Path: blob/main/Talk GDRIM/GDRIM_Oger.tex
1016 views
% 45 min d'exposé en français (questions incluses)12% ajouter arbres au début34\documentclass[slidetop,11pt %, aspectratio=16105]{beamer}67\usepackage[T1]{fontenc}8\usepackage[utf8]{inputenc}9\usepackage[ english,french]{babel}10\usepackage{lmodern}11\usepackage{aeguill}12\usepackage{graphics,graphicx}13\usepackage{tikz}14\usetikzlibrary{shapes, backgrounds,fit,shapes, arrows,chains,matrix,positioning,scopes, calc}15\usepackage{tikz-cd}16\usepackage{ulem}17\usepackage{frcursive}18\usepackage{array}19\usepackage{amsthm, amssymb}20\usepackage{stmaryrd}21\usepackage{todonotes}22\usepackage{xcolor, colortbl}23\usepackage{bussproofs}24\usepackage{fontawesome}25\newcolumntype{M}[1]{>{\centering\arraybackslash}m{#1}}26\usetikzlibrary{trees,shapes, positioning}27\usepackage{listings}28\lstset{language=caml}2930%\newtheorem{thm}{Theorème}31%\newtheorem{lem}[theorem]{Lemme}32%\newtheorem{cor}[theorem]{Corollaire}33%\newtheorem{prop}[theorem]{Proposition}34%\theoremstyle{definition}35%\newtheorem{conj}[theorem]{Conjecture}36%\newtheorem{defi}[theorem]{Définition}37%\newtheorem{exple}[theorem]{Exemples}3839%% En anglais40\newtheorem{thm}{Theorem}41\newtheorem{lem}[theorem]{Lemma}42\newtheorem{cor}[theorem]{Corollary}43\newtheorem{prop}[theorem]{Proposition}44\theoremstyle{definition}45\newtheorem{conj}[theorem]{Conjecture}46\newtheorem{defi}[theorem]{Definition}47\newtheorem{exple}[theorem]{Examples}484950\usepackage{xargs}51\definecolor{Bleu}{HTML}{3333b3}52%\beamertemplatetransparentcovered5354\usetheme{Boadilla}5556\setbeamertemplate{navigation symbols}{} % enlever les symboles de navigation5758\setbeamercolor{section in head/foot}{bg = white, fg=blue}59% aussi section in toc6061\usepackage{xkeyval}6263% couleurs été64%\newcommand{\coula}{6DA3B9}65%\newcommand{\coulb}{D0B080}66%\newcommand{\coulc}{254D62}67%\newcommand{\could}{8D7050}6869% couleurs Cetraro70%\newcommand{\could}{590C3E}71%\newcommand{\coula}{8C2066}72%\newcommand{\coulc}{D94E81}73%\newcommand{\coulb}{BF920B}7475% couleurs automne76% D4AB3177%E4712778%BC322C79% 00FA9A8081%\newcommand{\coula}{D4AB31}82%\newcommand{\coulb}{E47127}83%\newcommand{\coulc}{BC322C}84%\newcommand{\could}{00FA9A}85%86% couleurs printemps87%\newcommand{\coula}{5AC1C9}88%\newcommand{\coulb}{DE5D83}89%\newcommand{\coulc}{9966CC}90%\newcommand{\could}{6698FF}9192% couleurs Peps93\newcommand{\coula}{0785F2}94\newcommand{\coulb}{F29F05}95\newcommand{\coulc}{F21313}96\newcommand{\could}{E6F21F}979899100\definecolor{part1}{HTML}{\coula}101\definecolor{part2}{HTML}{\coulb}102\definecolor{part3}{HTML}{\coulc}103\definecolor{part4}{HTML}{\could}104105106107108\definecolor{newSec}{HTML}{\coula}109\definecolor{mauve}{HTML}{9966CC}% rouge foncé D4AB31110\definecolor{rose}{HTML}{DE5D83}111\definecolor{bleu}{HTML}{5AC1C9}%orange %{6698FF} % E47127112\definecolor{vert}{HTML}{BC322C} %vert : 5AC1C9 % 3CB371113\definecolor{quatre}{HTML}{F4C2C2}\setbeamercolor{title}{fg=newSec}114\setbeamercolor{structure}{fg=newSec}115116\tikzset{117flower/.pic = {118\shade[ball color = newSec!40,top color=newSec!10, bottom color=newSec!30] (0,0) circle (0.25cm);119\draw[newSec] (0,0) circle (0.25cm);120\draw[newSec] (-0.25,0) arc (180:360:0.25 and 0.075);121\draw[dashed, newSec] (0.25,0) arc (0:180:0.25 and 0.075);122123124},125}126127\tikzset{128centre/.pic = {129\draw[white] (0,0.2) rectangle(0.1,-0.2);130% \filldraw[fill=newSec!70, draw=black!30, rotate=\a] (0.2,0) ellipse(0.2 and 0.075);131\filldraw[draw=newSec!70, top color=newSec!10, bottom color=newSec!30] (0,0) circle(0.1);132},133}134135\setbeamertemplate{section in head/foot}{%136\if\insertsectionheadnumber1137%flower, fill=pink, draw=purple138\tikz\node[circle, fill=newSec!50, draw=newSec]{\textcolor{white}{\thesection}};139%\tikz\pic{flower};140\else141\tikz\node[circle, fill=newSec!50, draw=newSec]{\textcolor{white}{\thesection}};142%\tikz\pic{flower};143\fi144}145146\setbeamertemplate{section in head/foot shaded}{%147\if\insertsectionheadnumber1148% \tikz\node[circle, fill=white, draw=gray!30]{\hskip.3cm};149\tikz\pic{centre};150\else151% \tikz\node[circle, fill=white, draw=gray!30] {\hskip.3cm};152\tikz\pic{centre};153\fi154}155156\setbeamertemplate{headline}157{158\leavevmode%159\hbox{%160\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex,center]{section in head/foot}%161\usebeamerfont{section in head/foot}162\vspace*{-0.5cm}163\hspace{9.5cm} %%% ici pour modifier la position des sections dans le titre164\insertsectionnavigationhorizontal{1cm}{\hskip.1cm}{}165\end{beamercolorbox}}%166\vskip0pt%167}168169170\setbeamertemplate{footline}{}171172\AtBeginSection[]{ % un petit sommaire au début de chaque section173{174\if\thesection1175\definecolor{newSec}{HTML}{\coula}176\else \if\thesection2177\definecolor{newSec}{HTML}{\coulb}178\else \if\thesection3179\definecolor{newSec}{HTML}{\coulc} % 3CB371180\else \if\thesection4181\definecolor{newSec}{HTML}{\could}182\else183\definecolor{newSec}{RGB}{0,255,0}184\fi185\fi186\fi187\fi188\setbeamercolor{title}{fg=newSec}189\setbeamercolor{frametitle}{fg=newSec}190\setbeamercolor{structure}{fg=newSec}191192193\setbeamercolor{background canvas}{bg=newSec}194\setbeamercolor{section in head/foot}{bg = newSec}195\setbeamertemplate{headline}196{197\leavevmode%198\hbox{%199\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex,center]{section in head/foot}%200\end{beamercolorbox}}%201\vskip0pt%202}203204\begin{frame}{}205206\begin{center}207\textcolor{white}{208\if\thesection1209{ \LARGE \nameref{sect1}}210\else \if\thesection2211{ \LARGE \nameref{sect2}}212\else \if\thesection3213{ \LARGE \nameref{sect3}}214\else \if\thesection4215{ \LARGE \nameref{sect4}}216\fi217\fi218\fi219\fi}220\end{center}221\end{frame}222223\setbeamercolor{background canvas}{bg=}224\setbeamercolor{section in head/foot}{bg = white}225226% \begin{frame}{Outline}227% \small \tableofcontents[currentsection, hidesubsections, subsubsectionstyle=hide]228% \addtocounter{framenumber}{-1}229% \end{frame}230}231\if\thesection1232\definecolor{newSec}{HTML}{D4AB31}233\else \if\thesection2234\definecolor{newSec}{HTML}{DE5D83}235\else \if\thesection3236\definecolor{newSec}{HTML}{E47127}237\else \if\thesection4238\definecolor{newSec}{HTML}{F4C2C2}239\else240\definecolor{newSec}{RGB}{0,255,0}241\fi242\fi243\fi244\fi245246\if\thesection1247\definecolor{newSec}{HTML}{\coula}248\else \if\thesection2249\definecolor{newSec}{HTML}{\coulb}250\else \if\thesection3251\definecolor{newSec}{HTML}{\coulc}252\else \if\thesection4253\definecolor{newSec}{HTML}{\could}254\else255\definecolor{newSec}{RGB}{0,255,0}256\fi257\fi258\fi259\fi260261\setbeamercolor{title}{fg=newSec}262\setbeamercolor{frametitle}{fg=newSec}263\setbeamercolor{structure}{fg=newSec}264}265266\setlength{\columnseprule}{0.4pt}267268%\usepackage{marvosym}269270271272\usepackage{mathabx}273274% ----------- Contenu de la page de titre --------275\title{\LARGE De la diagonale du permutoèdre aux arbres k-colorés : \\ \Large une histoire de partitions et d'arbres \vspace{-0.5cm}}276277\institute[IMAG - UMontpellier]{\includegraphics[height=1.5cm]{imag.png}278\hspace{1cm}279\includegraphics[height=1.5cm]{UM.png}280\vspace{-0.3cm}281}282283\begin{document}284285\author[B. Delcroix-Oger]{\textcolor{part2}{Bérénice Delcroix-Oger} \\286\footnotesize287\vspace{0.5cm}288joint work with289\begin{tabular}{l}290\textcolor{part2}{Matthieu Josuat-Vergès} (IRIF), \\291\textcolor{part2}{ Guillaume Laplante-Anfossi} (Univ. Melbourne), \\292\textcolor{part2}{ Vincent Pilaud} (LIX),\\293\textcolor{part2}{ Kurt Stoeckl} (Univ. Melbourne)294\end{tabular}295\vspace{-0.3cm}296}297298\date{299\begin{columns}300\begin{column}{0.9\textwidth}301\centering302\textcolor{part3}{JNIM 2023 \\ \url{https://oger.perso.math.cnrs.fr/expose/GDRIM_Oger.pdf}}303\end{column}304\begin{column}{0.1\textwidth}305\includegraphics[height=1.5cm]{lienExpose.pdf}306\end{column}307\end{columns}308}309310\addtocounter{framenumber}{-1}311312{\setbeamertemplate{footline}{}313\setbeamertemplate{headline}{}314\frame{\titlepage}315316317318319320\begin{frame}{Motivation}321\begin{tikzpicture}322\node (a) {algebraic problem : study the diagonal of the permutohedron};323\only<1>{324\node[below=20pt of a] (b) {geometric problem : counting regions in an hyperplane arrangement};325\node[below=20pt of b] (c) {combinatorics problem : counting "good" tuples of partitions};326\node[below=20pt of c] (d) {graph problem : counting trees with colored edges};}327\only<2->{328\node[below=20pt of a, part1, draw] (b) {geometric problem : counting regions in an hyperplane arrangement};329\node[below=20pt of b, part2, draw] (c) {combinatorics problem : counting "good" tuples of partitions};330\node[below=20pt of c, part3, draw] (d) {graph problem : counting trees with colored edges};}331\draw[->] (a)--(b);332\draw[->] (b)--(c);333\draw[->] (c)--(d);334\onslide<2->{335\node[fit=(b)(c)(d), draw]{};} % rectangle around b,c and d336\end{tikzpicture}337338\onslide<3->{\begin{center}339\footnotesize{(Yes, combinatorics is mainly counting)}}340\end{center}341\end{frame}342343\begin{frame}{Outline}344\small \tableofcontents[hidesubsections, subsubsectionstyle=hide]345\addtocounter{framenumber}{-1}346\end{frame} }347348\begin{frame}{Trailer}349\begin{center}350\begin{tabular}{ccc}351\includegraphics[height=3cm]{braidFan.pdf}352&\includegraphics[height=3cm]{diagTer.pdf}353&\includegraphics[height=3cm]{diagonalPermutahedronGuillaume.png} \\354\footnotesize \copyright V. Pilaud & &\footnotesize \copyright G. Laplante-Anfossi355\end{tabular}356\begin{center}357\resizebox{0.6\textwidth}{!}{358\begin{tikzpicture}359\node (min) at (0,0){360\begin{tikzpicture}[scale=0.3, inner sep=1pt]361\node[draw, circle] (1p){1};362\node[draw, circle, right=5pt of 1p](3p){2};363\node[draw, circle, right=5pt of 3p](2p){3};364\end{tikzpicture}};365\node[above left=1cm of min.north] (3) {366\begin{tikzpicture}[scale=0.3, inner sep=1pt]367\node[draw, circle] (1p){2};368\node[draw, circle, above=5pt of 1p](3p){3};369\node[draw, circle, right=5pt of 1p](2p){1};370\draw[very thick, blue] (1p)--(3p);371\end{tikzpicture}};372\node[above right=1cm of min.north] (4) {373\begin{tikzpicture}[scale=0.3, inner sep=1pt]374\node[draw, circle] (1p){1};375\node[draw, circle, above=5pt of 1p](3p){3};376\node[draw, circle, right=5pt of 1p](2p){2};377\draw[very thick, red] (1p)--(3p);378\end{tikzpicture}};379\node[left=0.5cm of 3] (2) {380\begin{tikzpicture}[scale=0.3, inner sep=1pt]381\node[draw, circle] (1p){1};382\node[draw, circle, above=5pt of 1p](3p){2};383\node[draw, circle, right=5pt of 1p](2p){3};384\draw[very thick, blue] (1p)--(3p);385\end{tikzpicture}};386\node[left=0.5cm of 2] (1) {387\begin{tikzpicture}[scale=0.3, inner sep=1pt]388\node[draw, circle] (1p){1};389\node[draw, circle, above=5pt of 1p](3p){3};390\node[draw, circle, right=5pt of 1p](2p){2};391\draw[very thick, blue] (1p)--(3p);392\end{tikzpicture}};393\node[right=0.5cm of 4] (5) {394\begin{tikzpicture}[scale=0.3, inner sep=1pt]395\node[draw, circle] (1p){1};396\node[draw, circle, above=5pt of 1p](3p){2};397\node[draw, circle, right=5pt of 1p](2p){3};398\draw[very thick, red] (1p)--(3p);399\end{tikzpicture}};400\node[right=0.5cm of 5] (6) {401\begin{tikzpicture}[scale=0.3, inner sep=1pt]402\node[draw, circle] (1p){2};403\node[draw, circle, above=5pt of 1p](3p){3};404\node[draw, circle, right=5pt of 1p](2p){1};405\draw[very thick, red] (1p)--(3p);406\end{tikzpicture}};407\node[above=2cm of 1] (15) {408\begin{tikzpicture}[scale=0.3, inner sep=1pt]409\node[draw, circle] (1p){1};410\node[draw, circle, above left=5pt of 1p.north](2p){2};411\node[draw, circle, above right=5pt of 1p.north](3p){3};412\draw[very thick, blue] (1p)--(3p);413\draw[very thick, red] (1p)--(2p);414\end{tikzpicture}};415\node[left=0.5cm of 15] (123) {416\begin{tikzpicture}[scale=0.3, inner sep=1pt]417\node[draw, circle] (1p){1};418\node[draw, circle, above left=5pt of 1p.north](2p){2};419\node[draw, circle, above right=5pt of 1p.north](3p){3};420\draw[very thick, blue] (1p)--(3p);421\draw[very thick, blue] (1p)--(2p);422\end{tikzpicture}};423\node[right=0.5cm of 15] (26) {424\begin{tikzpicture}[scale=0.3, inner sep=1pt]425\node[draw, circle] (1p){1};426\node[draw, circle, above=5pt of 1p.north](2p){2};427\node[draw, circle, above=5pt of 2p.north](3p){3};428\draw[very thick, red] (2p)--(3p);429\draw[very thick, blue] (1p)--(2p);430\end{tikzpicture}};431\node[right=0.5cm of 26] (34) {432\begin{tikzpicture}[scale=0.3, inner sep=1pt]433\node[draw, circle] (1p){1};434\node[draw, circle, above=5pt of 1p.north](2p){3};435\node[draw, circle, above=5pt of 2p.north](3p){2};436\draw[very thick, blue] (2p)--(3p);437\draw[very thick, red] (1p)--(2p);438\end{tikzpicture}};439\node[right=0.5cm of 34] (24) {440\begin{tikzpicture}[scale=0.3, inner sep=1pt]441\node[draw, circle] (1p){1};442\node[draw, circle, above left=5pt of 1p.north](2p){2};443\node[draw, circle, above right=5pt of 1p.north](3p){3};444\draw[very thick, red] (1p)--(3p);445\draw[very thick, blue] (1p)--(2p);446\end{tikzpicture}};447\node[right=0.5cm of 24] (35) {448\begin{tikzpicture}[scale=0.3, inner sep=1pt]449\node[draw, circle] (1p){1};450\node[draw, circle, above=5pt of 1p.north](2p){2};451\node[draw, circle, above=5pt of 2p.north](3p){3};452\draw[very thick, blue] (2p)--(3p);453\draw[very thick, red] (1p)--(2p);454\end{tikzpicture}};455\node[right=0.5cm of 35] (16) {456\begin{tikzpicture}[scale=0.3, inner sep=1pt]457\node[draw, circle] (1p){1};458\node[draw, circle, above=5pt of 1p.north](2p){3};459\node[draw, circle, above=5pt of 2p.north](3p){2};460\draw[very thick, red] (2p)--(3p);461\draw[very thick, blue] (1p)--(2p);462\end{tikzpicture}};463\node[right=0.5cm of 16] (456) {464\begin{tikzpicture}[scale=0.3, inner sep=1pt]465\node[draw, circle] (1p){1};466\node[draw, circle, above left=5pt of 1p.north](2p){2};467\node[draw, circle, above right=5pt of 1p.north](3p){3};468\draw[very thick, red] (1p)--(3p);469\draw[very thick, red] (1p)--(2p);470\end{tikzpicture}};471\draw (min)--(1);472\draw (min)--(2);473\draw (min)--(3);474\draw (min)--(4);475\draw (min)--(5);476\draw (min)--(6);477\draw (123.south)--(1.north);478\draw (123.south)--(2.north);479\draw (123.south)--(3.north);480\draw (456.south)--(4.north);481\draw (456.south)--(5.north);482\draw (456.south)--(6.north);483\draw (2.north)--(26.south)--(6.north);484\draw (2.north)--(24.south)--(4.north);485\draw (1.north)--(15.south)--(5.north);486\draw (1.north)--(16.south)--(6.north);487\draw (3.north)--(34.south)--(4.north);488\draw (3.north)--(35.south)--(5.north);489\end{tikzpicture}}490491492\end{center}493\end{center}494\end{frame}495496497\section{The weak order and the permutohedron}\label{sect1}498499\begin{frame}{Poset=partially ordered set}500\vspace{-0.5cm}501\begin{center}502\begin{tikzpicture}503\node (back) at (0,0){\includegraphics[width=12cm]{bureau.jpg}};504\draw<2->[line width=5pt] (1,0.5) circle (1.5cm);505\draw<2->[line width=5pt, -round cap] (0, -0.5)--(-1.5,-2);506\end{tikzpicture}507\end{center}508\end{frame}509510\begin{frame}{First example of poset}511\vspace{-0.5cm}512\begin{center}513\begin{tikzpicture}[inner sep=0.15cm]514\node (back) at (0,0){\includegraphics[width=12cm]{books.jpg}};515\onslide<2->{516\node[draw, circle, newSec, fill=newSec] (0) at(0,-3.2) {};517\node[draw, circle, newSec, fill=newSec] (1) at(1,0) {};518\node[draw, circle, newSec, fill=newSec] (2) at(0.1,0) {};519\node[draw, circle, newSec, fill=newSec] (3) at(-0.6,0) {};520\node[draw, circle, newSec, fill=newSec] (4) at(-1.2,0) {};521\node[draw, circle, newSec, fill=newSec] (5) at(-1.6,0) {};522\node[draw, circle, newSec, fill=newSec] (6) at(-2,0) {};523\node[draw, circle, newSec, fill=newSec] (7) at(-2.7,0) {};524\node[draw, circle, newSec, fill=newSec] (8) at(1.5,0) {};525\node[draw, circle, newSec, fill=newSec] (9) at(2,0) {};526\node[draw, circle, newSec, fill=newSec] (10) at(2.5,0) {};527\node[draw, circle, newSec, fill=newSec] (11) at(0.1,3.7) {};528\node[draw, circle, newSec, fill=newSec] (12) at(0.5,2.9) {};529\node[draw, circle, newSec, fill=newSec] (13) at(0,2.4) {};530\draw[white, fill=white] (2,-3.5)rectangle(5.8,-2);531\node[draw, circle, newSec, fill=newSec] (leg1) at(2.5,-2.5) {};532\node[right=1pt of leg1, anchor=west] (leg2) {= element};533\onslide<3->{534\draw[line width=5pt, part2] (2.3,-3)--(2.7,-3);535\node[anchor=west] at (2.75,-3) {= cover relation};}536\onslide<3->{\draw[line width=5pt, part2] (11)--(12)--(13);}537\onslide<5->{538\foreach \i in {1,2,...,10}539{540\draw[line width=5pt, part2] (0)--(\i);541}}542\onslide<4->{543\foreach \i in {4,6,10,8,9}544{545\draw[line width=5pt, part2] (13)--(\i);546}}}547\end{tikzpicture}548\end{center}549\end{frame}550551\begin{frame}{First main example : Weak order $W_n$}552\begin{itemize}553\item To raise in the order, $\ldots ab \ldots \rightarrow \ldots ba\ldots$, with $a<b$554\end{itemize}555\begin{center}556\begin{tikzpicture}557\only<1>{\node (123) at (0,0){123};}558\only<2,3>{\node (123) at (0,0){\textcolor{newSec}{12}3};}559\only<4,5>{\node (123) at (0,0){1\textcolor{newSec}{23}};}560\only<6->{\node (123) at (0,0){123};}561\only<3>{562\node[above left=1cm of 123.north] (213){\textcolor{newSec}{21}3};563\draw[newSec] (123)--(213);}564\only<4,5, 9->{\node[above left=1cm of 123.north] (213){213};}565\only<6,7>{\node[above left=1cm of 123.north] (213){2\textcolor{newSec}{13}};}566\only<8->{\node[above left=1cm of 123.north] (213){2{13}};}567\only<4->{\draw (123)--(213);}568\only<5>{569\node[above right=1cm of 123.north] (132){1\textcolor{newSec}{32}};570\draw[newSec] (123)--(132);571}572\only<6-10,12->{573\node[above right=1cm of 123.north] (132){132};574\draw (123)--(132);575}576\only<10,11>{\node[above right=1cm of 123.north] (132){\textcolor{newSec}{13}2};577\draw (123)--(132);578}579\only<7>{580\node[above=1cm of 213.north] (231){2\textcolor{newSec}{31}};581\draw[newSec] (231)--(213);582}583\only<8>{584\node[above=1cm of 213.north] (231){\textcolor{newSec}{23}1};585}586\only<9->{587\node[above=1cm of 213.north] (231){{23}1};588}589\only<8->{590\draw (231)--(213);591}592\only<9>{593\node[above right=1cm of 231.north] (321){\textcolor{newSec}{32}1};594\draw[newSec] (231)--(321);595}596\only<10,11, 13->{597\node[above right=1cm of 231.north] (321){321};598}599\only<12>{600\node[above right=1cm of 231.north] (321){3\textcolor{newSec}{21}};601}602\only<10->{\draw (231)--(321);603}604\only<11>{605\node[above=1cm of 132.north] (312){\textcolor{newSec}{31}2};606\draw[newSec] (132)--(312);607}608\only<12>{609\node[above=1cm of 132.north] (312){3\textcolor{newSec}{12}};610\draw (132)--(312);611}612\only<13->{613\node[above=1cm of 132.north] (312){312};614\draw (132)--(312);615}616\only<12>{\draw[newSec] (312)--(321);}617\only<13->{\draw (312)--(321);}618\end{tikzpicture}619\only<14->{620\includegraphics[height=5cm]{w4.pdf}621}622\end{center}623624\end{frame}625626\begin{frame}{The permutohedron = polytope with vertices labelled by permutation and edges given by the weak order}627\centering628\only<1>{629\includegraphics[height=5cm]{w4.pdf}}630\only<2->{631\includegraphics[height=5cm]{permcol.pdf}}632\includegraphics[height=5cm]{Permutoèdre.pdf}633634\onslide<3->{635\begin{alertblock}{Short quizz :}636How many vertices does the permutohedron have ?\onslide<3->{ \textcolor{red}{$n!$} !$\leftarrow$ \footnotesize Exclamation point}637638\onslide<4->{\normalsize How many faces of dimension $n-k$ does the permutohedron have ?} \onslide<4->{\textcolor{red}{$k!S_2(n,k)$ = nb of ordered partitions in k parts of $\{1, \ldots, n\}$}}639\end{alertblock}}640\end{frame}641642\begin{frame}{Labelling of the faces of the permutohedron}643\only<1>{644\begin{center}645\begin{tikzpicture}646\node (123) at (0,0) {1|2|3};647\node[above left=1cm of 123] (132) {1|3|2};648\node[above right=1cm of 123] (213) {2|1|3};649\node[above=1cm of 132] (312) {3|1|2};650\node[above=1cm of 213] (231) {2|3|1};651\node[above right=1cm of 312] (321) {3|2|1};652\draw (123) edge (132);653\draw (123) edge (213);654\draw (132) edge (312);655\draw (213) edge (231);656\draw (231) edge (321);657\draw (312) edge (321);658\end{tikzpicture}659\end{center}}660661\only<2>{\begin{center}662\includegraphics[height=5.5cm]{labelHex.pdf}663\end{center}}664665\only<3>{666\begin{center}667\includegraphics[height=6cm]{labelHextab.pdf}668\end{center}}669670\end{frame}671672673\begin{frame}{Hyperplane arrangement (Thank you Sylvie !)}674Hyperplane arrangement = set of intersecting affine subspaces of codimension $1$675676677678\begin{center}679\includegraphics{arr.pdf}\includegraphics[height=5cm]{braidFan.pdf}680\end{center}681\begin{flushright}682\footnotesize \copyright V. Pilaud683\end{flushright}684\end{frame}685686\begin{frame}{Polytope and hyperplane arrangement}687\begin{center}688\includegraphics[height=5cm]{braidFan.pdf}689\includegraphics[height=5cm]{Permutoèdre.pdf}690\end{center}691\footnotesize \copyright V. Pilaud692\normalsize693\begin{block}{WYMR}694Number of faces of dimension $k$ = number of regions of dimension $n-k$ \textcolor{part2}{(linked with Möbius numbers of the intersection poset)}695\end{block}696\end{frame}697698699\section{How can we count regions of an hyperplane arrangement ?}\label{sect2}700701\begin{frame}{Intersection poset}702\begin{defi}703\textcolor{newSec}{Intersection poset} = Poset of intersections of hyperplanes ordered by (reverse) inclusion704\end{defi}705706\begin{center}707\begin{columns}708\begin{column}{0.5\textwidth}709\centering710\begin{tikzpicture}[scale=0.7]711\coordinate (A) at (0:2);712\coordinate (B) at (60:2);713\coordinate (C) at (120:2);714\coordinate (D) at (180:2);715\coordinate (E) at (240:2);716\coordinate (F) at (300:2);717\draw[part1, very thick] (A)--(D);718\draw[part2, very thick] (B)--(E);719\draw[part4, very thick] (C)--(F);720\end{tikzpicture}721\end{column}722\begin{column}{0.5\textwidth}723\begin{tikzpicture}724\node (min) at (0,0){};725\node[above=1cm of min] (2) {726\begin{tikzpicture}[scale=0.3]727\coordinate (A) at (0:2);728\coordinate (B) at (60:2);729\coordinate (C) at (120:2);730\coordinate (D) at (180:2);731\coordinate (E) at (240:2);732\coordinate (F) at (300:2);733%\draw[part1, very thick] (A)--(D);734\draw[part2, very thick] (B)--(E);735%\draw[part4, very thick] (C)--(F);736\end{tikzpicture}737};738\node[left=1cm of 2] (1) {739\begin{tikzpicture}[scale=0.3]740\coordinate (A) at (0:2);741\coordinate (B) at (60:2);742\coordinate (C) at (120:2);743\coordinate (D) at (180:2);744\coordinate (E) at (240:2);745\coordinate (F) at (300:2);746\draw[part1, very thick] (A)--(D);747%\draw[part2, very thick] (B)--(E);748%\draw[part4, very thick] (C)--(F);749\end{tikzpicture}};750\node[right=1cm of 2] (3) {751\begin{tikzpicture}[scale=0.3]752\coordinate (A) at (0:2);753\coordinate (B) at (60:2);754\coordinate (C) at (120:2);755\coordinate (D) at (180:2);756\coordinate (E) at (240:2);757\coordinate (F) at (300:2);758%\draw[part1, very thick] (A)--(D);759%\draw[part2, very thick] (B)--(E);760\draw[part4, very thick] (C)--(F);761\end{tikzpicture}};762\node[above=1cm of 2] (max) {763\begin{tikzpicture}[scale=0.3]764\coordinate (A) at (0:2);765\coordinate (B) at (60:2);766\coordinate (C) at (120:2);767\coordinate (D) at (180:2);768\coordinate (E) at (240:2);769\coordinate (F) at (300:2);770\draw[part1, very thick] (A)--(D);771\draw[part2, very thick] (B)--(E);772\draw[part4, very thick] (C)--(F);773\end{tikzpicture}};774\draw (min)--(1);775\draw (min)--(2);776\draw (min)--(3);777\draw (max)--(1);778\draw (max)--(2);779\draw (max)--(3);780\end{tikzpicture}781\end{column}782\end{columns}783\end{center}784\end{frame}785786\begin{frame}{Intersection poset : Another more complicated example}787\begin{defi}788\textcolor{newSec}{Intersection poset} = Poset of intersections of hyperplanes ordered by (reverse) inclusion789\end{defi}790791\begin{center}792\begin{columns}793\begin{column}{0.3\textwidth}794\centering795\includegraphics[width=\textwidth]{arr.pdf}796\end{column}797\begin{column}{0.7\textwidth}798\resizebox{\textwidth}{!}{799\begin{tikzpicture}800\node (min) at (0,0){};801\node[above left=1cm of min.north] (3) {802\begin{tikzpicture}[scale=0.3]803\coordinate (A) at (0:2);804\coordinate (B) at (60:2);805\coordinate (C) at (120:2);806\coordinate (D) at (180:2);807\coordinate (E) at (240:2);808\coordinate (F) at (300:2);809%\draw[part1, very thick] (A)--(D);810\draw[part2, very thick] (B)--(E);811%\draw[part4, very thick] (C)--(F);812\end{tikzpicture}};813\node[above right=1cm of min.north] (4) {814\begin{tikzpicture}[scale=0.3]815\coordinate (A) at (0:2);816\coordinate (B) at (60:2);817\coordinate (C) at (120:2);818\coordinate (D) at (180:2);819\coordinate (E) at (240:2);820\coordinate (F) at (300:2);821\draw[white, very thick] (B)--(E);822\draw[white, very thick] (C)--(F);823\draw[teal, very thick] (A)--(D);824\end{tikzpicture}};825\node[left=0.5cm of 3] (2) {826\begin{tikzpicture}[scale=0.3]827\coordinate (A) at (0:2);828\coordinate (B) at (60:2);829\coordinate (C) at (120:2);830\coordinate (D) at (180:2);831\coordinate (E) at (240:2);832\coordinate (F) at (300:2);833\draw[white, very thick] (A)--(D);834\draw[white, very thick] (B)--(E);835\draw[part4, very thick] (C)--(F);836\end{tikzpicture}};837\node[left=0.5cm of 2] (1) {838\begin{tikzpicture}[scale=0.3]839\coordinate (A) at (0:2);840\coordinate (B) at (60:2);841\coordinate (C) at (120:2);842\coordinate (D) at (180:2);843\coordinate (E) at (240:2);844\coordinate (F) at (300:2);845\draw[white, very thick] (B)--(E);846\draw[white, very thick] (C)--(F);847\draw[part1, very thick] (A)--(D);848\end{tikzpicture}};849\node[right=0.5cm of 4] (5) {850\begin{tikzpicture}[scale=0.3]851\coordinate (A) at (0:2);852\coordinate (B) at (60:2);853\coordinate (C) at (120:2);854\coordinate (D) at (180:2);855\coordinate (E) at (240:2);856\coordinate (F) at (300:2);857\draw[white, very thick] (A)--(D);858\draw[white, very thick] (B)--(E);859\draw[green, very thick] (C)--(F);860\end{tikzpicture}};861\node[right=0.5cm of 5] (6) {862\begin{tikzpicture}[scale=0.3]863\coordinate (A) at (0:2);864\coordinate (B) at (60:2);865\coordinate (C) at (120:2);866\coordinate (D) at (180:2);867\coordinate (E) at (240:2);868\coordinate (F) at (300:2);869\draw[white, very thick] (A)--(D);870\draw[white, very thick] (C)--(F);871\draw[red, very thick] (B)--(E);872\end{tikzpicture}};873\node[above=2cm of 1] (15) {874\begin{tikzpicture}[scale=0.3]875\coordinate (A) at (0:2);876\coordinate (B) at (60:2);877\coordinate (C) at (120:2);878\coordinate (D) at (180:2);879\coordinate (E) at (240:2);880\coordinate (F) at (300:2);881\draw[part1, very thick] (A)--(D);882%\draw[part2, very thick] (B)--(E);883\draw[green, very thick] (C)--(F);884\end{tikzpicture}};885\node[left=0.5cm of 15] (123) {886\begin{tikzpicture}[scale=0.3]887\coordinate (A) at (0:2);888\coordinate (B) at (60:2);889\coordinate (C) at (120:2);890\coordinate (D) at (180:2);891\coordinate (E) at (240:2);892\coordinate (F) at (300:2);893\draw[part1, very thick] (A)--(D);894\draw[part2, very thick] (B)--(E);895\draw[part4, very thick] (C)--(F);896\end{tikzpicture}897};898\node[right=0.5cm of 15] (26) {899\begin{tikzpicture}[scale=0.3]900\coordinate (A) at (0:2);901\coordinate (B) at (60:2);902\coordinate (C) at (120:2);903\coordinate (D) at (180:2);904\coordinate (E) at (240:2);905\coordinate (F) at (300:2);906%\draw[part1, very thick] (A)--(D);907\draw[red, very thick] (B)--(E);908\draw[part4, very thick] (C)--(F);909\end{tikzpicture}};910\node[right=0.5cm of 26] (34) {911\begin{tikzpicture}[scale=0.3]912\coordinate (A) at (0:2);913\coordinate (B) at (60:2);914\coordinate (C) at (120:2);915\coordinate (D) at (180:2);916\coordinate (E) at (240:2);917\coordinate (F) at (300:2);918\draw[teal, very thick] (A)--(D);919\draw[part2, very thick] (B)--(E);920%\draw[part4, very thick] (C)--(F);921\end{tikzpicture}};922\node[right=0.5cm of 34] (24) {923\begin{tikzpicture}[scale=0.3]924\coordinate (A) at (0:2);925\coordinate (B) at (60:2);926\coordinate (C) at (120:2);927\coordinate (D) at (180:2);928\coordinate (E) at (240:2);929\coordinate (F) at (300:2);930\draw[teal, very thick] (A)--(D);931%\draw[part2, very thick] (B)--(E);932\draw[part4, very thick] (C)--(F);933\end{tikzpicture}};934\node[right=0.5cm of 24] (35) {935\begin{tikzpicture}[scale=0.3]936\coordinate (A) at (0:2);937\coordinate (B) at (60:2);938\coordinate (C) at (120:2);939\coordinate (D) at (180:2);940\coordinate (E) at (240:2);941\coordinate (F) at (300:2);942%\draw[part1, very thick] (A)--(D);943\draw[part2, very thick] (B)--(E);944\draw[green, very thick] (C)--(F);945\end{tikzpicture}};946\node[right=0.5cm of 35] (16) {947\begin{tikzpicture}[scale=0.3]948\coordinate (A) at (0:2);949\coordinate (B) at (60:2);950\coordinate (C) at (120:2);951\coordinate (D) at (180:2);952\coordinate (E) at (240:2);953\coordinate (F) at (300:2);954\draw[part1, very thick] (A)--(D);955\draw[red, very thick] (B)--(E);956%\draw[part4, very thick] (C)--(F);957\end{tikzpicture}};958\node[right=0.5cm of 16] (456) {959\begin{tikzpicture}[scale=0.3]960\coordinate (A) at (0:2);961\coordinate (B) at (60:2);962\coordinate (C) at (120:2);963\coordinate (D) at (180:2);964\coordinate (E) at (240:2);965\coordinate (F) at (300:2);966\draw[teal, very thick] (A)--(D);967\draw[red, very thick] (B)--(E);968\draw[green, very thick] (C)--(F);969\end{tikzpicture}};970\draw (min)--(1);971\draw (min)--(2);972\draw (min)--(3);973\draw (min)--(4);974\draw (min)--(5);975\draw (min)--(6);976\draw (123.south)--(1.north);977\draw (123.south)--(2.north);978\draw (123.south)--(3.north);979\draw (456.south)--(4.north);980\draw (456.south)--(5.north);981\draw (456.south)--(6.north);982\draw (2.north)--(26.south)--(6.north);983\draw (2.north)--(24.south)--(4.north);984\draw (1.north)--(15.south)--(5.north);985\draw (1.north)--(16.south)--(6.north);986\draw (3.north)--(34.south)--(4.north);987\draw (3.north)--(35.south)--(5.north);988\end{tikzpicture}}989\end{column}990\end{columns}991\end{center}992\end{frame}993994\begin{frame}{Möbius numbers}995\begin{defi}996\begin{center}997\textcolor{newSec}{Möbius function: }$\mu(x,x)=1$ and $\mu(x,y)=-\sum_{x\leq z < y} \mu(x,z) $998\end{center}999\end{defi}1000\begin{center}1001\only<2>{1002\vspace{2cm}1003\Large \textcolor{newSec}{Just like a game on an oriented graph !}}1004\normalsize1005\resizebox{\textwidth}{!}{1006\onslide<3->{1007\vspace{1cm}1008\begin{tikzpicture}1009\node (min) at (0,0) {$0_{\Pi_n}:=\{1\}\{2\}\{3\}$};1010\node[above=10pt of min] (2) {$\{1,3\}\{2\}$};1011\node[left=80pt of 2] (1) {$\{1\}\{2,3\}$};1012\node[right=80pt of 2] (3) {$\{1,2\}\{3\}$};1013\node[above=10pt of 2] (max) {$\{1,2,3\}$};1014\foreach \i in {1,2,3}1015{\draw (min)--(\i)--(max);}1016\onslide<4->{\node[right=2pt of min, newSec] {$\mu(0_{\Pi_n},\_)=1$};}1017\onslide<5->{\node[right=2pt of 1, newSec] {$\mu(0_{\Pi_n},\_)=-1$};}1018\onslide<6->{\node[right=2pt of 2, newSec] {$\mu(0_{\Pi_n},\_)=-1$};1019\node[right=5pt of 3, newSec] {$\mu(0_{\Pi_n},\_)=-1$};}1020\onslide<7->{\node[right=5pt of max, newSec] (res){$\mu(0_{\Pi_n},\_)=2$};1021\node[part3, right=10pt of res, anchor=west] (txt) {Möbius number};1022\draw[->, newSec] (txt)--(res);1023}1024\end{tikzpicture}}}1025\end{center}1026\end{frame}10271028\begin{frame}{Zaslavsky's theorem}10291030Let $\mathcal{A}$ be an hyperplane arrangement and $\mathcal{I}$ be its intersection poset.1031\begin{thm}[Zaslavsky, 75]1032\begin{equation*}1033\text{number of $k$-faces } = \sum_{\substack{ I \leq J \in \mathcal{I} \\ \operatorname{dim}(I)=k}} |\mu(I,J)|1034\end{equation*}1035\end{thm}103610371038\begin{center}1039\begin{columns}1040\begin{column}{0.5\textwidth}1041\centering1042\begin{tikzpicture}1043\coordinate (A) at (0:2);1044\coordinate (B) at (60:2);1045\coordinate (C) at (120:2);1046\coordinate (D) at (180:2);1047\coordinate (E) at (240:2);1048\coordinate (F) at (300:2);1049\draw[part1, very thick] (A)--(D);1050\draw[part2, very thick] (B)--(E);1051\draw[part4, very thick] (C)--(F);1052\draw[very thick] (30:1)--(90:1)--(150:1)--(210:1)--(270:1)--(330:1)--cycle;1053\end{tikzpicture}1054\end{column}1055\begin{column}{0.5\textwidth}1056\centering1057\begin{tikzpicture}1058\node (min) at (0,0) {};1059\node[above=10pt of min] (2) {\begin{tikzpicture}[scale=0.3]1060\coordinate (A) at (0:2);1061\coordinate (B) at (60:2);1062\coordinate (C) at (120:2);1063\coordinate (D) at (180:2);1064\coordinate (E) at (240:2);1065\coordinate (F) at (300:2);1066%\draw[part1, very thick] (A)--(D);1067\draw[part2, very thick] (B)--(E);1068%\draw[part4, very thick] (C)--(F);1069\end{tikzpicture}1070};1071\node[left=20pt of 2] (1) {\begin{tikzpicture}[scale=0.3]1072\coordinate (A) at (0:2);1073\coordinate (B) at (60:2);1074\coordinate (C) at (120:2);1075\coordinate (D) at (180:2);1076\coordinate (E) at (240:2);1077\coordinate (F) at (300:2);1078\draw[part1, very thick] (A)--(D);1079%\draw[part2, very thick] (B)--(E);1080%\draw[part4, very thick] (C)--(F);1081\end{tikzpicture}};1082\node[right=20pt of 2] (3) {\begin{tikzpicture}[scale=0.3]1083\coordinate (A) at (0:2);1084\coordinate (B) at (60:2);1085\coordinate (C) at (120:2);1086\coordinate (D) at (180:2);1087\coordinate (E) at (240:2);1088\coordinate (F) at (300:2);1089%\draw[part1, very thick] (A)--(D);1090%\draw[part2, very thick] (B)--(E);1091\draw[part4, very thick] (C)--(F);1092\end{tikzpicture}};1093\node[above=10pt of 2] (max) {\begin{tikzpicture}[scale=0.3]1094\coordinate (A) at (0:2);1095\coordinate (B) at (60:2);1096\coordinate (C) at (120:2);1097\coordinate (D) at (180:2);1098\coordinate (E) at (240:2);1099\coordinate (F) at (300:2);1100\draw[part1, very thick] (A)--(D);1101\draw[part2, very thick] (B)--(E);1102\draw[part4, very thick] (C)--(F);1103\end{tikzpicture}};1104\foreach \i in {1,2,3}1105\draw (min)--(\i)--(max);1106\node[right=1pt of min, newSec] {$1$};1107\node[right=1pt of 1, newSec] {$-1$};1108\node[right=1pt of 2, newSec] {$-1$};1109\node[right=1pt of 3, newSec] {$-1$};1110\node[right=1pt of max, newSec] (res){$2$};1111\end{tikzpicture}1112\end{column}1113\end{columns}1114\end{center}11151116\end{frame}111711181119\begin{frame}{In this talk : $\ell$ copies of the braid arrangement}1120\begin{defi}1121The \textcolor{newSec}{braid arrangement} is the hyperplane arrangement whose hyperplane satisfy equations1122\begin{equation*}1123H_{i,j}=\{x \in \mathbb{R}^n| x_i=x_j\}1124\end{equation*}1125\end{defi}11261127\begin{columns}1128\begin{column}{0.5\textwidth}1129\centering1130\begin{tikzpicture}[scale=0.7]1131\coordinate (A) at (0:2);1132\coordinate (B) at (60:2);1133\coordinate (C) at (120:2);1134\coordinate (D) at (180:2);1135\coordinate (E) at (240:2);1136\coordinate (F) at (300:2);1137\draw[part1, very thick] (A)--(D);1138\draw[part2, very thick] (B)--(E);1139\draw[part4, very thick] (C)--(F);1140\end{tikzpicture}1141\end{column}1142\begin{column}{0.5\textwidth}1143\includegraphics[width=0.7\textwidth]{arr.pdf}1144\end{column}1145\end{columns}114611471148\end{frame}11491150\begin{frame}{Intersection poset of the braid arrangement : the partition poset $\Pi_n$}1151\textcolor{newSec}{Partitions} of a set $V$ :1152\begin{equation*}1153\{V_1, \ldots, V_k\} \models V \Leftrightarrow V= \bigsqcup_{i=1}^k V_i, V_i\cap V_j= \emptyset \text{ for } i \neq j1154\end{equation*}11551156Partial order on set partitions of a set $V$:1157\begin{equation*}1158\textcolor{part2}{\{V'_1, \ldots, V'_p\}} \leq \textcolor{part1}{\{V_1, \ldots, V_k\}} \Leftrightarrow \textcolor{part2}{\forall i \in \{1,p\}}, \textcolor{part1}{\exists j \in \{1,k\}} \text{ s.t. } \textcolor{part2}{V'_i} \subseteq \textcolor{part1}{V_j}1159\end{equation*}1160\onslide<2->{1161\begin{figure}[h!]1162\begin{center}1163\scalebox{0.7}1164{\begin{tikzpicture}[scale=0.9]1165\node[draw, thick, rounded corners] (max) at (0,-5. 5) {$\{1\}\{2\}\{3\}\{4\}$};1166\node[draw, thick, rounded corners, purple] (12) at (-7.5,-4) {$\{1, 2\}\{3\}\{4\}$};1167\node[draw, thick, rounded corners, blue] (13) at (-4.5,-4) {$\{1, 3\}\{2\}\{4\}$};1168\node[draw, thick, rounded corners, teal] (23) at (-1. 5,-4) {$\{1\}\{2, 3\}\{4\}$};1169\node[draw, thick, rounded corners, green!80!black] (14) at (1.5,-4) {$\{1, 4\}\{2\}\{3\}$};1170\node[draw, thick, rounded corners, orange] (24) at (4.5,-4) {$\{1\}\{2,4\}\{3\}$};1171\node[draw, thick, rounded corners, red] (34) at (7.5,-4) {$\{1\}\{2\}\{3, 4\}$};1172\draw[thick] (max) -- (12);1173\draw[thick] (max) -- (13);1174\draw[thick] (max) -- (14);1175\draw[thick] (max) -- (23);1176\draw[thick] (max) -- (24);1177\draw[thick] (max) -- (34);1178\node[draw, thick, rounded corners] (123) at (-7.5,-1. 5) {$\{1, 2, 3\}\{4\}$};1179\node[draw, thick, rounded corners] (124) at (-5,-1. 5) {$\{1, 2, 4\}\{3\}$};1180\node[draw, thick, rounded corners] (12d) at (-2.5,-1. 5) {$\{1, 2\}\{3, 4\}$};1181\node[draw, thick, rounded corners] (13d) at (0,-1. 5) {$\{1, 3\}\{2, 4\}$};1182\node[draw, thick, rounded corners] (134) at (2.5,-1. 5) {$\{1, 3, 4\}\{2\}$};1183\node[draw, thick, rounded corners] (14d) at (5,-1. 5) {$\{1, 4\}\{2, 3\}$};1184\node[draw, thick, rounded corners] (234) at (7.5,-1. 5) {$\{1\}\{2, 3, 4\}$};1185\draw[thick, purple] (12) -- (12d);1186\draw[thick, red] (34) -- (12d);1187\draw[thick, blue] (13) -- (13d);1188\draw[thick, orange] (24) -- (13d);1189\draw[thick, green!80!black] (14) -- (14d);1190\draw[thick, teal] (23) -- (14d);1191\draw[thick, purple] (12) -- (123);1192\draw[thick, blue] (13) -- (123);1193\draw[thick, teal] (23) -- (123);1194\draw[thick, purple] (12) -- (124);1195\draw[thick, green!80!black] (14) -- (124);1196\draw[thick, orange] (24) -- (124);1197\draw[thick, blue] (13) -- (134);1198\draw[thick, green!80!black] (14) -- (134);1199\draw[thick, red] (34) -- (134);1200\draw[thick, teal] (23) -- (234);1201\draw[thick, orange] (24) -- (234);1202\draw[thick, red] (34) -- (234);1203\node[draw, thick, rounded corners] (min) at (0,0) {$\{1, 2, 3, 4\}$};1204\draw[thick] (min) -- (12d);1205\draw[thick] (min) -- (13d);1206\draw[thick] (min) -- (14d);1207\draw[thick] (min) -- (123);1208\draw[thick] (min) -- (124);1209\draw[thick] (min) -- (134);1210\draw[thick] (min) -- (234);1211\end{tikzpicture}}1212\end{center}}1213\end{figure}1214\end{frame}12151216\begin{frame}{Intervals and möbius numbers of the partition posets}1217\begin{center}1218\scalebox{0.7}1219{\begin{tikzpicture}[scale=0.9]1220\node[draw, thick, rounded corners] (max) at (0,-5. 5) {$\{1\}\{2\}\{3\}\{4\}$};1221\node[draw, thick, rounded corners, purple] (12) at (-7.5,-4) {$\{1, 2\}\{3\}\{4\}$};1222\node[draw, thick, rounded corners, blue] (13) at (-4.5,-4) {$\{1, 3\}\{2\}\{4\}$};1223\node[draw, thick, rounded corners, teal] (23) at (-1. 5,-4) {$\{1\}\{2, 3\}\{4\}$};1224\node[draw, thick, rounded corners, green!80!black] (14) at (1.5,-4) {$\{1, 4\}\{2\}\{3\}$};1225\node[draw, thick, rounded corners, orange] (24) at (4.5,-4) {$\{1\}\{2,4\}\{3\}$};1226\node[draw, thick, rounded corners, red] (34) at (7.5,-4) {$\{1\}\{2\}\{3, 4\}$};1227\draw[thick] (max) -- (12);1228\draw[thick] (max) -- (13);1229\draw[thick] (max) -- (14);1230\draw[thick] (max) -- (23);1231\draw[thick] (max) -- (24);1232\draw[thick] (max) -- (34);1233\node[draw, thick, rounded corners] (123) at (-7.5,-1. 5) {$\{1, 2, 3\}\{4\}$};1234\node[draw, thick, rounded corners] (124) at (-5,-1. 5) {$\{1, 2, 4\}\{3\}$};1235\node[draw, thick, rounded corners] (12d) at (-2.5,-1. 5) {$\{1, 2\}\{3, 4\}$};1236\node[draw, thick, rounded corners] (13d) at (0,-1. 5) {$\{1, 3\}\{2, 4\}$};1237\node[draw, thick, rounded corners] (134) at (2.5,-1. 5) {$\{1, 3, 4\}\{2\}$};1238\node[draw, thick, rounded corners] (14d) at (5,-1. 5) {$\{1, 4\}\{2, 3\}$};1239\node[draw, thick, rounded corners] (234) at (7.5,-1. 5) {$\{1\}\{2, 3, 4\}$};1240\draw[thick, purple] (12) -- (12d);1241\draw[thick, red] (34) -- (12d);1242\draw[thick, blue] (13) -- (13d);1243\draw[thick, orange] (24) -- (13d);1244\draw[thick, green!80!black] (14) -- (14d);1245\draw[thick, teal] (23) -- (14d);1246\draw[thick, purple] (12) -- (123);1247\draw[thick, blue] (13) -- (123);1248\draw[thick, teal] (23) -- (123);1249\draw[thick, purple] (12) -- (124);1250\draw[thick, green!80!black] (14) -- (124);1251\draw[thick, orange] (24) -- (124);1252\draw[thick, blue] (13) -- (134);1253\draw[thick, green!80!black] (14) -- (134);1254\draw[thick, red] (34) -- (134);1255\draw[thick, teal] (23) -- (234);1256\draw[thick, orange] (24) -- (234);1257\draw[thick, red] (34) -- (234);1258\node[draw, thick, rounded corners] (min) at (0,0) {$\{1, 2, 3, 4\}$};1259\draw[thick] (min) -- (12d);1260\draw[thick] (min) -- (13d);1261\draw[thick] (min) -- (14d);1262\draw[thick] (min) -- (123);1263\draw[thick] (min) -- (124);1264\draw[thick] (min) -- (134);1265\draw[thick] (min) -- (234);1266\end{tikzpicture}}1267\end{center}1268\begin{lem} For $\pi=(\pi_1, \ldots, \pi_k) \in \Pi_n$, we have:1269\begin{align*}1270[0_{\Pi_n},\pi] \simeq \prod_{i=1}^k \Pi_{|\pi_k|} \hspace{1cm}1271[\pi, 1_{\Pi_n}] \simeq \Pi_k \hspace{1cm} \mu(\pi, 1_{\Pi_n})=(k-1)!1272\end{align*}1273\end{lem}1274\end{frame}12751276\begin{frame}{Formula for the number of regions of the braid arrangement}12771278\begin{prop}1279\begin{equation*}1280f_{k}({\mathcal{B}_n}^\ell)=\sum_{\mathbf{F} \leq \mathbf{G}} \prod_{ G_i\in \mathbf{G}} \left( \# \mathbf{F}[G_i]-1\right)!1281\end{equation*}1282where $\mathbf{F} \leq \mathbf{G}$ are two partitions, $\mathbf{F}$ has $k+1$ parts and $\mathbf{F}[G_i]=\{F_j \in \mathbf{F} | F_j \subseteq G_i\}$1283\end{prop}12841285\onslide<2->{\begin{alertblock}{Focus of the next section}1286What are the underlying combinatorial object when $\ell \geq 2$ ?1287\end{alertblock}}12881289\end{frame}1290129112921293\section{The section for which you can wake up if you love graphs but hate algebra}\label{sect3}12941295\begin{frame}{Description of faces in terms of trees}1296\begin{columns}1297\begin{column}{0.4\textwidth}1298\begin{tikzpicture}[scale=0.7]1299\coordinate (A) at (0:2);1300\coordinate (B) at (60:2);1301\coordinate (C) at (120:2);1302\coordinate (D) at (180:2);1303\coordinate (E) at (240:2);1304\coordinate (F) at (300:2);1305\draw[blue, very thick] (A)--(D);1306\draw[teal, very thick] (B)--(E);1307\draw[green, very thick] (C)--(F);1308\node[blue] (123) at (0,-2){$\{1,2,3\}$};1309\draw (123) edge[thick, ->, blue] (0,0);1310\node[left=1pt of D, blue] (13) {$\{1,3\}\{2\}$};1311\node[above left=1pt of C, blue] (12) {$\{1,2\}\{3\}$};1312\node[above=1pt of B, blue] (23) {$\{1\}\{2,3\}$};1313\end{tikzpicture}131413151316\vspace{0.5cm}1317\only<7->{1318\begin{block}{Not every pair is possible}1319\begin{center}1320\centering1321\sout{$(\textcolor{blue}{\{1,2\}\{3\}}, \textcolor{red}{\{1,2\}\{3\}})$}1322\end{center}1323\end{block}1324\only<8->{1325\centering1326\begin{tikzpicture}1327\node (12b) at (0,0) {\textcolor{blue}{1\ 2}};1328\node[below=10pt of 12b] (3b) {\textcolor{blue}{3}};1329\node[right=20pt of 12b] (1r){\textcolor{red}{1}};1330\node[below=10pt of 1r] (23r){\textcolor{red}{23}};1331\onslide<9->{1332\draw (3b)edge node[midway, below]{3} (23r);1333\draw (23r) edge node[midway, above, right]{2}(12b);1334\draw (12b) edge node[midway, above]{1}(1r);1335}1336\end{tikzpicture}1337\onslide<10->{\begin{tikzpicture}[scale=0.3, inner sep=1pt]1338\node[draw, circle] (1p){1};1339\node[draw, circle, above=5pt of 1p.north](2p){2};1340\node[draw, circle, above=5pt of 2p.north](3p){3};1341\node[left=5pt of 2p.west]{$=$};1342\draw[very thick, red] (2p)--(3p);1343\draw[very thick, blue] (1p)--(2p);1344\end{tikzpicture}1345}1346}}1347\end{column}1348\begin{column}{0.6\textwidth}1349\onslide<2->{1350\begin{tikzpicture}[very thick]1351\coordinate (C) at (180:1);1352\coordinate (D) at (90:1);1353\coordinate (E) at (-90:1);1354\coordinate (F) at (0:1);1355\coordinate (A) at ($2*(C)+(D)$); % bleu-orange1356\coordinate (Ag1) at ($(A)+(C)+(D)$);1357\coordinate (Ag2) at ($(A)+(C)$);1358\coordinate (B) at ($2*(C)+(E)$); % teal-rouge1359\coordinate (Bg1) at ($(C)+(B)$);1360\coordinate (Bg2) at ($(C)+(B)+(E)$);1361\coordinate (G) at ($2*(F)+(D)$);1362\coordinate (Gg1) at ($(G)+(F)$);1363\coordinate (Gg2) at ($(G)+(F)+(D)$);1364\coordinate (H) at ($2*(F)+(E)$);1365\coordinate (Hg1) at ($(H)+(F)+(E)$);1366\coordinate (Hg2) at ($(H)+(F)$);1367\coordinate (F1) at ($3*(E)+2*(C)$);1368\coordinate (F2) at ($3*(E)+2*(F)$);1369\coordinate (F3) at ($3*(D)+2*(C)$);1370\coordinate (F4) at ($3*(D)+2*(F)$);1371\coordinate (midb) at ($(C)+(F)+(D)$);1372\draw[blue] (Ag2)--(Gg1);1373\draw[red] (Bg1)--(Hg2);1374\draw[teal] (Bg2)--(F4);1375\draw[magenta] (F1)--(Gg2);1376\draw[orange] (Ag1)--(F2);1377\draw[green] (F3)--(Hg1);1378\onslide<3->{1379\node[above=2cm of midb] (eb){(\textcolor{blue}{\{1,2,3\}}, \textcolor{red}{\{1\}\{2\}\{3\}})};1380\draw (eb) edge[->](midb);}1381\onslide<4->{1382\coordinate (midr) at ($(C)+(F)+(E)$);1383\node[below=2cm of midr] (er){(\textcolor{blue}{\{1\}\{2\}\{3\}}, \textcolor{red}{\{1,2,3\}})};1384\draw (er) edge[->](midr);}1385\onslide<5->{1386\node[right=0.5cm of F,text width=2.5cm] (ef){(\textcolor{blue}{\{1,2\}\{3\}}, \textcolor{red}{\{1\}\{2,3\}})};1387\draw (ef) edge[->](F);1388}1389\onslide<6->{1390\node[below=1.5cm of H,text width=2cm, anchor=west] (eh){(\textcolor{blue}{\{1,2\}\{3\}}, \textcolor{red}{\{1, 3\}\{2\}})};1391\draw (eh) edge[->](H);1392}1393\end{tikzpicture}}1394\end{column}1395\end{columns}139613971398\end{frame}13991400\begin{frame}{From intersections of hyperplanes to coloured forests}1401\begin{block}{Intersection of hyperplanes}1402Each intersection is a forest of edge-coloured rooted trees s.t.:1403\begin{itemize}1404\item there are $\ell$ different colours of edges and $1$ is a root1405\item a child edge does not have the same colour as its parent.1406\end{itemize}1407\end{block}14081409\begin{center}1410\only<1>{1411\resizebox{0.8\textwidth}{!}{1412\begin{tikzpicture}1413\node (min) at (0,0){};1414\node[above left=1cm of min.north] (3) {1415\begin{tikzpicture}[scale=0.3]1416\coordinate (A) at (0:2);1417\coordinate (B) at (60:2);1418\coordinate (C) at (120:2);1419\coordinate (D) at (180:2);1420\coordinate (E) at (240:2);1421\coordinate (F) at (300:2);1422%\draw[blue, very thick] (A)--(D);1423\draw[teal, very thick] (B)--(E);1424%\draw[part4, very thick] (C)--(F);1425\end{tikzpicture}};1426\node[above right=1cm of min.north] (4) {1427\begin{tikzpicture}[scale=0.3]1428\coordinate (A) at (0:2);1429\coordinate (B) at (60:2);1430\coordinate (C) at (120:2);1431\coordinate (D) at (180:2);1432\coordinate (E) at (240:2);1433\coordinate (F) at (300:2);1434\draw[white, very thick] (B)--(E);1435\draw[white, very thick] (C)--(F);1436\draw[red, very thick] (A)--(D);1437\end{tikzpicture}};1438\node[left=0.5cm of 3] (2) {1439\begin{tikzpicture}[scale=0.3]1440\coordinate (A) at (0:2);1441\coordinate (B) at (60:2);1442\coordinate (C) at (120:2);1443\coordinate (D) at (180:2);1444\coordinate (E) at (240:2);1445\coordinate (F) at (300:2);1446\draw[white, very thick] (A)--(D);1447\draw[white, very thick] (B)--(E);1448\draw[green, very thick] (C)--(F);1449\end{tikzpicture}};1450\node[left=0.5cm of 2] (1) {1451\begin{tikzpicture}[scale=0.3]1452\coordinate (A) at (0:2);1453\coordinate (B) at (60:2);1454\coordinate (C) at (120:2);1455\coordinate (D) at (180:2);1456\coordinate (E) at (240:2);1457\coordinate (F) at (300:2);1458\draw[white, very thick] (B)--(E);1459\draw[white, very thick] (C)--(F);1460\draw[blue, very thick] (A)--(D);1461\end{tikzpicture}};1462\node[right=0.5cm of 4] (5) {1463\begin{tikzpicture}[scale=0.3]1464\coordinate (A) at (0:2);1465\coordinate (B) at (60:2);1466\coordinate (C) at (120:2);1467\coordinate (D) at (180:2);1468\coordinate (E) at (240:2);1469\coordinate (F) at (300:2);1470\draw[white, very thick] (A)--(D);1471\draw[white, very thick] (B)--(E);1472\draw[orange, very thick] (C)--(F);1473\end{tikzpicture}};1474\node[right=0.5cm of 5] (6) {1475\begin{tikzpicture}[scale=0.3]1476\coordinate (A) at (0:2);1477\coordinate (B) at (60:2);1478\coordinate (C) at (120:2);1479\coordinate (D) at (180:2);1480\coordinate (E) at (240:2);1481\coordinate (F) at (300:2);1482\draw[white, very thick] (A)--(D);1483\draw[white, very thick] (C)--(F);1484\draw[magenta, very thick] (B)--(E);1485\end{tikzpicture}};1486\node[above=2cm of 1] (15) {1487\begin{tikzpicture}[scale=0.3]1488\coordinate (A) at (0:2);1489\coordinate (B) at (60:2);1490\coordinate (C) at (120:2);1491\coordinate (D) at (180:2);1492\coordinate (E) at (240:2);1493\coordinate (F) at (300:2);1494\draw[blue, very thick] (A)--(D);1495%\draw[part2, very thick] (B)--(E);1496\draw[orange, very thick] (C)--(F);1497\end{tikzpicture}};1498\node[left=0.5cm of 15] (123) {1499\begin{tikzpicture}[scale=0.3]1500\coordinate (A) at (0:2);1501\coordinate (B) at (60:2);1502\coordinate (C) at (120:2);1503\coordinate (D) at (180:2);1504\coordinate (E) at (240:2);1505\coordinate (F) at (300:2);1506\draw[blue, very thick] (A)--(D);1507\draw[teal, very thick] (B)--(E);1508\draw[green, very thick] (C)--(F);1509\end{tikzpicture}1510};1511\node[right=0.5cm of 15] (26) {1512\begin{tikzpicture}[scale=0.3]1513\coordinate (A) at (0:2);1514\coordinate (B) at (60:2);1515\coordinate (C) at (120:2);1516\coordinate (D) at (180:2);1517\coordinate (E) at (240:2);1518\coordinate (F) at (300:2);1519%\draw[blue, very thick] (A)--(D);1520\draw[magenta, very thick] (B)--(E);1521\draw[green, very thick] (C)--(F);1522\end{tikzpicture}};1523\node[right=0.5cm of 26] (34) {1524\begin{tikzpicture}[scale=0.3]1525\coordinate (A) at (0:2);1526\coordinate (B) at (60:2);1527\coordinate (C) at (120:2);1528\coordinate (D) at (180:2);1529\coordinate (E) at (240:2);1530\coordinate (F) at (300:2);1531\draw[red, very thick] (A)--(D);1532\draw[teal, very thick] (B)--(E);1533%\draw[part4, very thick] (C)--(F);1534\end{tikzpicture}};1535\node[right=0.5cm of 34] (24) {1536\begin{tikzpicture}[scale=0.3]1537\coordinate (A) at (0:2);1538\coordinate (B) at (60:2);1539\coordinate (C) at (120:2);1540\coordinate (D) at (180:2);1541\coordinate (E) at (240:2);1542\coordinate (F) at (300:2);1543\draw[red, very thick] (A)--(D);1544%\draw[part2, very thick] (B)--(E);1545\draw[green, very thick] (C)--(F);1546\end{tikzpicture}};1547\node[right=0.5cm of 24] (35) {1548\begin{tikzpicture}[scale=0.3]1549\coordinate (A) at (0:2);1550\coordinate (B) at (60:2);1551\coordinate (C) at (120:2);1552\coordinate (D) at (180:2);1553\coordinate (E) at (240:2);1554\coordinate (F) at (300:2);1555%\draw[blue, very thick] (A)--(D);1556\draw[teal, very thick] (B)--(E);1557\draw[orange, very thick] (C)--(F);1558\end{tikzpicture}};1559\node[right=0.5cm of 35] (16) {1560\begin{tikzpicture}[scale=0.3]1561\coordinate (A) at (0:2);1562\coordinate (B) at (60:2);1563\coordinate (C) at (120:2);1564\coordinate (D) at (180:2);1565\coordinate (E) at (240:2);1566\coordinate (F) at (300:2);1567\draw[blue, very thick] (A)--(D);1568\draw[magenta, very thick] (B)--(E);1569%\draw[part4, very thick] (C)--(F);1570\end{tikzpicture}};1571\node[right=0.5cm of 16] (456) {1572\begin{tikzpicture}[scale=0.3]1573\coordinate (A) at (0:2);1574\coordinate (B) at (60:2);1575\coordinate (C) at (120:2);1576\coordinate (D) at (180:2);1577\coordinate (E) at (240:2);1578\coordinate (F) at (300:2);1579\draw[red, very thick] (A)--(D);1580\draw[magenta, very thick] (B)--(E);1581\draw[orange, very thick] (C)--(F);1582\end{tikzpicture}};1583\draw (min)--(1);1584\draw (min)--(2);1585\draw (min)--(3);1586\draw (min)--(4);1587\draw (min)--(5);1588\draw (min)--(6);1589\draw (123.south)--(1.north);1590\draw (123.south)--(2.north);1591\draw (123.south)--(3.north);1592\draw (456.south)--(4.north);1593\draw (456.south)--(5.north);1594\draw (456.south)--(6.north);1595\draw (2.north)--(26.south)--(6.north);1596\draw (2.north)--(24.south)--(4.north);1597\draw (1.north)--(15.south)--(5.north);1598\draw (1.north)--(16.south)--(6.north);1599\draw (3.north)--(34.south)--(4.north);1600\draw (3.north)--(35.south)--(5.north);1601\end{tikzpicture}}}1602\only<2>{\resizebox{0.8\textwidth}{!}{1603\begin{tikzpicture}1604\node (min) at (0,0){1605\begin{tikzpicture}[scale=0.3, inner sep=1pt]1606\node[draw, circle] (1p){1};1607\node[draw, circle, right=5pt of 1p](3p){2};1608\node[draw, circle, right=5pt of 3p](2p){3};1609\end{tikzpicture}};1610\node[above left=1cm of min.north] (3) {1611\begin{tikzpicture}[scale=0.3, inner sep=1pt]1612\node[draw, circle] (1p){2};1613\node[draw, circle, above=5pt of 1p](3p){3};1614\node[draw, circle, right=5pt of 1p](2p){1};1615\draw[very thick, blue] (1p)--(3p);1616\end{tikzpicture}};1617\node[above right=1cm of min.north] (4) {1618\begin{tikzpicture}[scale=0.3, inner sep=1pt]1619\node[draw, circle] (1p){1};1620\node[draw, circle, above=5pt of 1p](3p){3};1621\node[draw, circle, right=5pt of 1p](2p){2};1622\draw[very thick, red] (1p)--(3p);1623\end{tikzpicture}};1624\node[left=0.5cm of 3] (2) {1625\begin{tikzpicture}[scale=0.3, inner sep=1pt]1626\node[draw, circle] (1p){1};1627\node[draw, circle, above=5pt of 1p](3p){2};1628\node[draw, circle, right=5pt of 1p](2p){3};1629\draw[very thick, blue] (1p)--(3p);1630\end{tikzpicture}};1631\node[left=0.5cm of 2] (1) {1632\begin{tikzpicture}[scale=0.3, inner sep=1pt]1633\node[draw, circle] (1p){1};1634\node[draw, circle, above=5pt of 1p](3p){3};1635\node[draw, circle, right=5pt of 1p](2p){2};1636\draw[very thick, blue] (1p)--(3p);1637\end{tikzpicture}};1638\node[right=0.5cm of 4] (5) {1639\begin{tikzpicture}[scale=0.3, inner sep=1pt]1640\node[draw, circle] (1p){1};1641\node[draw, circle, above=5pt of 1p](3p){2};1642\node[draw, circle, right=5pt of 1p](2p){3};1643\draw[very thick, red] (1p)--(3p);1644\end{tikzpicture}};1645\node[right=0.5cm of 5] (6) {1646\begin{tikzpicture}[scale=0.3, inner sep=1pt]1647\node[draw, circle] (1p){2};1648\node[draw, circle, above=5pt of 1p](3p){3};1649\node[draw, circle, right=5pt of 1p](2p){1};1650\draw[very thick, red] (1p)--(3p);1651\end{tikzpicture}};1652\node[above=2cm of 1] (15) {1653\begin{tikzpicture}[scale=0.3, inner sep=1pt]1654\node[draw, circle] (1p){1};1655\node[draw, circle, above left=5pt of 1p.north](2p){2};1656\node[draw, circle, above right=5pt of 1p.north](3p){3};1657\draw[very thick, blue] (1p)--(3p);1658\draw[very thick, red] (1p)--(2p);1659\end{tikzpicture}};1660\node[left=0.5cm of 15] (123) {1661\begin{tikzpicture}[scale=0.3, inner sep=1pt]1662\node[draw, circle] (1p){1};1663\node[draw, circle, above left=5pt of 1p.north](2p){2};1664\node[draw, circle, above right=5pt of 1p.north](3p){3};1665\draw[very thick, blue] (1p)--(3p);1666\draw[very thick, blue] (1p)--(2p);1667\end{tikzpicture}};1668\node[right=0.5cm of 15] (26) {1669\begin{tikzpicture}[scale=0.3, inner sep=1pt]1670\node[draw, circle] (1p){1};1671\node[draw, circle, above=5pt of 1p.north](2p){2};1672\node[draw, circle, above=5pt of 2p.north](3p){3};1673\draw[very thick, red] (2p)--(3p);1674\draw[very thick, blue] (1p)--(2p);1675\end{tikzpicture}};1676\node[right=0.5cm of 26] (34) {1677\begin{tikzpicture}[scale=0.3, inner sep=1pt]1678\node[draw, circle] (1p){1};1679\node[draw, circle, above=5pt of 1p.north](2p){3};1680\node[draw, circle, above=5pt of 2p.north](3p){2};1681\draw[very thick, blue] (2p)--(3p);1682\draw[very thick, red] (1p)--(2p);1683\end{tikzpicture}};1684\node[right=0.5cm of 34] (24) {1685\begin{tikzpicture}[scale=0.3, inner sep=1pt]1686\node[draw, circle] (1p){1};1687\node[draw, circle, above left=5pt of 1p.north](2p){2};1688\node[draw, circle, above right=5pt of 1p.north](3p){3};1689\draw[very thick, red] (1p)--(3p);1690\draw[very thick, blue] (1p)--(2p);1691\end{tikzpicture}};1692\node[right=0.5cm of 24] (35) {1693\begin{tikzpicture}[scale=0.3, inner sep=1pt]1694\node[draw, circle] (1p){1};1695\node[draw, circle, above=5pt of 1p.north](2p){2};1696\node[draw, circle, above=5pt of 2p.north](3p){3};1697\draw[very thick, blue] (2p)--(3p);1698\draw[very thick, red] (1p)--(2p);1699\end{tikzpicture}};1700\node[right=0.5cm of 35] (16) {1701\begin{tikzpicture}[scale=0.3, inner sep=1pt]1702\node[draw, circle] (1p){1};1703\node[draw, circle, above=5pt of 1p.north](2p){3};1704\node[draw, circle, above=5pt of 2p.north](3p){2};1705\draw[very thick, red] (2p)--(3p);1706\draw[very thick, blue] (1p)--(2p);1707\end{tikzpicture}};1708\node[right=0.5cm of 16] (456) {1709\begin{tikzpicture}[scale=0.3, inner sep=1pt]1710\node[draw, circle] (1p){1};1711\node[draw, circle, above left=5pt of 1p.north](2p){2};1712\node[draw, circle, above right=5pt of 1p.north](3p){3};1713\draw[very thick, red] (1p)--(3p);1714\draw[very thick, red] (1p)--(2p);1715\end{tikzpicture}};1716\draw (min)--(1);1717\draw (min)--(2);1718\draw (min)--(3);1719\draw (min)--(4);1720\draw (min)--(5);1721\draw (min)--(6);1722\draw (123.south)--(1.north);1723\draw (123.south)--(2.north);1724\draw (123.south)--(3.north);1725\draw (456.south)--(4.north);1726\draw (456.south)--(5.north);1727\draw (456.south)--(6.north);1728\draw (2.north)--(26.south)--(6.north);1729\draw (2.north)--(24.south)--(4.north);1730\draw (1.north)--(15.south)--(5.north);1731\draw (1.north)--(16.south)--(6.north);1732\draw (3.north)--(34.south)--(4.north);1733\draw (3.north)--(35.south)--(5.north);1734\end{tikzpicture}}1735}1736\end{center}1737\end{frame}173817391740\begin{frame}{Formula for the number of regions of $2$ copies of the braid arrangement}17411742\begin{thm}[BDO, M. Josuat-Vergès, G. Laplante-Anfossi, V. Pilaud, K. Stoeckl]1743\begin{equation*}1744f_{n-k_1-1, n-k_2-1}({\mathcal{B}_n}^2)=\sum_{\mathbf{F} \leq \mathbf{G}} \prod_{i \in [2]} \prod_{p \in G_i} \left( \# F_i[p]-1\right)!1745\end{equation*}1746where $\mathbf{F}$ and $\mathbf{G}$ are two forests of $2$-edge-coloured trees and $\# F_i = k_i+1$1747\begin{equation*}1748f_{n-1}({\mathcal{B}_n}^2)=(n+1)![x^n]exp\left(\sum_{m \geq 1} \frac{x^m}{m(m+1)} \binom{2m}{m} \right) [A213507]1749\end{equation*}1750\begin{equation*}1751f_{0}({\mathcal{B}_n}^2)=2(n+1)^{n-2} [A007334]1752\end{equation*}1753which admits the following refinement:1754\begin{equation*}1755f_{k, n-k-1}({\mathcal{B}_n}^2)=\frac{1}{k+1}\binom{n}{k}(k+1)^{n-k-1} (n-k)^k1756\end{equation*}1757\end{thm}17581759\end{frame}17601761\begin{frame}{Formula for the number of regions of $\ell$ copies of the braid arrangement}17621763\begin{thm}[BDO, M. Josuat-Vergès, G. Laplante-Anfossi, V. Pilaud, K. Stoeckl]1764\begin{equation*}1765f_{n-k_1-1,\ldots, n-k_\ell-1}({\mathcal{B}_n}^\ell)=\sum_{\mathbf{F} \leq \mathbf{G}} \prod_{i \in [\ell]} \prod_{p \in G_i} \left( \# F_i[p]-1\right)!1766\end{equation*}1767where $\mathbf{F}$ and $\mathbf{G}$ are two forests of $\ell$-edge-coloured trees and $\# F_i = k_i+1$1768\begin{equation*}1769f_{n-1}({\mathcal{B}_n}^\ell)=??1770\end{equation*}1771\begin{equation*}1772f_{0}({\mathcal{B}_n}^\ell)=\ell\left(1+(\ell-1)n\right)^{n-2}1773\end{equation*}1774which admits the following refinement:1775\begin{equation*}1776f_{k, n-k-1}({\mathcal{B}_n}^\ell)=??1777\end{equation*}1778\end{thm}17791780\onslide<2>{\centering \Large \textcolor{newSec}{Merci de votre attention !}}1781\end{frame}17821783\end{document}17841785