853
\node[anchor=east] (1) at (-1.5, -1) {$13$};
1854
\node[anchor=east] (2) at (-1.5, -2) {$2$};
1855
\node[anchor=east] (3) at (-1.5, -3) {$4$};
1856
%
1857
\node[anchor=west] (4) at (1.5, -1) {$34$};
1858
\node[anchor=west] (5) at (1.5, -2) {$12$};
1859
%
1860
\draw[thick] (1.east) -- (4.west);
1861
\draw[thick] (1.east) -- (5.west);
1862
\draw[thick] (2.east) -- (5.west);
1863
\draw[thick] (3.east) -- (4.west);
1864
\end{tikzpicture}
1865
\raisebox{2.15em}{$\xrightarrow{L^{-1}_{4}}$}
1866
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1867
\node[anchor=east] (1) at (-1.5, -1) {$13$};
1868
\node[anchor=east] (2) at (-1.5, -2) {$2$};
1869
\node[anchor=east] (3) at (-1.5, -3) {$4$};
1870
%
1871
\node[anchor=west] (4) at (1.5, -1) {$3$};
1872
\node[anchor=west] (5) at (1.5, -2) {$124$};
1873
%
1874
\draw[thick] (1.east) -- (4.west);
1875
\draw[thick] (1.east) -- (5.west);
1876
\draw[thick] (2.east) -- (5.west);
1877
\draw[thick] (3.east) -- (5.west);
1878
\end{tikzpicture}
1879
1880
\vspace{.5cm}
1881
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1882
\node[anchor=east] (1) at (-1.5, -1) {$12$};
1883
\node[anchor=east] (2) at (-1.5, -2) {$3$};
1884
\node[anchor=east] (3) at (-1.5, -3) {$4$};
1885
%
1886
\node[anchor=west] (4) at (1.5, -1) {$23$};
1887
\node[anchor=west] (5) at (1.5, -2) {$14$};
1888
%
1889
\draw[thick] (1.east) -- (4.west);
1890
\draw[thick] (1.east) -- (5.west);
1891
\draw[thick] (2.east) -- (4.west);
1892
\draw[thick] (3.east) -- (5.west);
1893
\end{tikzpicture}
1894
\raisebox{2.15em}{$\xrightarrow{L^{-1}_{3}}$}
1895
\begin{tikzpicture}[xscale=.6,yscale=0.9]
1896
\node[anchor=east] (1) at (-1.5, -1) {$12$};
1897
\node[anchor=east] (2) at (-1.5, -2) {$3$};
1898
\node[anchor=east] (3) at (-1.5, -3) {$4$};
1899
%
1900
\node[anchor=west] (4) at (1.5, -1) {$2$};
1901
\node[anchor=west] (5) at (1.5, -2) {$134$};
1902
%
1903
\draw[thick] (1.east) -- (4.west);
1904
\draw[thick] (1.east) -- (5.west);
1905
\draw[thick] (2.east) -- (5.west);
1906
\draw[thick] (3.east) -- (5.west);
1907
\end{tikzpicture}
1908
\end{center}
1909
1910
Note that, as we have chosen minimal illustrative examples, each inverse $m$-shift is an inverse $1$-shift, and after each shift we obtain a $\SCP$.
1911
This is not typically the case.
1912
\end{example}
1913
1914
\begin{theorem}
1915
\label{prop:iso-shift-IJ-diagonals}
1916
The $m$-shift and the geometric $\SU$ diagonals coincide.
1917
\end{theorem}
1918
1919
\begin{proof}
1920
We first note that $\SCP$s are known elements of both the $m$-shift and the geometric $\SU$ diagonals (\cref{lem:SCP-path-desc}).
1921
The proof that every facet of the $m$-shift $\SUD$ is in geometric $\SUD$ follows from the closure of $\SUD$ under the shift operators (\cref{lem:IJ-closed-under-shifts}).
1922
The proof that every facet of geometric $\SUD$ is in shift $\SUD$ follows from the closure of $\SUD$ under the inverse shift operator (\cref{lem:IJ-closed-under-shifts}) and the fact that every facet is sent to a $\SCP$ after a finite number of inverse shifts (\cref{lem:inverse-to-SCP}).
1923
In particular, for any given facet in geometric $\SUD$, this provides a $\SCP$ and a sequence of shifts to form it, showing it is a facet of $m$-shift $\SUD$.
1924
\end{proof}
1925
1926
Combining \cref{prop:iso-original-shift-diagonals} and \cref{prop:iso-shift-IJ-diagonals}, we obtain the desired equivalence between the original $\SU$ diagonal from~\cite{SaneblidzeUmble} and the geometric $\SU$ diagonal from \cref{def:LA-and-SU}.
1927
1928
\begin{theorem}
1929
\label{thm:recover-SU}
1930
The original and geometric $\SU$ diagonals coincide.
1931
\end{theorem}
1932
1933
%%%%%%%%%%%%%%%
1934
1935
\subsection{Shifts under the face poset isomorphism}
1936
\label{subsec:shifts-under-iso}
1937
1938
Having proven the equivalence of the original and geometric $\SU$ diagonals, we now use the face poset isomorphisms between the geometric $\LA$ and $\SU$ diagonals from \cref{subsec:isos-LA-SU} to translate results and combinatorial descriptions from one to the other.
1939
Under the isomorphism $t(r\times r):\LAD\to\SUD$ from \cref{rem:Alternate Isomorphism}, we get a straightforward analogue of \cref{def:SU-admissible} for the $\LA$ diagonal.
1940
Firstly, the morphism $r \times r$ exchanges $\max$ and $\min$, which yields the following ``dual" notions of admissibility.
1941
1942
\begin{definition}
1943
\label{def:LA-admissible}
1944
Let $\sigma$ denote either one of the two ordered partitions of $[n]$ in a $(2,n)$-partition tree, and let $M \subsetneq \sigma_i$.
1945
The right $m$-shift $R_{M}$ (\resp the left $m$-shift $L_{M}$) is
1946
\begin{enumerate}
1947
\item \defn{block-admissible} if $\max \sigma_i \notin M$ and $\max M < \min \sigma_{i+m}$ (\resp $\max M < \min \sigma_{i-m}$),
1948
\item \defn{path-admissible} if $\max M< \min \sigma_{i,i+m}$ (\resp $\max M < \min \sigma_{i,i-m}$).
1949
\end{enumerate}
1950
\end{definition}
1951
1952
Secondly, as the morphism $t$ switches our ordered partitions, this means that the $\LA$ lefts shifts will act on the left ordered partition, and the $\LA$ right shifts will act on the right ordered partition.
1953
Consequently, admissible sequences of $\LA$ shifts are defined similarly to \cref{def:SU-admissible} (simply replace $\sigma$ with $\tau$).
1954
Which provides an analogue of \cref{def:classical-SU} for the $\LA$ diagonal.
1955
1956
\begin{definition}
1957
\label{def:classical-LA}
1958
The facets of the \defn{subset shift, $1$-shift and $m$-shift $\LA$ diagonals} are given by the formula
1959
\begin{align*}
1960
\LAD([n]) = \bigcup_{(\sigma,\tau)} \bigcup_{\mathbf{M}, \mathbf{N}} L_\mathbf{M}(\sigma)\times R_\mathbf{N}(\tau)
1961
\end{align*}
1962
where the unions are taken over all $\SCP$s $(\sigma, \tau)$ of $[n]$, and respecitvely over all block-admissible sequences of subset $1$-shifts $\b{M},\b{N}$, over all path-admissible sequences of singleton $1$-shifts, and over all path-admissible sequences of singleton $m_j$-shifts, for various $m_j \ge 1$.
1963
\end{definition}
1964
1965
We now formally verify that the isomorphism $t(r\times r)$ relates these shift definitions as claimed.
1966
1967
\begin{proposition}
1968
\label{prop:trr is an isomorphism of shifts}
1969
Let $(\sigma,\tau)$ be a facet of $\LAD$.
1970
For each type of $\LA$ shift, let $\b{M},\b{N}$ be admissible sequences of this type, then
1971
\begin{align*}
1972
t(r,r)(L_\mathbf{N}(\sigma), R_\mathbf{M}(\tau)) = (R_{r\mathbf{M}}(r\tau), L_{r\mathbf{N}}(r\sigma))
1973
\end{align*}
1974
where $r\mathbf{M} \eqdef (rM_{1},\dots,rM_{p})$ and $r\mathbf{N}$ (defined similarly) are admissible sequences of $\SU$ shifts of the same type.
1975
\end{proposition}
1976
1977
\begin{proof}
1978
As reversing the elements then shifting them is the same as shifting the elements then reversing them,
1979
it is clear that the equality holds if $r\mathbf{M},r\mathbf{N}$ are admissible sequences of $\SU$ shifts.
1980
As such, we must simply verify the admissibility, and given the equivalence of the various shift definitions, we just do this for path-admissibility of $1$-shifts.
1981
Consider a right shift $R_{M}$, for $M \in \sigma_i$, which is path-admissible in the $\LA$ sense (\cref{def:LA-admissible}).
1982
Then, we have $\max M < \min \sigma_{i,i+1}$ which implies that $\min r M > \max r \sigma_{i,i+1}$, and thus the right shift $R_{rM}$ is path-admissible in the $\SU$ sense (\cref{def:SU-admissible}).
1983
Here, $rM \in r\sigma_i$ is interpreted as being in a block of the right partition ($\tau$ in the notation of the definition).
1984
So, if $\mathbf{M} = (M_{i_1},\dots,M_{i_p})$, define $r(\mathbf{M}) \eqdef (rM_{1},\dots,rM_{p})$, and from the prior it is clear this is a path-admissible sequence of $\SU$ shifts, finishing the proof.
1985
\end{proof}
1986
Thus, given $t(r\times r)$ is an isomorphism of the geometric diagonals (\cref{rem:Alternate Isomorphism}), and the geometric $\SU$ diagonal coincides with the shift $\SU$ diagonals (\cref{subsec:SU-shifts}), we immediately obtain the following statement.
1987
\begin{proposition}
1988
The geometric $\LA$ diagonal and all shift $\LA$ diagonals coincide.
1989
\end{proposition}
1990
1991
\begin{remark}
1992
The isomorphism $rs\times rs:\LAD \to \SUD$, identified in \cref{thm:bijection-operadic-diagonals}, also sends shifts operators to shift operators, but it sends left shift operators to right shift operators and vice versa.
1993
The $\LA^{\op}$ and $\SU^{\op}$ diagonals also admit obvious dual shift descriptions.
1994
\end{remark}
1995
1996
We now explore in example how the isomorphism $t(r\times r)$ translates the shift operators.
1997
1998
\begin{example}
1999
\label{ex:shift translation by theta}
2000
The isomorphism $t(r\times r)$ sends the $\SCP$ $(\sigma,\tau) \eqdef (5|17|4|236,57|146|3|2)$ to the $\SCP$ $(\sigma',\tau') \eqdef (13|247|5|6,3|17|4|256)$.
2001
The corresponding $(2,n)$-partition trees present a clear symmetry
2002
\begin{center}
2003
\begin{tikzpicture}[scale=.7]
2004
\node[anchor=east] (1) at (-1.5, -1) {$5$};
2005
\node[anchor=east] (2) at (-1.5, -2) {$17$};
2006
\node[anchor=east] (3) at (-1.5, -3) {$4$};
2007
\node[anchor=east] (4) at (-1.5, -4) {$236$};
2008
%
2009
\node[anchor=west] (5) at (1.5, -1) {$57$};
2010
\node[anchor=west] (6) at (1.5, -2) {$146$};
2011
\node[anchor=west] (7) at (1.5, -3) {$3$};
2012
\node[anchor=west] (8) at (1.5, -4) {$2$};
2013
%
2014
\draw[thick] (1.east) -- (5.west);
2015
\draw[thick] (2.east) -- (5.west);
2016
\draw[thick] (2.east) -- (6.west);
2017
\draw[thick] (3.east) -- (6.west);
2018
\draw[thick] (4.east) -- (6.west);
2019
\draw[thick] (4.east) -- (7.west);
2020
\draw[thick] (4.east) -- (8.west);
2021
%
2022
\end{tikzpicture}
2023
\raisebox{3.4em}{$\xrightarrow{t(r\times r)}$}
2024
\begin{tikzpicture}[scale=.7]
2025
\node[anchor=east] (13) at (-1.5, -1) {$13$};
2026
\node[anchor=east] (247) at (-1.5, -2) {$247$};
2027
\node[anchor=east] (5) at (-1.5, -3) {$5$};
2028
\node[anchor=east] (6) at (-1.5, -4) {$6$};
2029
%
2030
\node[anchor=west] (3) at (1.5, -1) {$3$};
2031
\node[anchor=west] (17) at (1.5, -2) {$17$};
2032
\node[anchor=west] (4) at (1.5, -3) {$4$};
2033
\node[anchor=west] (256) at (1.5, -4) {$256$};
2034
%
2035
\draw[thick] (13.east) -- (17.west);
2036
\draw[thick] (13.east) -- (3.west);
2037
\draw[thick] (247.east) -- (256.west);
2038
\draw[thick] (247.east) -- (17.west);
2039
\draw[thick] (247.east) -- (4.west);
2040
\draw[thick] (5.east) -- (256.west);
2041
\draw[thick] (6.east) -- (256.west);
2042
%
2043
\end{tikzpicture}
2044
\end{center}
2045
We now illustrate all possible path admissible $\LA$ $1$-shifts of $(\sigma,\tau)$ and all possible path admissible $\SU$ $1$-shifts of $(\sigma',\tau')$.
2046
We first display how the $\LA$ left shifts act on $\sigma$, and the $\SU$ left shifts act on $\tau'$.
2047
The $\LA$ shifts have been drawn so that the leftmost arrow shifts the smallest element, and the $\SU$ shifts have been drawn so that the leftmost arrow shifts the largest element.
2048
As such, the face poset isomorphism $t(r\times r)$ directly translates one diagram to the other.
2049
The specific element being shifted can be inferred by the source and target of the arrow.
2050
2051
\vspace{.5cm}
2052
\centerline{
2053
\begin{tikzcd}[ampersand replacement=\&]
2054
\& 5|17|4|236 \arrow[ld] \arrow[d] \arrow[rd]\\
2055
15|7|4|236 \arrow[rd] \arrow[d]\&
2056
5|17|24|36 \arrow[dl] \arrow[rd]\&
2057
5|17|34|26 \arrow[d] \arrow[dl]\\
2058
15|7|24|36 \arrow[dr]\&
2059
15|7|34|26 \arrow[d]\&
2060
5|17|234|6 \arrow[dl]\\
2061
\&15|7|234|6
2062
\end{tikzcd}
2063
\qquad\qquad
2064
\begin{tikzcd}[ampersand replacement=\&]
2065
\& 3|17|4|256 \arrow[ld] \arrow[d] \arrow[rd]\\
2066
37|1|4|256 \arrow[rd] \arrow[d]\&
2067
3|17|46|25 \arrow[dl] \arrow[rd]\&
2068
3|17|44|26 \arrow[d] \arrow[dl]\\
2069
37|1|46|25 \arrow[dr]\&
2070
36|17|44|26 \arrow[d]\&
2071
3|17|456|2 \arrow[dl]\\
2072
\&37|1|456|2
2073
\end{tikzcd}
2074
}
2075
2076
\vspace{.5cm}
2077
\noindent
2078
We now illustrate all the possible $\LA$ right shifts acting on $\tau$
2079
\begin{center}
2080
\begin{tikzcd}
2081
\sigma \times 57|146|3|2 \arrow[r,"\rho=1"] & \sigma \times 57|46|13|2 \arrow[r,"\rho=1"] & \sigma \times 57|46|3|12
2082
\end{tikzcd}
2083
\end{center}
2084
and all possible $\SU$ right shifts acting on $\sigma'$
2085
\begin{center}
2086
\begin{tikzcd}
2087
13|247|5|6 \times \tau' \arrow[r,"\rho=7"] & 13|24|57|6 \arrow[r,"\rho=7"] \times \tau' & 13|24|5|67 \times \tau' .
2088
\end{tikzcd}
2089
\end{center}
2090
No other shifts are possible; observe for instance that we cannot perform the $\LA$ left shift $15|7|234|6 \times 57|46|13|2 \xrightarrow{\rho=2} 15|27|34|6 \times 57|46|13|2$ as the minimal path connecting $234$ and $7$ contains $1$, which is smaller than $2$ (see \cref{ex:ECbijection}).
2091
We shall see in \cref{sec:Shift-lattice}, that these diagrams are the Hasse diagrams of lattices.
2092
\end{example}
2093
2094
\begin{example}
2095
It was observed in~\cite{LaplanteAnfossi} that the $\LA$ and $\SU$ diagonals coincided up until $n=3$, however due to their dual shift structure they generate the non-$\SCP$ pairs in a dual fashion.
2096
In particular, the two center faces of the subdivided hexagon of \cref{fig:LUSAdiagonals} are generated by
2097
\begin{center}
2098
\begin{tikzpicture}[scale=.6,xscale=0.6]
2099
\node[anchor=east] (1) at (-1.5, -1) {$13$};
2100
\node[anchor=east] (2) at (-1.5, -2) {$2$};
2101
%
2102
\node[anchor=west] (4) at (1.5, -1) {$3$};
2103
\node[anchor=west] (5) at (1.5, -2) {$12$};
2104
%
2105
\draw[thick] (1.east) -- (4.west);
2106
\draw[thick] (1.east) -- (5.west);
2107
\draw[thick] (2.east) -- (5.west);
2108
\end{tikzpicture}
2109
\quad
2110
\raisebox{1.3em}{$\xrightarrow{R^{\SU}_{3}}$}
2111
\quad
2112
\begin{tikzpicture}[scale=.6,xscale=0.6]
2113
\node[anchor=east] (1) at (-1.5, -1) {$1$};
2114
\node[anchor=east] (2) at (-1.5, -2) {$23$};
2115
%
2116
\node[anchor=west] (4) at (1.5, -1) {$3$};
2117
\node[anchor=west] (5) at (1.5, -2) {$12$};
2118
%
2119
\draw[thick] (1.east) -- (5.west);
2120
\draw[thick] (2.east) -- (5.west);
2121
\draw[thick] (2.east) -- (4.west);
2122
\end{tikzpicture}
2123
2124
\vspace{.5cm}
2125
\begin{tikzpicture}[scale=.6,xscale=0.6]
2126
\node[anchor=east] (1) at (-1.5, -1) {$12$};
2127
\node[anchor=east] (2) at (-1.5, -2) {$3$};
2128
%
2129
\node[anchor=west] (4) at (1.5, -1) {$2$};
2130
\node[anchor=west] (5) at (1.5, -2) {$13$};
2131
%
2132
\draw[thick] (1.east) -- (4.west);
2133
\draw[thick] (2.east) -- (5.west);
2134
\draw[thick] (1.east) -- (5.west);
2135
\end{tikzpicture}
2136
\quad
2137
\raisebox{1.3em}{$\xrightarrow{L^{\SU}_{3}}$}
2138
\quad
2139
\begin{tikzpicture}[scale=.6,xscale=0.6]
2140
\node[anchor=east] (1) at (-1.5, -1) {$12$};
2141
\node[anchor=east] (2) at (-1.5, -2) {$3$};
2142
%
2143
\node[anchor=west] (4) at (1.5, -1) {$23$};
2144
\node[anchor=west] (5) at (1.5, -2) {$1$};
2145
%
2146
\draw[thick] (1.east) -- (4.west);
2147
\draw[thick] (2.east) -- (4.west);
2148
\draw[thick] (1.east) -- (5.west);
2149
\end{tikzpicture}
2150
\end{center}
2151
and
2152
\begin{center}
2153
\begin{tikzpicture}[scale=.6,xscale=0.6]
2154
\node[anchor=east] (1) at (-1.5, -1) {$1$};
2155
\node[anchor=east] (2) at (-1.5, -2) {$23$};
2156
%
2157
\node[anchor=west] (4) at (1.5, -1) {$13$};
2158
\node[anchor=west] (5) at (1.5, -2) {$2$};
2159
%
2160
\draw[thick] (1.east) -- (4.west);
2161
\draw[thick] (2.east) -- (4.west);
2162
\draw[thick] (2.east) -- (5.west);
2163
\end{tikzpicture}
2164
\quad
2165
\raisebox{1.3em}{$\xrightarrow{R^{\LA}_{1}}$}
2166
\quad
2167
\begin{tikzpicture}[scale=.6,xscale=0.6]
2168
\node[anchor=east] (1) at (-1.5, -1) {$1$};
2169
\node[anchor=east] (2) at (-1.5, -2) {$23$};
2170
%
2171
\node[anchor=west] (4) at (1.5, -1) {$3$};
2172
\node[anchor=west] (5) at (1.5, -2) {$12$};
2173
%
2174
\draw[thick] (1.east) -- (5.west);
2175
\draw[thick] (2.east) -- (4.west);
2176
\draw[thick] (2.east) -- (5.west);
2177
\end{tikzpicture}
2178
2179
\vspace{.5cm}
2180
\begin{tikzpicture}[scale=.6,xscale=0.6]
2181
\node[anchor=east] (1) at (-1.5, -1) {$2$};
2182
\node[anchor=east] (2) at (-1.5, -2) {$13$};
2183
%
2184
\node[anchor=west] (4) at (1.5, -1) {$23$};
2185
\node[anchor=west] (5) at (1.5, -2) {$1$};
2186
%
2187
\draw[thick] (1.east) -- (4.west);
2188
\draw[thick] (2.east) -- (4.west);
2189
\draw[thick] (2.east) -- (5.west);
2190
\end{tikzpicture}
2191
\quad
2192
\raisebox{1.3em}{$\xrightarrow{L^{\LA}_{1}}$}
2193
\quad
2194
\begin{tikzpicture}[scale=.6,xscale=0.6]
2195
\node[anchor=east] (1) at (-1.5, -1) {$12$};
2196
\node[anchor=east] (2) at (-1.5, -2) {$3$};
2197
%
2198
\node[anchor=west] (4) at (1.5, -1) {$23$};
2199
\node[anchor=west] (5) at (1.5, -2) {$1$};
2200
%
2201
\draw[thick] (1.east) -- (4.west);
2202
\draw[thick] (2.east) -- (4.west);
2203
\draw[thick] (1.east) -- (5.west);
2204
\end{tikzpicture}
2205
\end{center}
2206
where we have aligned each element, of each diagonal, vertically with its dual element.
2207
\end{example}
2208
2209
%%%%%%%%%%%%%%%
2210
2211
\subsection{Shift lattices}
2212
\label{sec:Shift-lattice}
2213
2214
In this section, we show that the $1$-shifts of the operadic diagonals~$\LAD$ and~$\SUD$, define the covering relations of a lattice structure on the set of facets.
2215
More precisely, we show that each $\SCP$ is the minimal element of a lattice isomorphic to a product of chains, where the partial order is given by shifts.
2216
Given the bijection between $\SCP$s and permutations, and our prior enumeration of the facets of the diagonal, this produces two new statistics on permutations.
2217
In addition, later in \cref{sec:Cubical}, we will use the lattice structure to relate the cubical and shift definitions of the $\SUD$ diagonal.
2218
2219
\begin{definition}
2220
\label{def:shift-lattice}
2221
The $\LA$ \defn{shift poset} on the set of facets $(\sigma,\tau) \in \LAD$ is defined to be the transitive closure of the relations $ (\sigma,\tau) \prec (L_\rho \sigma,\tau)$ and $ (\sigma,\tau) \prec (\sigma,R_\rho \tau)$, for all $\LA$ path-admissible $1$-shifts $L_{\rho}$ and $R_\rho$.
2222
The $\SU$ \defn{shift poset} is defined similarly.
2223
Then, for each permutation $v$ of $[n]$, we define the subposet \defn{$\hour^\LA$} (\resp \defn{$\hour^\SU$}) to be the set of all admissible $\LA$ (\resp $\SU$) shifts of the associated~$\SCP$.
2224
\end{definition}
2225
2226
Given the shift definitions of $\SUD$ and $\LAD$ (\cref{def:classical-SU,def:classical-LA}), the subposets $\hour^\LA$ and~$\hour^\SU$ are clearly connected components of their posets, with a unique minimal element corresponding to the $\SCP$.
2227
We now aim to prove they are also lattices (\cref{prop:shift lattice}).
2228
2229
\begin{lemma}
2230
\label{lem:m-shifts commute}
2231
The $m$-shift operators defining the facets of an operadic diagonal commute.
2232
That is, whenever the successive composition of two $m_1$, $m_2$-shifts is defined on a facet of the $\LA$ or $\SU$ diagonal, the reverse order of composition is also defined, and the two yield the same facet.
2233
\end{lemma}
2234
\begin{proof}
2235
A $\SUD$ (\resp $\LAD$) $m$-shift is defined when $\rho$ is greater (\resp smaller) than the maximal (\resp minimal) element of the connecting path.
2236
Combining \cref{cor:SU-1-shift-preserves-max} and \cref{prop:iso-1-to-m-shift}, we know $m$-shifts conserve the maximal (minimal) elements of paths and their directions.
2237
As such, we can commute any two shift operators.
2238
\end{proof}
2239
2240
\begin{definition}
2241
\label{def:heights}
2242
Let $v$ be a permutation of $[n]$, and $(\sigma,\tau)$ the SCP corresponding to $v$.
2243
For $\rho \in [n]$, we define the $\LA$ \defn{left height} and \defn{right height} of $\rho$ to be
2244
\begin{align*}
2245
\ell_v(\rho) \eqdef \max (\{0\}\cup \{m>0: L_{\rho}(\sigma) \text{ is a path admissible $\LA$ $m$-shift} \}), \\
2246
r_v(\rho) \eqdef \max (\{0\}\cup \{m>0: R_{\rho}(\tau) \text{ is a path admissible $\LA$ $m$-shift} \}).
2247
\end{align*}
2248
The left and right heights for the $\SU$ diagonal are defined similarly.
2249
\end{definition}
2250
2251
The height of an element $\rho$ in a $\SCP$ can be explicitly calculated as follows.
2252
2253
\begin{lemma}
2254
\label{prop:maximal m-shift formulae}
2255
Let $(\sigma,\tau)$ be the $\SCP$ corresponding to a permutation $v$.
2256
Then, the right $\LA$ height $r_v(\rho)$ (\resp the left $\LA$ height $\ell_v(\rho)$) of $\rho \in [n]$ is given by the number of consecutive blocks of $\sigma$ (\resp of~$\tau$) to the right (\resp left) of the one containing $\rho$ whose minima are larger than $\rho$.
2257
The $\SU$ heights are obtained similarly by considering blocks whose maxima are smaller than $\rho$.
2258
\end{lemma}
2259
2260
\begin{proof}
2261
We consider the right $\SU$ height, the other cases are similar.
2262
As $(\sigma,\tau)$ is a $\SCP$, we have $\max \sigma_{k,k+1} = \max \sigma_{k+1}$ for all $k\geq 1$.
2263
Moreover, from the equivalence between $1$-shifts and $m$-shifts (\cref{prop:iso-1-to-m-shift}), there exists a $m$-shift of $\rho$ from $\sigma_i$ to $\sigma_{i+m}$ if, and only if, there exists a sequence of $m$ consecutive $1$-shifts, each satisfying $\rho > \max \sigma_{j,j+1}=\max \sigma_{j+1}$.
2264
Thus, these iterated $1$-shifts will be path-admissible until the first failure at $j=r_v(\rho)+1$.
2265
\end{proof}
2266
2267
\begin{remark}
2268
The height calculations can also be reformulated directly in terms of the permutation.
2269
For instance, for the $\SU$ diagonal $r_v(\rho)$ is the number of consecutive descending runs, to the right of the descending run containing $\rho$, whose maximal element is smaller than $\rho$.
2270
\end{remark}
2271
2272
\begin{proposition}
2273
\label{prop:shift lattice}
2274
The subposets~$\hour^\LA$ and~$\hour^\SU$, are lattices isomorphic to products of chains
2275
\begin{align*}
2276
\hour^\LA \cong \prod_{\rho \in [n]} [0,\ell_v(\rho)] \times \prod_{\rho \in [n]} [0,r_v(\rho)]
2277
\quad \text{ and } \quad
2278
\hour^\SU \cong \prod_{\rho \in [n]} [0,r_v(\rho)] \times \prod_{\rho \in [n]} [0,\ell_v(\rho)] \ ,
2279
\end{align*}
2280
where $[0,k]$ is the chain lattice $0<1<\dots<k$, for $k\geq 0$.
2281
\end{proposition}
2282
2283
\begin{proof}
2284
We denote by $L_\rho^m$ (\resp $R_\rho^m$) a left (right) $m$-shift of $\rho$ for $m>0$, and we let it be the identity if~$m=0$.
2285
By the commutativity of $m$-shift operators (\cref{lem:m-shifts commute}), and the existence of unique heights for each element (\cref{prop:maximal m-shift formulae}), every element of $\hour^\LA$ admits a unique shift description $(L^{\ell_n}_{n} \dots L^{\ell_1}_{1}(\sigma),
2286
R^{r_n}_{n}\cdots R^{r_{1}}_{1}(\tau))$, where $0\leq \ell_\rho\leq \ell_v(\rho)$ and $0\leq r_\rho\leq r_v(\rho)$.
2287
Thus, we identify it with the pair of tuples $(\ell_1,\ldots,\ell_n)\times (r_1,\ldots,r_n)$.
2288
This is clearly an isomorphism of lattices.
2289
\end{proof}
2290
2291
Note that the maximal element of $\hour$ (for either diagonal) is given by shifting each element of $(\sigma,\tau)$ by its maximal shift.
2292
The joins and meets of any two elements are also thus given by isomorphism to the product of chains.
2293
For instance, in the case of meets,
2294
\begin{multline*}
2295
(\ell_1,\ldots,\ell_n,r_1,\ldots,r_n)\land (\ell'_1,\ldots,\ell'_n,r'_1,\ldots,r'_n) = \\ (\min\{\ell_1,\ell'_1\},\ldots,\min\{\ell_n,\ell'_n\},\min\{r_1,r'_1\},\ldots,\min\{r_n,r'_n\})
2296
\end{multline*}
2297
For clear examples of the Hasse diagrams corresponding to our lattices, we direct the reader to \cref{ex:shift translation by theta}, and \cref{fig: Inversion and lattice counter example}.
2298
We note that \cref{fig: Inversion and lattice counter example} also illustrates that there is no general relation between the shift lattice structure and inversions sets.
2299
In particular, the shift lattices are not sub-lattices of the facial weak order (discussed in \cref{sec:facial-weak-order}), as $24|13$ and $234|1$ are incomparable.
2300
2301
\begin{figure}
2302
{\footnotesize
2303
\begin{tikzcd}[column sep=tiny]
2304
&
2305
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2306
\node[anchor=east] (1) at (-1.5, -1) {$12$};
2307
\node[anchor=east] (2) at (-1.5, -2) {$3$};
2308
\node[anchor=east] (3) at (-1.5, -3) {$4$};
2309
%
2310
\node[anchor=west](4) at (1.5, -1) {$234$};
2311
\node[anchor=west](5) at (1.5, -2) {$1$};
2312
%
2313
\draw[thick] (1.east) -- (4.west);
2314
\draw[thick] (1.east) -- (5.west);
2315
\draw[thick] (2.east) -- (4.west);
2316
\draw[thick] (3.east) -- (4.west);
2317
\end{tikzpicture}
2318
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2319
\node[anchor=east, circle, draw=black, thick] (1) at (-1, -1) {$1$};
2320
\node[anchor=east, circle, draw=black, thick] (2) at (-1, -3) {$2$};
2321
\node[anchor=west, circle, draw=black, thick] (3) at (1, -1) {$3$};
2322
\node[anchor=west, circle, draw=black, thick] (4) at (1, -3) {$4$};
2323
%
2324
\draw[thick, green] (1) -- (3);
2325
\draw[thick, green] (1) -- (4);
2326
\draw[thick, green] (2) -- (3);
2327
\draw[thick, green] (2) -- (4);
2328
\draw[thick, green] (3) -- (4);
2329
%
2330
\draw[ultra thick, blue, dotted] (1) -- (2);
2331
\draw[ultra thick, blue, dotted] (1) -- (3);
2332
\draw[ultra thick, blue, dotted] (1) -- (4);
2333
\end{tikzpicture}
2334
\\
2335
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2336
\node[anchor=east] (1) at (-1.5, -1) {$12$};
2337
\node[anchor=east] (2) at (-1.5, -2) {$3$};
2338
\node[anchor=east] (3) at (-1.5, -3) {$4$};
2339
%
2340
\node[anchor=west](4) at (1.5, -1) {$23$};
2341
\node[anchor=west](5) at (1.5, -2) {$14$};
2342
%
2343
\draw[thick] (1.east) -- (4.west);
2344
\draw[thick] (1.east) -- (5.west);
2345
\draw[thick] (2.east) -- (4.west);
2346
\draw[thick] (3.east) -- (5.west);
2347
\end{tikzpicture}
2348
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2349
\node[anchor=east, circle, draw=black, thick] (1) at (-1, -1) {$1$};
2350
\node[anchor=east, circle, draw=black, thick] (2) at (-1, -3) {$2$};
2351
\node[anchor=west, circle, draw=black, thick] (3) at (1, -1) {$3$};
2352
\node[anchor=west, circle, draw=black, thick] (4) at (1, -3) {$4$};
2353
%
2354
\draw[thick, green] (1) -- (3);
2355
\draw[thick, green] (1) -- (4);
2356
\draw[thick, green] (2) -- (3);
2357
\draw[thick, green] (2) -- (4);
2358
\draw[thick, green] (3) -- (4);
2359
%
2360
\draw[ultra thick, blue, dotted] (1) -- (2);
2361
\draw[ultra thick, blue, dotted] (1) -- (3);
2362
\end{tikzpicture}
2363
\arrow[ur]
2364
&
2365
&
2366
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2367
\node[anchor=east] (1) at (-1.5, -1) {$12$};
2368
\node[anchor=east] (2) at (-1.5, -2) {$3$};
2369
\node[anchor=east] (3) at (-1.5, -3) {$4$};
2370
%
2371
\node[anchor=west](4) at (1.5, -1) {$24$};
2372
\node[anchor=west](5) at (1.5, -2) {$13$};
2373
%
2374
\draw[thick] (1.east) -- (4.west);
2375
\draw[thick] (1.east) -- (5.west);
2376
\draw[thick] (2.east) -- (5.west);
2377
\draw[thick] (3.east) -- (4.west);
2378
\end{tikzpicture}
2379
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2380
\node[anchor=east, circle, draw=black, thick] (1) at (-1, -1) {$1$};
2381
\node[anchor=east, circle, draw=black, thick] (2) at (-1, -3) {$2$};
2382
\node[anchor=west, circle, draw=black, thick] (3) at (1, -1) {$3$};
2383
\node[anchor=west, circle, draw=black, thick] (4) at (1, -3) {$4$};
2384
%
2385
\draw[thick, green] (1) -- (3);
2386
\draw[thick, green] (1) -- (4);
2387
\draw[thick, green] (2) -- (3);
2388
\draw[thick, green] (2) -- (4);
2389
\draw[thick, green] (3) -- (4);
2390
%
2391
\draw[ultra thick, blue, dotted] (1) -- (2);
2392
\draw[ultra thick, blue, dotted] (1) -- (4);
2393
\draw[ultra thick, blue, dotted] (3) -- (4);
2394
\end{tikzpicture}
2395
\arrow[ul]
2396
\\
2397
&
2398
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2399
\node[anchor=east] (1) at (-1.5, -1) {$12$};
2400
\node[anchor=east] (2) at (-1.5, -2) {$3$};
2401
\node[anchor=east] (3) at (-1.5, -3) {$4$};
2402
%
2403
\node[anchor=west](4) at (1.5, -1) {$2$};
2404
\node[anchor=west](5) at (1.5, -2) {$134$};
2405
%
2406
\draw[thick] (1.east) -- (4.west);
2407
\draw[thick] (1.east) -- (5.west);
2408
\draw[thick] (2.east) -- (5.west);
2409
\draw[thick] (3.east) -- (5.west);
2410
\end{tikzpicture}
2411
\begin{tikzpicture}[xscale=.4,yscale=0.7]
2412
\node[anchor=east, circle, draw=black, thick] (1) at (-1, -1) {$1$};
2413
\node[anchor=east, circle, draw=black, thick] (2) at (-1, -3) {$2$};
2414
\node[anchor=west, circle, draw=black, thick] (3) at (1, -1) {$3$};
2415
\node[anchor=west, circle, draw=black, thick] (4) at (1, -3) {$4$};
2416
%
2417
\draw[thick, green] (1) -- (3);
2418
\draw[thick, green] (1) -- (4);
2419
\draw[thick, green] (2) -- (3);
2420
\draw[thick, green] (2) -- (4);
2421
\draw[thick, green] (3) -- (4);
2422
%
2423
\draw[ultra thick, blue, dotted] (1) -- (2);
2424
\end{tikzpicture}
2425
\arrow[ul, to path= (\tikztostart.210) -- (\tikztotarget.south)]
2426
\arrow[ur, to path= (\tikztostart.330) -- (\tikztotarget.south)]
2427
\end{tikzcd}
2428
}
2429
\caption{The shift lattice $\hour^\SU$ for $v=4|3|1|2$.
2430
Each facet is drawn next to a graph encoding its inversions (\cref{def:inverions}).
2431
If $(i,j) \in J(\sigma)$, then a green edge connects $(i,j)$, and if $(i,j) \in I(\tau)$, then a blue dotted edge connects $(i,j)$.
2432
Consequently, $I((\sigma,\tau))$ is encoded by the presence of both edges, and also the crossings, by \cref{p:crossings}.
2433
}
2434
\label{fig: Inversion and lattice counter example}
2435
\end{figure}
2436
2437
\begin{remark}
2438
As a consequence of \cref{prop:shift lattice}, the facets of the operadic diagonals are disjoint unions of lattices.
2439
However, any lattice $L$ on permutations (such as the weak order) induces a lattice on the facets as follows.
2440
For every $v \in L$, we can substitute the lattice $\hour^\LA$ (or $\hour^\SU$) into the permutation $v$.
2441
In particular, every element which was covered by $v$ is now covered by the minimal element of $\hour^\LA$, and every element which was covering $v$ now covers the maximal element of $\hour^\LA$.
2442
\end{remark}
2443
2444
Given our previously obtained formulae for the number of elements in the diagonal (\cref{subsec:enumerationDiagonalPermutahedra}), and the results of this section, we obtain the following statistics on permutations.
2445
2446
\begin{corollary}
2447
\label{cor:statistics-lattice}
2448
Using the heights of either diagonal,
2449
\begin{align*}
2450
2(n+1)^{n-2} = \sum_{v \in \mathbb{S}_n} \prod_{\rho \in [n]} (\ell_v(\rho)+1)(r_v(\rho)+1)
2451
\end{align*}
2452
Moreover, denoting by $\mathbb{S}_n^{k_1} \subseteq \mathbb{S}_n$ the set of permutations with $k_1$ ascending runs, and consequently $k_2 = n-1-k_1$ descending runs, we have
2453
\begin{align*}
2454
n \binom{n-1}{k_1} (n-k_1)^{k_1-1} (n-k_2)^{k_2-1} = \sum_{v \in \mathbb{S}_n^{k_1}} \prod_{\rho \in [n]} (\ell_v(\rho)+1)(r_v(\rho)+1).
2455
\end{align*}
2456
\end{corollary}
2457
2458
\begin{proof}
2459
This follows directly from \cref{coro:enumerationDiagonalPermutahedra}, with the observation that shifts conserve the number of blocks, and hence the dimensions of the faces.
2460
\end{proof}
2461
2462
%%%%%%%%%%%%%%%
2463
2464
\subsection{Cubical description}
2465
\label{sec:Cubical}
2466
2467
In this section, we recall the cubical definition of the $\SU$ diagonal from~\cite{SaneblidzeUmble-comparingDiagonals} and explicitly relate it to their shift description, using a new proof that exploits the lattice description of the diagonal (\cref{sec:Shift-lattice}).
2468
Then we construct an analogous cubical definition of the $\LA$ diagonal, transferring the cubical formulae via isomorphism.
2469
2470
\subsubsection{The cubical $\SU$ diagonal}
2471
2472
We define inductively a subdivision $\divcube{n-1}^\SU$ of the $(n-1)$-dimensional cube which is combinatorially isomorphic to the permutahedron $\Perm$ (\cref{prop:subdiv cube Combinatorially Isomorphic to perm}).
2473
2474
\begin{construction}
2475
\label{constr:cubicPermutahedron1}
2476
Given a $(n-k)$-dimensional face $\sigma = \sigma_1| \cdots |\sigma_k$ of the $(n-1)$-dimensional permutahedron $\Perm[n]$, we set $n_j \eqdef \card{\sigma_{k-j+1}\cup\dots\cup \sigma_k}$, and define a subdivision $I_\sigma \eqdef I_1 \cup \dots \cup I_k$ of the interval $[0,1]$ by the following formulas
2477
\[
2478
I_j \eqdef
2479
\begin{cases}
2480
\left[0,1 - 2^{-n_j}\right] & \text{ if } j=1, \\
2481
\left[1 - 2^{-n_{j-1}}, 1 - 2^{-n_{j}}\right] & \text{ if } 1 < j < k, \\
2482
\left[1 - 2^{-n_{j-1}},1\right] & \text{ if } j=k .
2483
\end{cases}
2484
\]
2485
Let $\divcube{0}^\SU$ be the $0$-dimensional cube (a point), trivially subdivided by the sole element $1$ of~$\Perm[1]$.
2486
Then, assuming we have constructed the subdivision $\divcube{n-1}^\SU$ of the $(n-1)$-cube, we construct $\divcube{n}^\SU$ as the subdivision of $\divcube{n-1}^\SU \times [0,1]$ given, for each face $\sigma$ of $\divcube{n-1}^\SU$, by the polytopal complex $\sigma \times I_\sigma$.
2487
We label the faces $\sigma \times I$ of the subdivided rectangular prism $\sigma \times I_\sigma$ by the following rule
2488
\begin{align}
2489
\label{eq:sub}
2490
\sigma \times I \eqdef
2491
\begin{cases}
2492
\sigma_1| \cdots |\sigma_k| n+1 & \text{if } I = \{0\}, \\
2493
\sigma_1| \cdots |\sigma_j| n+1 |\sigma_{j+1}| \cdots |\sigma_k & \text{if } I = I_j \cap I_{j+1} \text{ with } 1 \leq j \leq k-1 , \\
2494
n+1|\sigma_1| \cdots |\sigma_k & \text{if } I = \{1\}, \\
2495
\sigma_1| \cdots |\sigma_j \cup \{n+1\}| \cdots |\sigma_k & \text{if } I = I_j \text{ with } 1\leq j \leq k.
2496
\end{cases}
2497
\tag{I}
2498
\end{align}
2499
This defines a subdivision $\divcube{n}^\SU$ of the $n$-cube.
2500
\end{construction}
2501
2502
\cref{fig:cubicPermutahedron1} illustrates this subdivision for the first few dimensions.
2503
We indicate, in bold, the embedding $\divcube{n-1}^\SU\hookrightarrow \divcube{n}^\SU$ induced by the natural embedding $\R^{n-1} \hookrightarrow \R^n$.
2504
Only the vertices of~$\divcube{3}^\SU$ are labelled, but its edges, facets and outer face are all identified with the expected elements of $\Perm[4]$.
2505
%
2506
\begin{figure}[h!]
2507
\centerline{
2508
{\small
2509
\begin{tikzcd}[sep=0.3cm,ampersand replacement=\&]
2510
\mathbf{1|2} \arrow[r,dash, "12"] \& 2|1
2511
\end{tikzcd}
2512
}
2513
$\hookrightarrow$
2514
{\small
2515
\begin{tikzcd}[column sep=0.3cm,ampersand replacement=\&]
2516
3|1|2 \arrow[r,dash, "3|12"] \arrow[d,dash, "13|2"]\& 3|2|1 \arrow[d,dash, "13|2"]\\
2517
1|3|2 \arrow[d,dash, "1|23"] \& 2|3|1 \arrow[d,dash, "2|13"]\\
2518
\mathbf{1|2|3} \arrow[r,dash,thick, "12|3"] \& \mathbf{2|1|3}
2519
\end{tikzcd}
2520
}
2521
$\hookrightarrow$
2522
{\small
2523
\begin{tikzcd}[sep=0.15cm,scale=0.8,ampersand replacement=\&]
2524
\& 4|2|1|3 \arrow[rr,dash] \arrow[dd,dash,dotted] \arrow[dl,dash] \& \& 4|2|3|1 \arrow [dd, dash,dotted] \arrow[rr,dash] \& \& 4|3|2|1 \arrow[dd,dash] \arrow[dl,dash]\\
2525
4|1|2|3 \arrow [rr,dash] \arrow [dd,dash] \& \& 4|1|3|2 \arrow[rr,dash] \arrow[dd,dash] \& \& 4|3|1|2 \arrow[dd,dash] \& \\
2526
\& 2|4|1|3 \arrow [rr,dash,dotted] \arrow[dd,dash,dotted] \& \& 2|4|3|1 \arrow[dd,dash,dotted] \& \& 3|4|2|1 \arrow [dl,dash] \arrow[dd,dash]\\
2527
1|4|2|3 \arrow [rr,dash] \arrow [dd,dash]\& \& 1|4|3|2 \arrow[dd,dash] \& \& 3|4|1|2 \arrow[dd,dash]\\
2528
\& 2|1|4|3 \arrow[dd,dash,dotted] \arrow[dl,dash,dotted] \& \& 2|3|4|1 \arrow [dd, dash,dotted] \arrow [rr, dash,dotted] \& \& 3|2|4|1 \arrow[dd,dash] \\
2529
1|2|4|3 \arrow [dd,dash] \& \& 1|3|4|2 \arrow[rr,dash] \arrow[dd,dash] \& \& 3|1|4|2 \arrow[dd,dash] \& \\
2530
\& \mathbf{2|1|3|4} \arrow [rr,dash,dotted] \arrow [dl,dash,dotted] \& \& \mathbf{2|3|1|4} \arrow [rr,dash,dotted] \& \& \mathbf{3|2|1|4} \arrow [dl,dash] \\
2531
\mathbf{1|2|3|4} \arrow [rr,dash] \& \& \mathbf{1|3|2|4} \arrow [rr,dash] \& \& \mathbf{3|1|2|4} \\
2532
\end{tikzcd}
2533
}
2534
}
2535
\caption{Cubical realizations $\divcube{1}^\SU,\divcube{2}^\SU$ and $\divcube{3}^\SU$ of the permutahedra~$\Perm[2]$, $\Perm[3]$ and $\Perm[4]$, respectively, from \cref{constr:cubicPermutahedron1}.}
2536
\label{fig:cubicPermutahedron1}
2537
\end{figure}
2538
2539
\begin{remark}
2540
\label{rem:coordinates}
2541
A consequence of the construction is that each edge of $\divcube{n}^\SU$ is parallel to one of the canonical basis vectors $e_i$ of $\R^n$, and corresponds to shifting the element $i+1$ of $[n+1]\ssm \{1\}$.
2542
\end{remark}
2543
2544
\begin{proposition}
2545
\label{prop:subdiv cube Combinatorially Isomorphic to perm}
2546
The polytopal complex $\divcube{n}^\SU$ is combinatorially isomorphic to the permutahedron $\Perm[n+1]$.
2547
\end{proposition}
2548
2549
\begin{proof}
2550
By construction it is clear that the faces of $\divcube{n}^\SU$ and $\Perm[n+1]$ are in bijection, and that this bijection preserves the dimension.
2551
It remains to show that this bijection is a poset isomorphism.
2552
Let $\sigma_1 | \ldots | \sigma_i | \sigma_{i+1} | \ldots | \sigma_k \prec \sigma_1 | \ldots | \sigma_i \cup \sigma_{i+1} | \ldots | \sigma_k$ be a covering relation in the face poset of $\Perm[n+1]$.
2553
We need to see that the corresponding faces $F,G$ of $\divcube{n}^\SU$ satisfy $F \prec G$.
2554
From \cref{eq:sub} this clearly holds for lines.
2555
Since any face of $\divcube{n}^\SU$ is a product of lines, the result follows by induction on the dimension of the faces.
2556
\end{proof}
2557
2558
We now unpack how certain properties of $\Perm$ have been encoded in the cubical structure of $\divcube{n}^\SU$.
2559
This will later allow us to construct a cubical formula for the diagonal through maximal pairings of $k$-subdivision cubes of $\divcube{n}^\SU$, which we now introduce.
2560
2561
\begin{definition}
2562
\label{def:Subdivisions}
2563
For $k\geq 0$, a \defn{$k$-subdivision cube} of $\divcube{n}^\SU$ is a union of $k$-faces of $\divcube{n}^\SU$ whose underlying set is a $k$-dimensional rectangular prism.
2564
\end{definition}
2565
2566
An important example of a $k$-subdivision cubes are the $k$-faces of $\divcube{n}^\SU$ (other examples are provided in \cref{ex:subdivision cubes}).
2567
2568
\begin{lemma}
2569
\label{lem:k-subdiv cubes have max/min k faces}
2570
A $k$-subdivision cube has a unique maximal (\resp minimal) vertex with respect to the weak order on permutations.
2571
\end{lemma}
2572
2573
\begin{proof}
2574
By construction, the edges of $\divcube{n}^\SU$ are parallel to the basis vectors of $\R^n$ (\cref{rem:coordinates}), and correspond to inversions on permutations.
2575
Thus, the vector $\b{v}\eqdef(1,\ldots,1)$ induces the weak order on the vertices of $\divcube{n}^\SU$.
2576
Since each $k$-subdivision cube is a rectangular prism whose edges are not perpendicular to $\b{v}$, the scalar product with $\b{v}$ is maximized (\resp minimized) at a unique vertex.
2577
\end{proof}
2578
2579
\begin{definition}
2580
The \defn{maximal (\resp minimal) $k$-face} of a $k$-subdivision cube, with respect to the weak order, is the unique $k$-face in the subdivision cube which contains the maximal (\resp minimal) vertex.
2581
\end{definition}
2582
2583
\begin{construction}
2584
\label{const:unique-sub-cube}
2585
For a $k$-dimensional face $\sigma$ of the cubical permutahedron $\divcube{n}^\SU$, we construct the unique maximal $k$-subdivision cube, with respect to inclusion, whose maximal (\resp minimal) $k$-face with respect to the weak order is $\sigma$.
2586
\end{construction}
2587
2588
We only treat the case for the maximal $k$-face $\sigma$, the minimal face proceeds similarly.
2589
We build the maximal subdivision cubes inductively.
2590
Let $\sigma$ be an edge of $\divcube{n}^\SU$, and let $v$ be its maximal vertex.
2591
Let $\rho \in [n+1]\ssm\{1\}$ be the element shifted by this edge (\cref{rem:coordinates}).
2592
Shifting this element to the right as far as possible ($\rho$ will be shifted all the way to the right, or be blocked by a larger element), we get the desired $1$-subdivision line.
2593
2594
Suppose that we have constructed maximal subdivision cubes up to dimension $k$, and let $\sigma$ be a $(k+1)$-face of $\divcube{n}^\SU$, with maximal vertex $v$.
2595
Consider the $k+1$ elements of $[n]$, which correspond to dimensions spanned by $\sigma$ (\cref{rem:coordinates}), and let $\rho$ be the largest such element.
2596
Let $\sigma_L$ be the $1$-face, with maximal vertex~$v$, whose only non-trivial dimension corresponds to~$\rho$.
2597
From the initial step above, there is a unique maximal $1$-subdivision line $L$ with maximal $1$-face~$\sigma_L$.
2598
Let $\sigma_C$ be the $k$-face, with maximal vertex $v$, spanned by the complement of $\rho$ in $[n+1] \ssm \{1\}$.
2599
By induction, there is a maximal $k$-subdivision cube $C$ with maximal $k$-face $\sigma_C$.
2600
Then, it is clear that the product $L\times C$ defines a $(k+1)$-subdivision cube of $\divcube{n}^\SU$, with maximal vertex~$v$.
2601
Indeed, as $\rho$ is the maximal element corresponding to dimensions of $L\times C$, the faces of $L\times C$ are the $(k+1)$-dimensional rectangular prisms resulting from shifting $\rho$ through the $k$-faces of $C$, as in \cref{eq:sub}.
2602
2603
Finally, $L\times C$ is maximal under inclusion.
2604
If there was a larger $(k+1)$-subdivision cube enveloping $L\times C$, then one of its projections would be a $1$ or $k$-subdivision cube enveloping $L$ or $C$, contradicting the assumption that they are maximal.
2605
This finishes the construction.
2606
2607
\begin{definition}
2608
\label{def:hourglass}
2609
For a vertex $v$ of $\divcube{n}^\SU$, the \defn{hourglass} of $\divcube{n}^\SU$ at $v$ is the maximal pair of subdivision cubes $\hour^\SU$, with respect to inclusion, within the set of all pairs $(C,C')$ of subdivision cubes such that $C$ has maximal vertex $v$, $C'$ has minimal vertex $v$, and $\dim C +\dim C' = n$.
2610
\end{definition}
2611
2612
\begin{figure}[h!]
2613
\begin{center}
2614
{\small
2615
\begin{tikzcd}[sep=0.1cm, scale=0.3]
2616
& 4|2|1|3 \arrow[rr,dash] \arrow[dd,dash,dotted] \arrow[dl,dash] & & 4|2|3|1 \arrow [dd, dash,dotted] \arrow[rr,dash] & & 4|3|2|1 \arrow[dd,dash] \arrow[dl,dash, near end, "\mathbf{\blue{4|3|12}}"']\\
2617
4|1|2|3 \arrow [rr,dash] \arrow [dd,dash] & & 4|1|3|2 \arrow[rr,dash] \arrow[dd,dash] & & \mathbf{\blue{4|3|1|2}} \arrow[dd,dash] & \\
2618
& \red{\mathbf{14|23}} \arrow [rr,dash,dotted] \arrow[dd,dash,dotted] & & 2|4|3|1 \arrow[dd,dash,dotted] & & 3|4|2|1 \arrow [dl,dash] \arrow[dd,dash]\\
2619
1|4|2|3 \arrow [rr,dash] \arrow [dd,dash]& & 1|4|3|2 \arrow[dd,dash] \arrow[rr, phantom, "\blue{\mathbf{134|2}}" description,crossing over] & & 3|4|1|2 \arrow[dd,dash]\\
2620
& 2|1|4|3 \arrow[dd,dash,dotted] \arrow[dl,dash,dotted] & & 2|3|4|1 \arrow [dd, dash,dotted] \arrow [rr, dash,dotted] & & 3|2|4|1 \arrow[dd,dash] \\
2621
1|2|4|3 \arrow [dd,dash] \arrow[rr, phantom, "\red{\mathbf{1|234}}" description,crossing over] & & 1|3|4|2 \arrow[rr,dash] \arrow[dd,dash] & & 3|1|4|2 \arrow[dd,dash] & \\
2622
& 2|1|3|4 \arrow [rr,dash,dotted] \arrow [dl,dash,dotted] & & \red{\mathbf{13|24}} \arrow [rr,dash,dotted] & & 3|2|1|4 \arrow [dl,dash] \\
2623
1|2|3|4 \arrow [rr,dash] & & 1|3|2|4 \arrow [rr,dash] & & 3|1|2|4 \\
2624
\end{tikzcd}
2625
}
2626
\end{center}
2627
\caption{The hourglass~$\hour^\SU$ of $\divcube{3}^\SU$ at~$v = \blue{\mathbf{4|3|1|2}}$.}
2628
\label{fig:hourglass1}
2629
\end{figure}
2630
2631
The following examples are pictured in \cref{fig:hourglass1}.
2632
2633
\begin{example}
2634
\label{ex:subdivision cubes}
2635
The sets of faces~$\{1234\}$, $\{1|234\}$, $\{1|234, 14|23\}$, and $\{1|3|24,1|34|2\}$ are all subdivision cubes of $\divcube{3}$.
2636
In contrast, the sets of faces $\{134|2, 14|23\}$, $\{1|234, 134|2, 14|23\}$, and $\{1|2|34,1|23|4\}$
2637
are not subdivision cubes of $\divcube{3}^\SU$.
2638
For $v = \blue{\mathbf{4|3|1|2}}$, the only $1$-subdivision cube with minimal vertex $v$ is $4|3|12$, and the three $2$-subdivision cubes with maximal vertex $v$ are $\{134|2\}$, $\{13|24, 134|2\}$, $\{ 1|234, 13|24, 14|23, 134|2\}$.
2639
This defines the hourglass $\hour^\SU=\{ 1|234, 13|24, 14|23, 134|2\} \times \{4|3|12\}$ of $\divcube{3}^\SU$ at $v$.
2640
2641
Let us observe that the $\SCP$ corresponding to $v$ is $(\sigma,\tau) \eqdef (\blue{\mathbf{134|2}},\blue{\mathbf{4|3|12}} )$.
2642
The ordered partition $\sigma$ admits three distinct rights shifts, $\red{\mathbf{13|24}}$, $\red{\mathbf{14|23}}$, $\red{\mathbf{1|234}}$, and $\tau$ admits no left shifts.
2643
\cref{thm:cubical-SU} shows that $\hour^\SU$ is generated by all shifts of the $\SCP$ corresponding to $v$.
2644
\end{example}
2645
2646
\begin{theorem}
2647
\label{thm:cubical-SU}
2648
Let $v$ be a vertex of the cubical permutahedron $\divcube{n}^\SU$, and let $(\sigma,\tau)$ be its associated~$\SCP$.
2649
Then, we have
2650
\[
2651
\hour^\SU = \bigcup_{\b{M},\b{N}}R_{\b{M}}(\sigma) \times L_{\b{N}}(\tau) \ ,
2652
\]
2653
where the union is taken over all block-admissible sequences of $\SU$ shifts $\b{M},\b{N}$.
2654
\end{theorem}
2655
2656
\begin{proof}
2657
We prove the result inductively from lines, and consider the case of $\sigma$, $\tau$ proceeds similarly.
2658
Combining \cref{const:unique-sub-cube} with \cref{prop:maximal m-shift formulae}, we have that if $L$ is a maximal $1$-subdivision cube with maximal $1$-face $\sigma$, then its faces are generated by the right $1$-shifts $R_\rho^i$, for $i$ between $0$ and its maximal right height~$r_\rho$ (\cref{def:heights}).
2659
2660
Now consider the unique maximal $(k+1)$-subdivision cube of $\divcube{n}^\SU$ with maximal $(k+1)$-face~$\sigma$.
2661
By \cref{const:unique-sub-cube}, this subdivision cube is given by the product $L\times C$ of a line corresponding to the maximal element $\rho$ being shifted, and a $k$-cube $C$ corresponding to all other elements.
2662
By induction hypothesis, both the line $L$ and the cube $C$ are generated by all block-admissible right shifts from their unique maximal faces $\sigma_L$ and $\sigma_C$.
2663
Moreover, if $\rho$ is in the $i$th block of $\sigma_C$, then $\sigma$ is obtained from~$\sigma_C$ by merging the $i$\ordinal{} and $(i+1)$\ordinalst{} blocks.
2664
2665
On the one hand, the right height of any element being shifted in $C$ is the same as its right height in $L\times C$.
2666
This follows from the inductive description of $\divcube{n}^\SU$ (\cref{eq:sub}): every $k$-face in $C$ has $\rho$ in a singleton block, and as $\rho$ is larger than all other elements it blocks all other shifts.
2667
2668
On the other hand, we know from \cref{const:unique-sub-cube} that the $(k+1)$-faces of $L\times C$ are obtained by weaving $\rho$ through the $k$-faces of~$C$.
2669
Indeed, every $k$-face in $C$ has $\rho$ in a fixed singleton set, and every $k$-face on the opposite side of $L\times C$ has $\rho$ in another fixed singleton set; given \cref{eq:sub}, this final singleton block in any $k$-face of $C$ is either the last block, or is followed by a block containing an element larger than $\rho$.
2670
If we translate this observation back to the $(k+1)$-faces of $L\times C$ that are adjacent to the boundary of $L$, then this corresponds to an equivalent calculation of the right height of $\rho$ in $\sigma$.
2671
2672
Given the lattice description of the diagonal (\cref{prop:shift lattice}), we thus have that $L\times C$ is generated by all block-admissible sequences of right shifts of $\sigma$, which concludes the proof.
2673
\end{proof}
2674
2675
This recovers the formulas \cite[Form.~(1)~\&~(3)]{SaneblidzeUmble-comparingDiagonals}.
2676
2677
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2678
2679
\subsubsection{$\LA$ cubical description}
2680
2681
The $\LA$ diagonal also admits a similar cubical description, which we may quickly induce by isomorphism.
2682
We first define inductively a subdivision $\divcube{n-1}^{\LA}$ of the $(n-1)$-dimensional cube which is combinatorially isomorphic to the permutahedron $\Perm$, analogous to the one from the preceding sections.
2683
2684
\begin{construction}
2685
\label{const:cubical-LA}
2686
Given a $(n-k)$-dimensional face $\sigma = \sigma_1| \cdots |\sigma_k$ of the $(n-1)$-dimensional permutahedron $\Perm[n]$, we set $n_j \eqdef \card{\sigma_{k-j+1}\cup\dots\cup \sigma_k}$, and define a subdivision $I_\sigma \eqdef I_1 \cup \dots \cup I_k$ of the interval $[0,1]$ by the same formulas as in \cref{constr:cubicPermutahedron1}.
2687
2688
Let $\divcube{0}^\LA$ be the $0$-dimensional cube (a point), trivially subdivided by the sole element $1$ of~$\Perm[1]$.
2689
Then, assuming we have constructed the subdivision $\divcube{n-1}^\LA$ of the $(n-1)$-cube, we construct $\divcube{n}^\LA$ as the subdivision of $\divcube{n-1}^\LA \times [0,1]$ given, for each face $\sigma$ of $\divcube{n-1}^\LA$, by the polytopal complex $\sigma \times I_\sigma$.
2690
We label the faces $\sigma \times I$ of the subdivided rectangular prism $\sigma \times I_\sigma$ by the following rule
2691
\begin{align*}
2692
\sigma \times I \eqdef
2693
\begin{cases}
2694
\sigma_1'| \cdots |\sigma_k'| 1 & \text{if } I = \{0\}, \\
2695
\sigma_1'| \cdots |\sigma_j'| 1 |\sigma_{j+1}'| \cdots |\sigma_k' & \text{if } I = I_j \cap I_{j+1} \text{ with } 1 \leq j \leq k-1 , \\
2696
1|\sigma_1'| \cdots |\sigma_k' & \text{if } I = \{1\}, \\
2697
\sigma_1'| \cdots |\sigma_j' \cup \{1\}| \cdots |\sigma_k' & \text{if } I = I_j \text{ with } 1\leq j \leq k ,
2698
\end{cases}
2699
\end{align*}
2700
where each block of $\sigma$ has been renumbered as $\sigma_i' \eqdef \{p+1 \ | \ p \in \sigma_i\}$ for all $1 \leq i \leq k$.
2701
We obtain a subdivision $\divcube{n}^\LA$ of the $n$-cube isomorphic to the permutahedron $\Perm[n+1]$.
2702
\end{construction}
2703
2704
\begin{figure}[h!]
2705
\centerline{
2706
{\small
2707
\begin{tikzcd}[sep=0.3cm,ampersand replacement=\&]
2708
\mathbf{2|1} \arrow[r,dash, "12"] \& 1|2
2709
\end{tikzcd}
2710
}
2711
$\hookrightarrow$
2712
{\small
2713
\begin{tikzcd}[column sep=0.3cm,ampersand replacement=\&]
2714
1|3|2 \arrow[r,dash, "1|23"] \arrow[d,dash, "13|2"]\& 1|2|3 \arrow[d,dash, "13|2"]\\
2715
3|1|2 \arrow[d,dash, "3|12"] \& 2|1|3 \arrow[d,dash, "2|13"]\\
2716
\mathbf{3|2|1} \arrow[r,dash,thick, "23|1"] \& \mathbf{2|3|1}
2717
\end{tikzcd}
2718
}
2719
$\hookrightarrow$
2720
{\small
2721
\begin{tikzcd}[sep=0.15cm,scale=0.8,ampersand replacement=\&]
2722
\& 1|3|4|2 \arrow[rr,dash] \arrow[dd,dash,dotted] \arrow[dl,dash] \& \& 1|3|2|4 \arrow [dd, dash,dotted] \arrow[rr,dash] \& \& 1|2|3|4 \arrow[dd,dash] \arrow[dl,dash]\\
2723
1|4|3|2 \arrow [rr,dash] \arrow [dd,dash] \& \& 1|4|2|3 \arrow[rr,dash] \arrow[dd,dash] \& \& 1|2|4|3 \arrow[dd,dash] \& \\
2724
\& 3|1|4|2 \arrow [rr,dash,dotted] \arrow[dd,dash,dotted] \& \& 3|1|2|4 \arrow[dd,dash,dotted] \& \& 2|1|3|4 \arrow [dl,dash] \arrow[dd,dash]\\
2725
4|1|3|2 \arrow [rr,dash] \arrow [dd,dash]\& \& 4|1|2|3 \arrow[dd,dash] \& \& 2|1|4|3 \arrow[dd,dash]\\
2726
\& 3|4|1|2 \arrow[dd,dash,dotted] \arrow[dl,dash,dotted] \& \& 3|2|1|4 \arrow [dd, dash,dotted] \arrow [rr, dash,dotted] \& \& 2|3|1|4 \arrow[dd,dash] \\
2727
4|3|1|2 \arrow [dd,dash] \& \& 4|2|1|3 \arrow[rr,dash] \arrow[dd,dash] \& \& 2|4|1|3 \arrow[dd,dash] \& \\
2728
\& \mathbf{3|4|2|1} \arrow [rr,dash,dotted] \arrow [dl,dash,dotted] \& \& \mathbf{3|2|4|1} \arrow [rr,dash,dotted] \& \& \mathbf{2|3|4|1} \arrow [dl,dash] \\
2729
\mathbf{4|3|2|1} \arrow [rr,dash] \& \& \mathbf{4|2|3|1} \arrow [rr,dash] \& \& \mathbf{2|4|3|1} \\
2730
\end{tikzcd}
2731
}
2732
}
2733
\caption{Cubical realizations of the permutahedra~$\Perm[2]$, $\Perm[3]$ and $\Perm[4]$ from \cref{const:cubical-LA}.}
2734
\label{fig:cubicPermutahedron2}
2735
\end{figure}
2736
2737
\cref{fig:cubicPermutahedron2} illustrates $\divcube{n}^{\LA}$ in dimensions $1$ to $3$.
2738
We have indicated in bold the embedding ${\divcube{n-1}^{\LA}\hookrightarrow \divcube{n}^{\LA}}$ induced by the natural inclusions $\R^n \hookrightarrow \R^{n+1}$.
2739
2740
The appropriate base definitions for the $\LA$ diagonal of $k$-subdivision cubes (\cref{def:Subdivisions}) and hourglasses ${\hour}$ (\cref{def:hourglass}) are the same as in the $\SU$ case.
2741
The proof that $\hour^\LA $ is indeed combinatorially isomorphic to $\Perm[n+1]$ proceeds similarly to \cref{prop:subdiv cube Combinatorially Isomorphic to perm}.
2742
2743
Recall from \cref{subsec:isos-LA-SU} the face poset isomorphism of the permutahedra which acts on~$A_1| \cdots |A_k$, by replacing each block $A_j$ by the block $r(A_j)\eqdef\set{n-i+1}{i \in A_j}$.
2744
We have the analogue of \cref{thm:cubical-SU} for the $\LA$ diagonal.
2745
2746
\begin{theorem}
2747
\label{prop:LA-cubical}
2748
Let $v$ be a vertex of the cubical permutahedron $\divcube{n}$, and let $(\sigma,\tau)$ be its associated~$\SCP$.
2749
Then, we have
2750
\[
2751
\hour^\LA = \bigcup_{\b{M},\b{N}}L_{\b{M}}(\sigma) \times R_{\b{N}}(\tau) \ ,
2752
\]
2753
where the union is taken over all block-admissible sequences of $\LA$ shifts $\b{M},\b{N}$.
2754
\end{theorem}
2755
2756
\begin{proof}
2757
It is straightforward to see that the involution $r$ induces a $k$-subdivision cube isomorphism $r:\divcube{n}^{\SU}\to \divcube{n}^{\LA}$ between the cubical subdivisions of \cref{constr:cubicPermutahedron1} and \cref{const:cubical-LA}, which sends the hourglass $\hour^\SU$ to the hourglass $\hour[r(v)]^\LA$.
2758
By \cref{thm:cubical-SU}, we know that $\hour^\SU$ is generated by $\SU$ shifts; we want to deduce that $\hour[r(v)]^\LA$ is generated by $\LA$ shifts.
2759
First, we observe that the diagram
2760
\begin{center}
2761
\begin{tikzcd}
2762
\SCP \arrow[r,"t(r\times r)",leftrightarrow] \arrow[d,leftrightarrow] & \SCP \arrow[d,leftrightarrow]\\
2763
\mathbb{S}_n \arrow[r,"r"',leftrightarrow] & \mathbb{S}_n ,
2764
\end{tikzcd}
2765
\end{center}
2766
where $t$ is the permutation of the two factors, and the vertical arrows are the bijection between $\SCP$s and permutations (\cref{def:strong-complementary-pairs}), is commutative.
2767
Thus, if we start from a $\SCP$ and consider its associated $\SU$ hourglass $\hour^\SU$, applying the subdivision cube isomorphism $r$ or applying the map $t(r \times r)$ both give the $\LA$ hourglass $\hour[r(v)]^\LA$.
2768
Combining this with the fact that the map $t(r\times r):\LAD\to \SUD$ is an isomorphism between the $\LA$ and $\SU$ diagonal (\cref{rem:Alternate Isomorphism}) which preserves left and right shifts (\cref{prop:trr is an isomorphism of shifts}), we obtain the desired result.
2769
\end{proof}
2770
2771
\begin{figure}[h!]
2772
\centerline{
2773
{\small
2774
\begin{tikzcd}[sep=0.1cm, scale=0.3, ampersand replacement=\&]
2775
\& 4|2|1|3 \arrow[rr,dash] \arrow[dd,dash,dotted] \arrow[dl,dash] \& \& 4|2|3|1 \arrow [dd, dash,dotted] \arrow[rr,dash] \& \& 4|3|2|1 \arrow[dd,dash] \arrow[dl,dash, near end, "\mathbf{\blue{4|3|12}}"']\\
2776
4|1|2|3 \arrow [rr,dash] \arrow [dd,dash] \& \& 4|1|3|2 \arrow[rr,dash] \arrow[dd,dash] \& \& \mathbf{\blue{4|3|1|2}} \arrow[dd,dash] \& \\
2777
\& \red{\mathbf{14|23}} \arrow [rr,dash,dotted] \arrow[dd,dash,dotted] \& \& 2|4|3|1 \arrow[dd,dash,dotted] \& \& 3|4|2|1 \arrow [dl,dash] \arrow[dd,dash]\\
2778
1|4|2|3 \arrow [rr,dash] \arrow [dd,dash]\& \& 1|4|3|2 \arrow[dd,dash] \arrow[rr, phantom, "\blue{\mathbf{134|2}}" description,crossing over] \& \& 3|4|1|2 \arrow[dd,dash]\\
2779
\& 2|1|4|3 \arrow[dd,dash,dotted] \arrow[dl,dash,dotted] \& \& 2|3|4|1 \arrow [dd, dash,dotted] \arrow [rr, dash,dotted] \& \& 3|2|4|1 \arrow[dd,dash] \\
2780
1|2|4|3 \arrow [dd,dash] \arrow[rr, phantom, "\red{\mathbf{1|234}}" description,crossing over] \& \& 1|3|4|2 \arrow[rr,dash] \arrow[dd,dash] \& \& 3|1|4|2 \arrow[dd,dash] \& \\
2781
\& 2|1|3|4 \arrow [rr,dash,dotted] \arrow [dl,dash,dotted] \& \& \red{\mathbf{13|24}} \arrow [rr,dash,dotted] \& \& 3|2|1|4 \arrow [dl,dash] \\
2782
1|2|3|4 \arrow [rr,dash] \& \& 1|3|2|4 \arrow [rr,dash] \& \& 3|1|2|4 \\
2783
\end{tikzcd}
2784
}
2785
$\overset{r}{\longrightarrow}$
2786
{\small
2787
\begin{tikzcd}[sep=0.1cm, scale=0.3, ampersand replacement=\&]
2788
\& 1|3|4|2 \arrow[rr,dash] \arrow[dd,dash,dotted] \arrow[dl,dash] \& \& 1|3|2|4 \arrow [dd, dash,dotted] \arrow[rr,dash] \& \& 1|2|3|4 \arrow[dd,dash] \arrow[dl,dash, near end, "\mathbf{\blue{1|2|34}}"']\\
2789
1|4|3|2 \arrow [rr,dash] \arrow [dd,dash] \& \& 1|4|2|3 \arrow[rr,dash] \arrow[dd,dash] \& \& \mathbf{\blue{1|2|4|3}} \arrow[dd,dash] \& \\
2790
\& \red{\mathbf{14|23}} \arrow [rr,dash,dotted] \arrow[dd,dash,dotted] \& \& 3|1|2|4 \arrow[dd,dash,dotted] \& \& 2|1|3|4 \arrow [dl,dash] \arrow[dd,dash]\\
2791
4|1|3|2 \arrow [rr,dash] \arrow [dd,dash]\& \& 4|1|2|3 \arrow[dd,dash] \arrow[rr, phantom, "\blue{\mathbf{124|3}}" description,crossing over] \& \& 2|1|4|3 \arrow[dd,dash]\\
2792
\& 3|4|1|2 \arrow[dd,dash,dotted] \arrow[dl,dash,dotted] \& \& 3|2|1|4 \arrow [dd, dash,dotted] \arrow [rr, dash,dotted] \& \& 2|3|1|4 \arrow[dd,dash] \\
2793
4|3|1|2 \arrow [dd,dash] \arrow[rr, phantom, "\red{\mathbf{4|123}}" description,crossing over] \& \& 4|2|1|3 \arrow[rr,dash] \arrow[dd,dash] \& \& 2|4|1|3 \arrow[dd,dash] \& \\
2794
\& 3|4|2|1 \arrow [rr,dash,dotted] \arrow [dl,dash,dotted] \& \& \red{\mathbf{24|13}} \arrow [rr,dash,dotted] \& \& 2|3|4|1 \arrow [dl,dash] \\
2795
4|3|2|1 \arrow [rr,dash] \& \& 4|2|3|1 \arrow [rr,dash] \& \& 2|4|3|1 \\
2796
\end{tikzcd}
2797
}
2798
}
2799
\caption{The isomorphism~$r$ applied to the $\SU$ cubical subdivision from \cref{fig:hourglass1}.}
2800
\label{fig:hourglass2}
2801
\end{figure}
2802
2803
\begin{example}
2804
Applying the isomorphism $r$ to \cref{ex:subdivision cubes} yields the illustration of \cref{fig:hourglass2}.
2805
As $r$ is an isomorphism of $k$-subdivision cubes, the maximal pair of $\SU$ subdivision cubes has been mapped to a maximal pair of $\LA$ subdivision cubes.
2806
Note that the maximal $\SU$ $2$-subdivision cube with maximal vertex $4|3|1|2$ was generated by $\SU$ right shifts.
2807
Its image under $r$ is the maximal $\LA$ $2$-subdivision cube with minimal vertex $1|2|4|3$, and it is generated by $\LA$ right shifts.
2808
\end{example}
2809
2810
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2811
2812
\subsection{Matrix description}
2813
\label{subsec:matrix}
2814
2815
For completeness, we recall from \cite{SaneblidzeUmble} the matrix description of facets of the $\SU$ diagonal.
2816
We previously saw that $\SCP$s and permutations are in bijection (\cref{def:strong-complementary-pairs}).
2817
There is also a third equivalent way to encode this data, the \defn{step matrices} of \cite[Def. 6]{SaneblidzeUmble}.
2818
Given a permutation, one defines its associated step matrix by starting in the bottom left corner, writing increasing sequences vertically and decreasing sequences horizontally one after the other, leaving all other entries $0$.
2819
See \cref{fig:step-matrix}.
2820
2821
\begin{figure}[h!]
2822
\begin{center}
2823
\raisebox{3em}{$6|5|2|4|7|1|3$}
2824
$\quad \quad$
2825
\begin{tikzpicture}[scale=.7]
2826
\node[anchor=east] (1) at (-1.5, -1) {$256$};
2827
\node[anchor=east] (2) at (-1.5, -2) {$4$};
2828
\node[anchor=east] (3) at (-1.5, -3) {$17$};
2829
\node[anchor=east] (4) at (-1.5, -4) {$3$};
2830
%
2831
\node[anchor=west] (5) at (1.5, -1) {$6$};
2832
\node[anchor=west] (6) at (1.5, -2) {$5$};
2833
\node[anchor=west] (7) at (1.5, -3) {$247$};
2834
\node[anchor=west] (8) at (1.5, -4) {$13$};
2835
%
2836
\draw[thick] (1.east) -- (5.west);
2837
\draw[thick] (1.east) -- (6.west);
2838
\draw[thick] (1.east) -- (7.west);
2839
\draw[thick] (2.east) -- (7.west);
2840
\draw[thick] (3.east) -- (7.west);
2841
\draw[thick] (3.east) -- (8.west);
2842
\draw[thick] (4.east) -- (8.west);
2843
\end{tikzpicture}
2844
$\quad \quad$
2845
\raisebox{3em}{
2846
$
2847
\begin{blockarray}{ccccc}
2848
& \sigma_1 & \sigma_2 & \sigma_3 & \sigma_4 \\
2849
\begin{block}{c[cccc]}
2850
\tau_4 & & & 1 & 3 \\
2851
\tau_3 & 2 & 4 & 7 & \\
2852
\tau_2 & 5 & & & \\
2853
\tau_1 & 6 & & & \\
2854
\end{block}
2855
\end{blockarray}
2856
$
2857
}
2858
\end{center}
2859
\caption{A permutation, its associated $\SCP$, and their step matrix.}
2860
\label{fig:step-matrix}
2861
\end{figure}
2862
Given a matrix $A$ whose only non-zero entries are the elements $[n]$, let $\sigma_i(A)$ denote the non-zero entries of the $i$\ordinal{} column, and $\tau_j(A)$ the non-zero entries of the $(r-j+1)$\ordinalst{} row, where $r$ is the number of rows of $A$. See the labelling in \cref{fig:step-matrix}.
2863
With this identification, the definitions of the shift operators can be translated directly:
2864
the right shift operator $R_{M}$ shifts the elements of a subset $M \subset \sigma_i(A)$ one column to the right, or one row up, replacing only elements of value $0$, and leaving $0$ elements in their wake, while the left shift operator $L_{M}$ shifts the elements of $M$ to the left, or down one row.
2865
2866
The fact that the shifts avoid collisions with other elements is a consequence of their admissibility.
2867
Recall from \cref{def:movable-subsets}, that a right $\SU$ $1$-shift $R_M$ is \defn{block-admissible} if $\min \sigma_i \notin M$ and $\min M > \max \sigma_{i+1}$, and that admissible sequence of right shifts proceed in increasing order (\cref{def:SU-admissible}).
2868
2869
\begin{proposition}
2870
Admissible sequences of matrix shift operators are well-defined.
2871
\end{proposition}
2872
2873
\begin{proof}
2874
We verify the claim that the admissible sequences of matrix shift operators never replace non-zero elements.
2875
It is straightforward to show that this is true when a shift operator is applied to a $\SCP$ $(\sigma,\tau)$.
2876
From here we proceed inductively.
2877
We assume that all prior shift operators have been well-defined, and we then check that applying another admissible shift operator is also well-defined.
2878
Suppose that an admissible right shift $R_{M}$ is not well-defined, as it tries to move a value $m$ into a non-zero matrix entry $n$.
2879
Then, $n$ must have been placed into that column by a prior left shift operator $L_{N_j}$, and consequently $n>\min N_j > \max \tau_{j-1}> m$.
2880
However, $n\in \sigma_{i+1}$ so $\max \sigma_{i+1}>n>m>\min M_i $ implies that $M$ is not block-admissible, a contradiction.
2881
\end{proof}
2882
2883
\begin{figure}[h!]
2884
\centerline{
2885
\begin{tikzcd}[column sep = 0.5cm, ampersand replacement=\&]
2886
\begin{bmatrix}
2887
& & 1 & 3 \\
2888
2 & 4 & 7 & \\
2889
5 & & & \\
2890
6 & & & \\
2891
\end{bmatrix}
2892
\arrow[r,"R^{\SU}_{56}"]
2893
\&
2894
\begin{bmatrix}
2895
& & 1 & 3 \\
2896
2 & 4 & 7 & \\
2897
& 5 & & \\
2898
& 6 & & \\
2899
\end{bmatrix}
2900
\arrow[r,"L^{\SU}_7"]
2901
\&
2902
\begin{bmatrix}
2903
& & 1 & 3 \\
2904
2 & 4 & & \\
2905
& 5 & 7 & \\
2906
& 6 & & \\
2907
\end{bmatrix}
2908
\arrow[r,"R^{\SU}_7"]
2909
\&
2910
\begin{bmatrix}
2911
& & 1 & 3 \\
2912
2 & 4 & & \\
2913
& 5 & & 7 \\
2914
& 6 & & \\
2915
\end{bmatrix}
2916
\\
2917
\begin{bmatrix}
2918
& & & 2 \\
2919
& & & 3 \\
2920
& 1 & 4 & 6 \\
2921
5 & 7 & & \\
2922
\end{bmatrix}
2923
\arrow[r,"R^{\LA}_{23}"]
2924
\&
2925
\begin{bmatrix}
2926
& & 2 & \\
2927
& & 3 & \\
2928
& 1 & 4 & 6 \\
2929
5 & 7 & & \\
2930
\end{bmatrix}
2931
\arrow[r,"L^{\LA}_1"]
2932
\&
2933
\begin{bmatrix}
2934
& & 2 & \\
2935
& 1 & 3 & \\
2936
& & 4 & 6 \\
2937
5 & 7 & & \\
2938
\end{bmatrix}
2939
\arrow[r,"R^{\LA}_1"]
2940
\&
2941
\begin{bmatrix}
2942
& & 2 & \\
2943
1 & & 3 & \\
2944
& & 4 & 6 \\
2945
5 & 7 & & \\
2946
\end{bmatrix}
2947
\end{tikzcd}
2948
}
2949
\caption{Matrix shifts under the isomorphism $t(r \times r)$ between the $\LA$ and $\SU$ diagonals.}
2950
\label{fig:matrix-shifts}
2951
\end{figure}
2952
2953
\defn{Configuration matrices} \cite[Def. 7]{SaneblidzeUmble} are the matrices corresponding to $\SCP$s and those generated by admissible sequences of shifts.
2954
Consequently, they are in bijection with the facets of the $\SU$ diagonal.
2955
The translation of these results for the $\LA$ diagonal is clear.
2956
One can use the isomorphism $t(r\times r)$ as in the following example.
2957
2958
\begin{example}
2959
\label{ex:matrix shifts}
2960
The first row of \cref{fig:matrix-shifts} contains a sequence of admissible $\SU$ subset shifts applied to the matrix encoding of the SCP $256|4|17|3\times 6|5|147|13$.
2961
The second row is the image of these shifts under the isomorphism $t(r\times r)$.
2962
Note that the shifts of this example are also isomorphic to those of \cref{ex:shift translation by theta}, under the isomorphism $(rs\times rs)$.
2963
\end{example}
2964
2965