Path: blob/main/slidesVincent/expose3DMaps.tex
1016 views
\documentclass[12pt,titlepage,landscape,a4paper]{article}12%QUELQUES PACKAGES PLUS OU MOINS UTILES3\special{landscape}4\usepackage[T1]{fontenc}5\usepackage[utf8]{inputenc}6\usepackage[english]{babel}7\usepackage{amsfonts, amsmath, amssymb, amsthm, stmaryrd, mathtools}8\usepackage{aeguill}9\usepackage{graphics, graphicx}10\usepackage{xcolor}11\usepackage{geometry}12\usepackage{paralist}13\usepackage{multido,ifthen}14\usepackage{tikz}\usetikzlibrary{trees,shapes,arrows,matrix,calc,arrows.meta}15\usepackage{hyperref}16\hypersetup{colorlinks=true, citecolor=blue, linkcolor=blue, urlcolor=blue}17\usepackage{movie15}18\usepackage[abs]{overpic}19\usepackage{xargs}20\usepackage{extarrows}21\usepackage{shuffle}22\usepackage{multicol}23\usepackage{etoolbox}24\usepackage{dsfont}25\usepackage{pifont}26\usepackage{array, blkarray}27\usepackage{multicol, multirow}28\usepackage{ulem}29\usepackage{xifthen}30\usepackage{soul}31\usepackage{wasysym}3233% ZONE DE TEXTE ET POLICE34\setlength{\topmargin}{-2.8cm}35\setlength{\textheight}{19cm}36\setlength{\oddsidemargin}{-1cm}37\setlength{\textwidth}{26.8cm}38\newcommand{\textenormal}{\fontsize{22}{28}\selectfont}39\newcommand{\textemoyen}{\fontsize{23}{27}\selectfont}40\newcommand{\textegrand}{\fontsize{55}{48}\selectfont}4142% COMMANDE DE NOUVELLE PAGE43\newenvironment{slide}[1]44{45\newpage46\begin{center}47{\blue \textemoyen \smash{\uppercase{#1}}}\\48\end{center}49\vspace{-1cm}50\rule{\textwidth}{0.5 pt}\\51\vspace{-.8cm}52}53{\vspace*{-3cm}}5455% COMMANDE DE PARTIE56%\newcounter{partie}57%\setcounter{partie}{1}58%\newcommand{\thePartie}{Part \arabic{partie}}59\newcommand{\partie}[1]60{61\newpage62\vspace*{0pt plus 1 fill}63\begin{center}64%\thePartie \\[-.75cm]65\rule{.9\textwidth}{0.5 pt} \\[.5cm]66\fontsize{35}{35}\selectfont {\blue\uppercase{#1}} \\[-.35cm]67\rule{.9\textwidth}{0.5 pt} \\68\end{center}69\vspace*{0pt plus 1.2 fill}70%\addtocounter{partie}{1}71}7273% COMMANDE D'EXPOSE74\newcommand{\expose}[2]75{76\newpage77\vspace*{0pt plus 1 fill}78\begin{center}79%\thePartie \\[-.75cm]80\rule{.8\textwidth}{0.5 pt} \\[.5cm]81\fontsize{35}{35}\selectfont {\red\uppercase{#1}} \\[-.35cm]82\rule{.8\textwidth}{0.5 pt} \\83\vspace{1cm}84\textemoyen #285\end{center}86\vspace*{0pt plus 1.2 fill}87%\addtocounter{partie}{1}88}8990% COMMANDE POUR LES BOITES91% centre92\newcommand{\cboite}[1]93{94\vspace*{.5cm}95\fcolorbox{blue}{grisclair}{96\begin{minipage}{.97\linewidth}97\vspace*{.3cm}98\begin{center} #1 \end{center}99\vspace*{-.1cm}100\end{minipage}101}102}103% alignement gauche104\newcommand{\gboite}[1]105{106\vspace*{.5cm}107\fcolorbox{blue}{grisclair}{108\begin{minipage}{.97\linewidth}109\vspace*{.3cm}110#1111\vspace{.3cm}112\end{minipage}113}114}115116\newcommand{\chapitre}[1]{{\blue \fontsize{23}{25}\selectfont {Chap\,#1}}}117118% AUTRES COMMANDES119% quelques couleurs manquantes120\newcommand{\orange}{\color{orange}} % couleur orange121\newcommand{\green}{\color{green}} % couleur verte122\newcommand{\violet}{\color{violet}} % couleur violet123\newcommand{\blue}{\color{blue}} % couleur bleu124\newcommand{\red}{\color{red}} % couleur rouge125\definecolor{violet}{rgb}{.5,.1,.9}126\definecolor{orange}{rgb}{.94,.57,0}127\definecolor{green}{rgb}{0.2,0.6,0.2}128\definecolor{grisclair}{gray}{1}129\definecolor{grisfonce}{gray}{.1}130\definecolor{bblue}{rgb}{.8,.8,1}131% maths132\newcommand{\set}[2]{\left\{ #1 \;\middle|\; #2 \right\}} % ensemble133\newcommand{\bigset}[2]{\big\{ #1 \;\big|\; #2 \big\}} % ensemble134\newcommand{\biggset}[2]{\bigg\{ #1 \;\bigg|\; #2 \bigg\}} % ensemble135\newcommand{\setangle}[2]{\left\langle #1 \;\middle|\; #2 \right\rangle} % ensemble136\newcommand{\dotprod}[2]{\left\langle\; #1 \;\middle|\; #2 \;\right\rangle} % produit scalaire137\newcommand{\ssm}{\smallsetminus} % small set minus138\newcommand{\symdif}{\triangle} % symmetric difference139\newcommand{\eqdef}{\mbox{\,\raisebox{0.3ex}{\normalsize\ensuremath{\mathrm:}}\ensuremath{=}\,}} % :=140\newcommand{\defeq}{\mbox{~\ensuremath{=}\raisebox{0.3ex}{\normalsize\ensuremath{\mathrm:}} }} % =:141\newcommand{\Fracfloor}[2]{\left\lfloor \frac{#1}{#2} \right\rfloor} % floor of a fraction142\newcommand{\one}{1\!\!1} % one bold143\DeclareMathOperator{\conv}{conv} % enveloppe convexe144\DeclareMathOperator{\cone}{cone} % cone engendre145\DeclareMathOperator{\vol}{vol} % volume146\DeclareMathOperator{\rank}{rk} % rank147\newcommand{\C}{\mathbb{C}} % complexes148\newcommand{\R}{\mathbb{R}} % reels149\newcommand{\Q}{\mathbb{Q}} % rationals150\newcommand{\Z}{\mathbb{Z}} % entiers151\newcommand{\N}{\mathbb{N}} % naturels152\newcommand{\I}{\mathbb{I}} % set of integers153\newcommand{\K}{\mathbb{K}} % field154\newcommand{\fS}{\mathfrak{S}} % symmetric group155\newcommand{\cA}{\mathcal{A}} % algebra156\newcommand{\cF}{\mathcal{F}} % flip graph157\newcommand{\cN}{\mathcal{N}} % sorting network158\renewcommand{\b}[1]{\boldsymbol{#1}} % bold letters159\renewcommand{\c}[1]{\mathcal{#1}} % caligraphic letters160\newcommand{\f}[1]{\mathfrak{#1}} % frak letters161% autres162\setlength{\parindent}{0pt} % aucune indentation dans tout le document163\graphicspath{{figures/}{figures/nodes/}{figuresGuillaume/}} % les repertoires ou se trouvent les figures164\newcommand{\papier}[1]{{\violet\fontsize{15}{20}\selectfont #1}} % citation papier165\newcommand{\theo}[2]{\gboite{{\blue \fontsize{18}{25}\selectfont #1.} #2}}166\newcommand{\HUGE}[1]{{\fontsize{35}{33}\selectfont #1}}167\newcommand{\esperluette}{ \\ --- \& --- \\ } % esperluette stylisée nouvelle ligne168\DeclareRobustCommand{\verylongrightarrow}{\joinrel\relbar\joinrel\relbar\joinrel\relbar\joinrel\relbar\joinrel\relbar\joinrel\rightarrow}169\renewcommand{\emph}[1]{\uline{#1}}170171% DIAGONALS172\newcommand{\poly}[1]{\mathds{#1}} % polytope font173\newcommand{\Asso}{\mathds{A}\mathsf{sso}} % associahedron174\newcommand{\Perm}{\mathds{P}\mathsf{erm}} % permutahedron175\newcommand{\Cube}{\mathds{C}\mathsf{ube}} % cube176\newcommand{\Simplex}{\mathds{S}\mathsf{implex}} % cube177\newcommand{\HH}{\poly{H}} % hyperplane178\newcommand{\Tam}{\mathrm{Tam}} % Tamari lattice179\DeclareMathOperator{\des}{{\red des}} % descents180\DeclareMathOperator{\asc}{{\blue asc}} % ascents181\DeclareMathOperator{\agree}{agr} % agree182\DeclareMathOperator{\can}{can} % canopy183\newcommand{\meet}{\mathbin{\blue \wedge}} % meet184\newcommand{\join}{\mathbin{\red \vee}} % join185\newcommand{\bigMeet}{\mathbin{\blue \bigwedge}} % meet186\newcommand{\bigJoin}{\mathbin{\red \bigvee}} % join187\newcommandx{\BA}[2][1=\ell, 2=n]{\mathcal{B}_{#2}^{#1}} % braid arrangement188\newcommandx{\PF}[2][1=\ell, 2=n]{\mathbb{PF}_{#2}^{#1}} % partition forests poset189\renewcommand{\P}{\mathbb{P}} % partition poset190\newcommand{\bbA}{\mathbb{A}}191\newcommand{\teeM}{\hspace{-.4cm}\raisebox{-.7cm}{\includegraphics[scale=3]{tee}}\hspace{-.1cm}}192\newcommand{\perpM}{\hspace{-.4cm}\raisebox{-.7cm}{\includegraphics[scale=3]{perp}}\hspace{-.1cm}}193\newcommand{\crossM}{\hspace{-.4cm}\raisebox{-.7cm}{\includegraphics[scale=3]{cross}}\hspace{-.1cm}}194\newcommand{\HM}{\mathbb{HM}}195\newcommand{\CHM}{{\color{cyan}\mathbb{CHM}}}196\newcommand{\OHM}{{\color{orange}\mathbb{OHM}}}197198%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%199200\newcommand{\titre}{From permutahedra to associahedra, a walk through geometric and algebraic combinatorics}201\newcommand{\auteur}{Vincent Pilaud}202203%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%204205\begin{document}206207\fontshape{sf}\fontsize{22}{28}\selectfont % police par defaut208\sf209\pagestyle{empty} % bas de page par defaut210211%\vspace*{.1cm}212\begin{center}213{\blue \fontsize{60}{60}\selectfont214\uppercase{Unexpected diagonals}215}216217\vspace{.4cm}218Vincent PILAUD (CNRS \& École Polytechnique)219220\vspace{.3cm}221\centerline{222\begin{tabular}{c@{\hspace{-1.8cm}}c}223Bérénice DELCROIX-OGER (Univ.\,Montpellier)224&225Alin BOSTAN (INRIA)226\\227Matthieu JOSUAT-VERGÈS (CNRS \& Univ.\,Paris Cité)228&229Frédéric CHYZAK (INRIA)230\\231Guillaume LAPLANTE-ANFOSSI (Univ.\,Melbourne)232&233\\234Kurt STOECKL (Univ.\,Melbourne)235&236\href{http://arxiv.org/abs/2303.10986}{\texttt{arXiv:2303.10986}}237\\238\includegraphics[scale=1.2]{diagonalPermutahedron2239}240&241\includegraphics[scale=1.2]{diagonalAssociahedron2}\hspace{1cm}242\end{tabular}243}244245\vspace{.1cm}246247\large248Rencontre 3DMaps \\249Wednesday June 21st, 2023 \\250slides available at: \url{http://www.lix.polytechnique.fr/~pilaud/documents/presentations/diagonals.pdf}251252\vspace*{-1cm}253254\end{center}255256%%%%%%%%%%257258%\setul{0ex}{.3ex}259%\setstcolor{red}260%261%\begin{slide}{Unexpected talk}262%263%\vspace{.5cm}264%265%\phantom{\;\;{\red This}} \\[-.3cm]266%A usual talk consists in (?)267%268%\begin{itemize}269%270%\item a definition % {\red $\longleftarrow$ that we don't need for the talk}271%272%\item its motivation % \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}273%274%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\275%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}276%277%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}278%279%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}280%281%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}282%283%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}284%285%\end{itemize}286%287%\end{slide}288%289%%%%290%291%\setul{0ex}{.3ex}292%\setstcolor{red}293%294%\begin{slide}{Unexpected talk}295%296%\vspace{.5cm}297%298%\;\;{\red This} \\[-.3cm]299%\st{A usual} talk consists in \st{(?)}300%301%\begin{itemize}302%303%\item a definition % {\red $\longleftarrow$ that we don't need for the talk}304%305%\item its motivation % \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}306%307%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\308%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}309%310%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}311%312%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}313%314%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}315%316%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}317%318%\end{itemize}319%320%\end{slide}321%322%%%%323%324%\setul{0ex}{.3ex}325%\setstcolor{red}326%327%\begin{slide}{Unexpected talk}328%329%\vspace{.5cm}330%331%\;\;{\red This} \\[-.3cm]332%\st{A usual} talk consists in \st{(?)}333%334%\begin{itemize}335%336%\item a definition {\red $\longleftarrow$ that we don't need for the talk}337%338%\item its motivation % \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}339%340%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\341%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}342%343%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}344%345%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}346%347%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}348%349%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}350%351%\end{itemize}352%353%\end{slide}354%355%%%%356%357%\setul{0ex}{.3ex}358%\setstcolor{red}359%360%\begin{slide}{Unexpected talk}361%362%\vspace{.5cm}363%364%\;\;{\red This} \\[-.3cm]365%\st{A usual} talk consists in \st{(?)}366%367%\begin{itemize}368%369%\item a definition {\red $\longleftarrow$ that we don't need for the talk}370%371%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}372%373%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\374%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}375%376%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}377%378%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}379%380%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}381%382%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}383%384%\end{itemize}385%386%\end{slide}387%388%%%%389%390%\setul{0ex}{.3ex}391%\setstcolor{red}392%393%\begin{slide}{Unexpected talk}394%395%\vspace{.5cm}396%397%\;\;{\red This} \\[-.3cm]398%\st{A usual} talk consists in \st{(?)}399%400%\begin{itemize}401%402%\item a definition {\red $\longleftarrow$ that we don't need for the talk}403%404%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}405%406%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}407%408%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}409%410%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}411%412%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}413%414%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}415%416%\end{itemize}417%418%\end{slide}419%420%%%%421%422%\setul{0ex}{.3ex}423%\setstcolor{red}424%425%\begin{slide}{Unexpected talk}426%427%\vspace{.5cm}428%429%\;\;{\red This} \\[-.3cm]430%\st{A usual} talk consists in \st{(?)}431%432%\begin{itemize}433%434%\item a definition {\red $\longleftarrow$ that we don't need for the talk}435%436%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}437%438%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}439%440%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}441%442%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}443%444%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}445%446%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}447%448%\end{itemize}449%450%\end{slide}451%452%%%%453%454%\setul{0ex}{.3ex}455%\setstcolor{red}456%457%\begin{slide}{Unexpected talk}458%459%\vspace{.5cm}460%461%\;\;{\red This} \\[-.3cm]462%\st{A usual} talk consists in \st{(?)}463%464%\begin{itemize}465%466%\item a definition {\red $\longleftarrow$ that we don't need for the talk}467%468%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}469%470%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}471%472%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}473%474%\item \st{concerning something you though about for years} \quad {\red $\longleftarrow$ I started in January}475%476%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}477%478%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}479%480%\end{itemize}481%482%\end{slide}483%484%%%%485%486%\setul{0ex}{.3ex}487%\setstcolor{red}488%489%\begin{slide}{Unexpected talk}490%491%\vspace{.5cm}492%493%\;\;{\red This} \\[-.3cm]494%\st{A usual} talk consists in \st{(?)}495%496%\begin{itemize}497%498%\item a definition {\red $\longleftarrow$ that we don't need for the talk}499%500%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}501%502%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}503%504%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}505%506%\item \st{concerning something you though about for years} \quad {\red $\longleftarrow$ I started in January}507%508%\item some pictures \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}509%510%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}511%512%\end{itemize}513%514%\end{slide}515%516%%%%517%518%\setul{0ex}{.3ex}519%\setstcolor{red}520%521%\begin{slide}{Unexpected talk}522%523%\vspace{.5cm}524%525%\;\;{\red This} \\[-.3cm]526%\st{A usual} talk consists in \st{(?)}527%528%\begin{itemize}529%530%\item a definition {\red $\longleftarrow$ that we don't need for the talk}531%532%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}533%534%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}535%536%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}537%538%\item \st{concerning something you though about for years} \quad {\red $\longleftarrow$ I started in January}539%540%\item some pictures \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}541%542%\item a joke \quad {\red $\longleftarrow$ this slide is not the joke}543%544%\end{itemize}545%546%\end{slide}547548%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%549%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%550551\partie{Diagonals of polytopes}552553%%%%%%%%%%554555\begin{slide}{Diagonals of polytopes}556557$\poly{P}$ polytope in~$\R^d$558559\vspace{-.5cm}560\emph{diagonal} of~$\poly{P} = \delta : \begin{array}[t]{ccc} \poly{P} & \to & \poly{P} \times \poly{P} \\ p & \mapsto & (p,p) \end{array}$561\hfill562\raisebox{-2cm}{\includegraphics[scale=2.5]{diagonalSegment1}}563564\vfill565\centerline{566\begin{tabular}{c@{}cc@{}c}567\includegraphics[scale=1.8]{diagonalTriangle3}568&569\phantom{\includegraphics[scale=1.8]{diagonalTriangle4}}570&571\includegraphics[scale=1.8]{diagonalSquarre3}572\hspace{-1cm}573&574\phantom{\includegraphics[scale=1.8]{diagonalSquarre4}}575\\576\multicolumn{2}{c}{\phantom{Alexander -- Whitney}}577&578\multicolumn{2}{c}{\phantom{Serre}}579\\580\multicolumn{2}{c}{\phantom{singular homology}}581&582\multicolumn{2}{c}{\phantom{cubical singular homology}}583\end{tabular}584}585\vspace{2.5cm}586587\end{slide}588589%%%590591\begin{slide}{Diagonals of polytopes}592593$\poly{P}$ polytope in~$\R^d$594595\vspace{-.5cm}596\emph{diagonal} of~$\poly{P} = \delta : \begin{array}[t]{ccc} \poly{P} & \to & \poly{P} \times \poly{P} \\ p & \mapsto & (p,p) \end{array}$597\hfill598\raisebox{-2cm}{\includegraphics[scale=2.5]{diagonalSegment1}}599600\vspace{.3cm}601\emph{cellular approximation} of the diagonal of~$\poly{P} =$ map $\poly{P} \to \poly{P} \times \poly{P}$ s.t.602\begin{compactitem}603\item its image is a union of faces of~$\poly{P} \times \poly{P}$604\item it agrees with~$\delta$ on the vertices of~$\poly{P}$605\item it is homotopic to~$\delta$606\end{compactitem}607608\vspace{-4cm}609\hfill610\raisebox{2cm}{\includegraphics[scale=2.5]{diagonalSegment2}}611612\vspace*{-10cm}613614\vfill615\centerline{616\begin{tabular}{c@{}cc@{}c}617\includegraphics[scale=1.8]{diagonalTriangle3}618&619\includegraphics[scale=1.8]{diagonalTriangle4}620&621\includegraphics[scale=1.8]{diagonalSquarre3}622\hspace{-1cm}623&624\includegraphics[scale=1.8]{diagonalSquarre4}625\\626\multicolumn{2}{c}{\phantom{Alexander -- Whitney}}627&628\multicolumn{2}{c}{\phantom{Serre}}629\\630\multicolumn{2}{c}{\phantom{singular homology}}631&632\multicolumn{2}{c}{\phantom{cubical singular homology}}633\end{tabular}634}635\vspace{2.5cm}636637\end{slide}638%%%639640\begin{slide}{Diagonals of polytopes}641642$\poly{P}$ polytope in~$\R^d$643644\vspace{-.5cm}645\emph{diagonal} of~$\poly{P} = \delta : \begin{array}[t]{ccc} \poly{P} & \to & \poly{P} \times \poly{P} \\ p & \mapsto & (p,p) \end{array}$646\hfill647\raisebox{-2cm}{\includegraphics[scale=2.5]{diagonalSegment1}}648649\vspace{.3cm}650\emph{cellular approximation} of the diagonal of~$\poly{P} =$ map $\poly{P} \to \poly{P} \times \poly{P}$ s.t.651\begin{compactitem}652\item its image is a union of faces of~$\poly{P} \times \poly{P}$653\item it agrees with~$\delta$ on the vertices of~$\poly{P}$654\item it is homotopic to~$\delta$655\end{compactitem}656657\vspace{-4cm}658\hfill659\raisebox{2cm}{\includegraphics[scale=2.5]{diagonalSegment2}}660661\vspace*{-10cm}662663\vfill664\centerline{665\begin{tabular}{c@{}cc@{}c}666\includegraphics[scale=1.8]{diagonalTriangle3}667&668\includegraphics[scale=1.8]{diagonalTriangle4}669&670\includegraphics[scale=1.8]{diagonalSquarre3}671\hspace{-1cm}672&673\includegraphics[scale=1.8]{diagonalSquarre4}674\\675\multicolumn{2}{c}{Alexander -- Whitney}676&677\multicolumn{2}{c}{Serre}678\\679\multicolumn{2}{c}{singular homology}680&681\multicolumn{2}{c}{cubical singular homology}682\end{tabular}683}684\vspace{2.5cm}685686\end{slide}687688%%%689690\begin{slide}{Diagonals of polytopes}691692\hfill\papier{Masuda -- Thomas -- Tonks -- Vallette '21}693694\vspace{-.3cm}695\hfill\papier{Laplante-Anfossi '22}696697\vspace{-1.7cm}698any vertex of the fiber polytope \phantom{selected by~$(-v,v)$}699\[700\displaystyle701\sum \left( \!\! \begin{array}{ccc} \poly{P} \times \poly{P} & & (p,q) \\[.1cm] \rotatebox[origin=c]{-90}{$\xrightarrow{\hspace*{.6cm}}$} & , & \rotatebox[origin=c]{-90}{$\xmapsto{\hspace*{.6cm}}$} \\[.4cm] \poly{P} & & \frac{p+q}{2} \end{array} \!\! \right)702\]703gives a cellular approximation of the diagonal of~$\poly{P}$ \\704projecting back on~$\poly{P}$, we see it as a polyhedral subdivision of~$\poly{P}$705\vspace{-5cm}706707\vfill708\hfill{\small \textcopyright\,G.\,Laplante-Anfossi} \\[-2.5cm]709\centerline{710\begin{tabular}{c@{}cc@{}c}711\hspace{2cm}\includegraphics[scale=1.2]{diagonalTriangle4}712&&713\hspace{-1.3cm}\includegraphics[scale=1.2]{diagonalSquarre3}\hspace{3.5cm}714\\[-1.8cm]715\raisebox{.9cm}{\includegraphics[scale=1.4]{diagonalTriangle1}}716&717\includegraphics[scale=.4]{diagonalSimplexGuillaume}718&719\includegraphics[scale=1.4]{diagonalSquarre1}720&721\includegraphics[scale=.45]{diagonalCubeGuillaume}722% \\[-.5cm]723% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$}724% &725% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$}726% \\[.6cm]727% \multicolumn{2}{c}{[OEIS, A127717]}728% &729% \multicolumn{2}{c}{[OEIS, A038220]}730\end{tabular}731}732\vspace{2cm}733734\end{slide}735736%%%737738\begin{slide}{Diagonals of polytopes}739740\hfill\papier{Masuda -- Thomas -- Tonks -- Vallette '21}741742\vspace{-.3cm}743\hfill\papier{Laplante-Anfossi '22}744745\vspace{-1.7cm}746\parbox{\widthof{any}}{the\phantom{y}} vertex of the fiber polytope selected by~$(-v,v)$747\[748\displaystyle749\sum \left( \!\! \begin{array}{ccc} \poly{P} \times \poly{P} & & (p,q) \\[.1cm] \rotatebox[origin=c]{-90}{$\xrightarrow{\hspace*{.6cm}}$} & , & \rotatebox[origin=c]{-90}{$\xmapsto{\hspace*{.6cm}}$} \\[.4cm] \poly{P} & & \frac{p+q}{2} \end{array} \!\! \right)750\]751gives a cellular approximation of the diagonal of~$\poly{P}$ \\752projecting back on~$\poly{P}$, we see it as a polyhedral subdivision~$\Delta_{\poly{P},v}$ of~$\poly{P}$753\vspace{-5cm}754755\vfill756\hfill{\small \textcopyright\,G.\,Laplante-Anfossi} \\[-2.5cm]757\centerline{758\begin{tabular}{c@{}cc@{}c}759\hspace{2cm}\includegraphics[scale=1.2]{diagonalTriangle4}760&&761\hspace{-1.3cm}\includegraphics[scale=1.2]{diagonalSquarre3}\hspace{3.5cm}762\\[-1.8cm]763\raisebox{.9cm}{\includegraphics[scale=1.4]{diagonalTriangle1}}764&765\includegraphics[scale=.4]{diagonalSimplexGuillaume}766&767\includegraphics[scale=1.4]{diagonalSquarre1}768&769\includegraphics[scale=.45]{diagonalCubeGuillaume}770% \\[-.5cm]771% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$}772% &773% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$}774% \\[.6cm]775% \multicolumn{2}{c}{[OEIS, A127717]}776% &777% \multicolumn{2}{c}{[OEIS, A038220]}778\end{tabular}779}780\vspace{2cm}781782\end{slide}783784%%%785786\begin{slide}{Diagonals of polytopes}787788\theo{THM}{789\vspace{-1.2cm}790\begin{center}791combinatorics of the diagonal~$\Delta_{\poly{P},v}$ of~$\poly{P}$ \\792$\simeq$ \\793common refinement of two copies of the normal fan of~$\poly{P}$ translated by~$v$794\end{center}795796\hfill\papier{Laplante-Anfossi '22}797798}799800\vspace{1cm}801\centerline{802\begin{tabular}{c@{\hspace{-.5cm}}c@{\qquad}c@{\quad}c}803\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle5}}804&805\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle2}}806&807\includegraphics[scale=1.2]{diagonalSquarre5}808&809\includegraphics[scale=1.2]{diagonalSquarre2}810\end{tabular}811}812813\end{slide}814815%%%816817\begin{slide}{Diagonals of polytopes}818819\theo{THM}{820Faces of~$\Delta_{\poly{P},v} \subseteq$ pairs $(F,G)$ such that~$\max_v(F) \le \min_v(G)$821822\hfill\papier{Laplante-Anfossi '22}823824}825826\vspace{1cm}827When these are exactly the faces, it is called ``magical formula'' \\828This is the case for simplices, cubes, associahedra, but not permutahedra (see later)829830\vspace{1cm}831\centerline{832\begin{tabular}{c@{\qquad}c}833\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle6}}834&835\includegraphics[scale=1.2]{diagonalSquarre6}836\\837\phantom{$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$}838&839\phantom{$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$}840\end{tabular}841}842843\end{slide}844845%%%846847\begin{slide}{Diagonals of polytopes}848849\theo{THM}{850Faces of~$\Delta_{\poly{P},v} \subseteq$ pairs $(F,G)$ such that~$\max_v(F) \le \min_v(G)$851852\hfill\papier{Laplante-Anfossi '22}853854}855856\vspace{1cm}857When these are exactly the faces, it is called ``magical formula'' \\858This is the case for simplices, cubes, associahedra, but not permutahedra (see later)859860\vspace{1cm}861\centerline{862\begin{tabular}{c@{\qquad}c}863\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle6}}864&865\includegraphics[scale=1.2]{diagonalSquarre6}866\\867$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$868% choose k+2 points of [n] where 2 consecutive are distinguished and might be equal, and the rest is distinct869% this is the same as choosing k+2 points of [n+1], and the position of the consecutive pair of distinguished points among them870% hence (k+1) \binom{n+1}{k+2}871&872$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$873% choose a < b <= c < d in the boolean lattice such that |b-a| + |d-c| = k.874% choose the positions of the ones in (b-a) + (d-c) => \binom{n}{k}875% choose whether each of this ones is in (b-a) or in (d-c) => 2^k876% choose the values of b and c on the remaining n-k positions to be either 00, 01 or 11 => 3^(n-k)877\\[1cm]878[OEIS, A127717]879&880[OEIS, A038220]881\end{tabular}882}883884\end{slide}885886887%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%888%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%889890\partie{Permutahedron \& associahedron}891892%%%%%%%%%%893894\begin{slide}{Lattices: Weak order \& Tamari lattice}895896\vspace{.3cm}897898\centerline{899\begin{tabular}{l@{\qquad}l}900\hspace{-1cm}\includegraphics[scale=1.25]{weakOrder}901&902\includegraphics[scale=1]{TamariLattice}903\\904\emph{weak order} = permutations of~$[n]$905&906\emph{Tamari lattice} = binary trees on~$[n]$907\\908ordered by paths of simple transpositions909&910ordered by paths of right rotations911\end{tabular}912}913914\end{slide}915916%%%917918\begin{slide}{Lattices: Weak order \& Tamari lattice}919920\vspace{.3cm}921922\centerline{923\begin{tabular}{l@{\qquad}l}924\hspace{-1cm}\includegraphics[scale=1.25]{weakOrderZoom}925&926\includegraphics[scale=1]{TamariLatticeZoom1}\hspace{-1cm}927\\928\emph{weak order} = permutations of~$[n]$929&930\emph{Tamari lattice} = binary trees on~$[n]$931\\932ordered by paths of simple transpositions933&934ordered by paths of right rotations935\end{tabular}936}937938\end{slide}939940%%%941942\begin{slide}{Lattices: Weak order \& Tamari lattice}943944\vspace{.3cm}945946\centerline{947\begin{tabular}{l@{\qquad}l}948\hspace{-1cm}\includegraphics[scale=1.25]{sylvesterCongruence}949&950\includegraphics[scale=1]{TamariLattice}951\\952\emph{weak order} = permutations of~$[n]$953&954\emph{Tamari lattice} = binary trees on~$[n]$955\\956ordered by paths of simple transpositions957&958ordered by paths of right rotations959\end{tabular}960}961962\vspace{.6cm}963\emph{sylvester congruence} \begin{tabular}[t]{@{}l@{}} = equivalence classes are sets of linear extensions of binary trees \\ = equivalence classes are fibers of BST insertion \\ = rewriting rule~$UacVbW \equiv_{\mathrm{sylv}} UcaVbW$ with $a < b < c$\end{tabular}964965\vspace{.6cm}966\emph{quotient lattice} = lattice on classes with $X \le Y \iff \exists \; x \in X, \; y \in Y, x \le y$967968\end{slide}969970%%%971972\begin{slide}{Lattices: Weak order \& Tamari lattice}973974\vspace{.3cm}975976\centerline{977\begin{tabular}{l@{\qquad}l}978\hspace{-1cm}\includegraphics[scale=1.25]{sylvesterCongruenceZoom}979&980\includegraphics[scale=1]{TamariLatticeZoom2}\hspace{-3cm}981\\982\emph{weak order} = permutations of~$[n]$983&984\emph{Tamari lattice} = binary trees on~$[n]$985\\986ordered by paths of simple transpositions987&988ordered by paths of right rotations989\end{tabular}990}991992\vspace{.6cm}993\emph{sylvester congruence} \begin{tabular}[t]{@{}l@{}} = equivalence classes are sets of linear extensions of binary trees \\ = equivalence classes are fibers of BST insertion \\ = rewriting rule~$UacVbW \equiv_{\mathrm{sylv}} UcaVbW$ with $a < b < c$\end{tabular}994995\vspace{.6cm}996\emph{quotient lattice} = lattice on classes with $X \le Y \iff \exists \; x \in X, \; y \in Y, x \le y$997998\end{slide}9991000%%%%%%%%%%10011002\begin{slide}{Fans: braid fan \& sylvester fan}10031004\vspace{.6cm}10051006\centerline{1007\begin{tabular}{l@{\qquad}l}1008\includegraphics[scale=1.4]{braidFan}1009&1010\raisebox{-.6cm}{\includegraphics[scale=1.4]{sylvesterFan}}1011\\[-.5cm]1012\emph{braid fan} =1013&1014\emph{sylvester fan} =1015\\1016$\quad \poly{C}(\sigma) = \set{\b{x} \in \R^n}{x_{\sigma(1)} \le \dots \le x_{\sigma(n)}}$1017&1018$\quad \poly{C}(T) = \set{\b{x} \in \R^n}{x_i \le x_j \text{ if $i \to j$ in $T$}}$1019\end{tabular}1020}10211022\end{slide}10231024%%%10251026\begin{slide}{Fans: braid fan \& sylvester fan}10271028\vspace{.6cm}10291030\centerline{1031\begin{tabular}{l@{\qquad}l}1032\includegraphics[scale=1.4]{braidFanZoom}1033&1034\raisebox{-.6cm}{\includegraphics[scale=1.4]{sylvesterFanZoom}}1035\\[-.5cm]1036\emph{braid fan} =1037&1038\emph{sylvester fan} =1039\\1040$\quad \poly{C}(\sigma) = \set{\b{x} \in \R^n}{x_{\sigma(1)} \le \dots \le x_{\sigma(n)}}$1041&1042$\quad \poly{C}(T) = \set{\b{x} \in \R^n}{x_i \le x_j \text{ if $i \to j$ in $T$}}$1043\end{tabular}1044}10451046\end{slide}10471048%%%10491050\begin{slide}{Fans: braid fan \& sylvester fan}10511052\vspace{.6cm}10531054\centerline{1055\begin{tabular}{l@{\qquad}l}1056\includegraphics[scale=1.4]{braidFan}1057&1058\raisebox{-.6cm}{\includegraphics[scale=1.4]{sylvesterFan}}1059\\[-.5cm]1060\emph{braid fan} =1061&1062\emph{sylvester fan} =1063\\1064$\quad \poly{C}(\sigma) = \set{\b{x} \in \R^n}{x_{\sigma(1)} \le \dots \le x_{\sigma(n)}}$1065&1066$\quad \poly{C}(T) = \set{\b{x} \in \R^n}{x_i \le x_j \text{ if $i \to j$ in $T$}}$1067\end{tabular}1068}10691070\vspace{1cm}1071\emph{quotient fan} = $\poly{C}(T)$ is obtained by glueing $\poly{C}(\sigma)$ for all linear extensions~$\sigma$ of~$T$10721073\end{slide}10741075%%%%%%%%%%10761077\begin{slide}{Polytopes: Permutahedron \& associahedron}10781079\vspace{.6cm}10801081\centerline{1082\begin{tabular}{ll}1083\includegraphics[scale=1.25]{permutahedron}1084&1085\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedron}}1086\\[.1cm]1087\emph{permutahedron} $\Perm(n)$1088&1089\emph{associahedron} $\Asso(n)$1090\\[.1cm]1091$\quad = \conv\bigset{[\sigma^{-1}(i)]_{i \in [n]}}{\sigma \in \fS_n}$1092&1093$\quad = \conv \set{[\ell(T,i) \cdot r(T,i)]_{i \in [n]}}{T \text{ binary tree}}$1094\\[.1cm]1095$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{\varnothing \ne J \subsetneq [n]} \HH_J$1096&1097$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{1 \le i < j \le n} \HH_{[i,j]}$1098\\[-.8cm]1099where $\HH_J = \bigset{\b{x} \in \R^{n}}{\sum_{j \in J} x_j \ge \binom{|J|+1}{2}}$ \hspace{-1cm}1100&1101\raisebox{.5cm}{\begin{minipage}{14cm}1102\flushright \papier{Stasheff ('63) \\ Shnider -- Sternberg ('93) \\[-.3cm] Loday ('04)}1103\end{minipage}}1104\end{tabular}1105}11061107\end{slide}11081109%%%11101111\begin{slide}{Polytopes: Permutahedron \& associahedron}11121113\vspace{.6cm}11141115\centerline{1116\begin{tabular}{ll}1117\includegraphics[scale=1.25]{permutahedronZoom}1118&1119\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedronZoom}} \hspace*{-1cm}1120\\[.1cm]1121\emph{permutahedron} $\Perm(n)$1122&1123\emph{associahedron} $\Asso(n)$1124\\[.1cm]1125$\quad = \conv\bigset{[\sigma^{-1}(i)]_{i \in [n]}}{\sigma \in \fS_n}$1126&1127$\quad = \conv \set{[\ell(T,i) \cdot r(T,i)]_{i \in [n]}}{T \text{ binary tree}}$1128\\[.1cm]1129$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{\varnothing \ne J \subsetneq [n]} \HH_J$1130&1131$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{1 \le i < j \le n} \HH_{[i,j]}$1132\\[-.8cm]1133where $\HH_J = \bigset{\b{x} \in \R^{n}}{\sum_{j \in J} x_j \ge \binom{|J|+1}{2}}$ \hspace{-1cm}1134&1135\raisebox{.5cm}{\begin{minipage}{14cm}1136\flushright \papier{Stasheff ('63) \\ Shnider -- Sternberg ('93) \\[-.3cm] Loday ('04)}1137\end{minipage}}1138\end{tabular}1139}11401141\end{slide}11421143%%%11441145\begin{slide}{Polytopes: Permutahedron \& associahedron}11461147\vspace{.6cm}11481149\centerline{1150\begin{tabular}{ll}1151\includegraphics[scale=1.25]{permutahedron}1152&1153\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedronPermutahedron}}1154\\[.1cm]1155\emph{permutahedron} $\Perm(n)$1156&1157\emph{associahedron} $\Asso(n)$1158\\[.1cm]1159$\quad = \conv\bigset{[\sigma^{-1}(i)]_{i \in [n]}}{\sigma \in \fS_n}$1160&1161$\quad = \conv \set{[\ell(T,i) \cdot r(T,i)]_{i \in [n]}}{T \text{ binary tree}}$1162\\[.1cm]1163$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{\varnothing \ne J \subsetneq [n]} \HH_J$1164&1165$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{1 \le i < j \le n} \HH_{[i,j]}$1166\\[-.8cm]1167where $\HH_J = \bigset{\b{x} \in \R^{n}}{\sum_{j \in J} x_j \ge \binom{|J|+1}{2}}$ \hspace{-1cm}1168&1169\raisebox{.5cm}{\begin{minipage}{14cm}1170\flushright \papier{Stasheff ('63) \\ Shnider -- Sternberg ('93) \\[-.3cm] Loday ('04)}1171\end{minipage}}1172\end{tabular}1173}11741175%\gboite{1176% \emph{removahedron} = $\Asso(n)$ is obtained from $\Perm(n)$ by removing facet inequalities1177%}11781179\end{slide}11801181%%%11821183\begin{slide}{Polytopes: Permutahedron \& associahedron}118411851186\centerline{1187\includemovie[autoplay, repeat, text={}, mouse=true]{600pt}{392pt}{polywood/outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov}1188}11891190\vfill1191\includegraphics[scale=.5]{polywood/polywood}1192\vspace{2.8cm}11931194\vspace{-.1cm}11951196\end{slide}11971198%%%%%%%%%%11991200\begin{slide}{lattices -- fans -- polytopes}12011202\vspace{.3cm}1203\centerline{1204\begin{tabular}{l@{\hspace{2.4cm}}l}1205\emph{permutahedron} $\Perm(n)$1206&1207\emph{associahedron} $\Asso(n)$1208\\[.1cm]1209$\quad \Longrightarrow$ braid fan1210&1211$\quad \Longrightarrow$ Sylvester fan \hspace{2.9cm}1212\\[.1cm]1213$\quad \Longrightarrow$ weak order on permutations1214&1215$\quad \Longrightarrow$ Tamari lattice on binary trees \hspace{2.9cm}1216\\[.5cm]1217\includegraphics[scale=1.25]{permutahedronWeakOrder}1218&1219\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedronTamariLattice}}1220\\[-.8cm]1221\end{tabular}1222}12231224\end{slide}12251226%%%%%%%%%%12271228\begin{slide}{$f$-vector of diagonals}12291230\centerline{1231\begin{tabular}{c@{}c}1232\hspace{2cm}\includegraphics[scale=1.15]{diagonalPermutahedron2}\hspace{2cm}1233&1234\hspace{2cm}\includegraphics[scale=1.15]{diagonalAssociahedron2}\hspace{2cm}1235\\[-.4cm]1236\includegraphics[scale=.45]{diagonalPermutahedronGuillaume}1237&1238\includegraphics[scale=.45]{diagonalAssociahedronGuillaume}1239\end{tabular}1240}1241\vspace{-10cm}12421243\hfill1244\papier{Saneblidze -- Umble '04}12451246\vspace{-.3cm}1247\hfill1248\papier{Markl -- Shnider '06}12491250\vspace{-.3cm}1251\hfill1252\papier{Loday '11}12531254\vspace{6.8cm}1255{\small \textcopyright\,G.\,Laplante-Anfossi}1256\hfill1257\papier{Masuda -- Thomas -- Tonks -- Vallette '21}12581259\vspace{-.3cm}1260\hfill1261\papier{Laplante-Anfossi '22}12621263\end{slide}12641265%%%12661267\begin{slide}{$f$-vector of diagonals}12681269\centerline{1270\begin{tabular}{c@{}c}1271\hspace*{2cm}\includegraphics[scale=1.15]{diagonalPermutahedron2}\hspace{2cm}1272&1273\hspace{2cm}\includegraphics[scale=1.15]{diagonalAssociahedron2}\hspace*{2cm}1274\\[.5cm]1275% $\displaystyle f_k(\Delta_{\Perm(n)}) = \sum_{\b{F} \le \b{G}} \prod_{i \in [2]} \prod_{p \in G_i} (\# F_i[p]-1)!$1276$\displaystyle f_k = \sum_{\b{F} \le \b{G}} \prod_{i \in [2]} \prod_{p \in G_i} (\# F_i[p]-1)!$1277&1278$\displaystyle f_k = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}$1279\\1280% $f_0(\Delta_{\Perm(n)}) = [x^n] \; \exp \! \bigg( \sum_m \frac{x^m}{m(m+1)}\binom{2m}{m} \! \bigg)$1281$\displaystyle f_0 = [x^n] \; \exp \! \bigg( \sum_m \frac{x^m}{m(m+1)}\binom{2m}{m} \! \bigg)$1282\\[1cm]1283% $f_{n-1}(\Delta_{\Perm(n)}) = 2 (n+1)^{n-2}$1284$f_{n-1} = 2 (n+1)^{n-2}$1285\\[-.8cm]1286\end{tabular}1287}12881289\vspace{2.5cm}1290\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}1291\hfill1292\papier{Bostan -- Chyzak -- P. '23$^+$}12931294\end{slide}12951296%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%1297%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%12981299\partie{Diagonal of the associahedron}13001301\centerline{1302\raisebox{.5cm}{\includegraphics[scale=1.2]{diagonalAssociahedron1}}1303\includegraphics[scale=.6]{diagonalAssociahedronGuillaume}1304}13051306\vspace{-2cm}1307\hfill1308{\small \textcopyright\,G.\,Laplante-Anfossi}13091310\begin{center}1311\href{http://arxiv.org/abs/2303.10986}{\texttt{arXiv:2303.10986}}1312\\[.1cm]1313with \\1314Alin BOSTAN (INRIA) \\1315Frédéric CHYZAK (INRIA)1316\end{center}13171318%%%%%%%%%%13191320\begin{slide}{Number of Tamari intervals}13211322$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes13231324\vfill1325\centerline{\includegraphics[scale=1.1]{TamariLattices}}1326\vspace{2.7cm}13271328\end{slide}13291330%%%13311332\begin{slide}{Number of Tamari intervals}13331334$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes13351336\vspace{.1cm}1337\theo{THM}{1338For any~$n \ge 1$, \hfill \papier{Chapoton '07}1339\[1340\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}1341\]13421343\vspace{-.4cm}1344}13451346\vspace{.8cm}1347$1, 3, 13, 68, 399, 2530, 16965, ...$ [OEIS A000260]1348\vspace*{-1cm}13491350\vfill1351\centerline{\includegraphics[scale=1.1]{TamariLattices}}1352\vspace*{2.7cm}13531354\end{slide}13551356%%%%%%%%%%13571358\begin{slide}{First refined formula on Tamari intervals}13591360$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes \\1361$\des(T) = $ number of binary trees {\red covered} by~$T$ \\1362$\asc(T) = $ number of binary trees {\blue covering}~$T$13631364\vfill1365\centerline{\includegraphics[scale=1.1]{TamariLatticesColored}}1366\vspace{2.7cm}13671368\end{slide}13691370%%%13711372\begin{slide}{First refined formula on Tamari intervals}13731374$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes \\1375$\des(T) = $ number of binary trees {\red covered} by~$T$ \\1376$\asc(T) = $ number of binary trees {\blue covering}~$T$13771378\vspace{.5cm}1379\theo{THM}{1380For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1381\[1382\# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}1383\]13841385\vspace{-.4cm}1386}13871388\vspace{1cm}1389\centerline{\Large1390\begin{tabular}{c|ccccccccc|c}1391$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $\Sigma$\\1392\hline1393$1$ & $1$ &&&&&&&&& $1$ \\1394$2$ & $1$ & $2$ &&&&&&&& $3$ \\1395$3$ & $1$ & $6$ & $6$ &&&&&&& $13$ \\1396$4$ & $1$ & $12$ & $33$ & $22$ &&&&&& $68$ \\1397$5$ & $1$ & $20$ & $105$ & $182$ & $91$ &&&&& $399$ \\1398$6$ & $1$ & $30$ & $255$ & $816$ & $1020$ & $408$ &&&& $2530$ \\1399$7$ & $1$ & $42$ & $525$ & $2660$ & $5985$ & $5814$ & $1938$ &&& $16965$ \\1400$8$ & $1$ & $56$ & $966$ & $7084$ & $24794$ & $42504$ & $33649$ & $9614$ && $118668$ \\1401$9$ & $1$ & $72$ & $1638$ & $16380$ & $81900$ & $215280$ & $296010$ & $197340$ & $49335$ & $857956$1402\end{tabular}1403}14041405\end{slide}14061407%%%%%%%%%%14081409\begin{slide}{Canonical complex of the Tamari lattice}14101411$(L, \le, \meet, \join)$ lattice14121413\vspace{.3cm}1414\emph{\parbox{\widthof{meet}}{\centering \red join} semidistributive}1415\begin{tabular}[t]{@{}l}1416$\iff$ $x \join y = x \join z$ implies $x \join (y \meet z) = x \join y$ for all~$x,y,z \in L$ \\1417$\iff$ any~$x \in L$ admits a canonical \parbox{\widthof{meet}}{\centering \red join} representation \parbox{\widthof{$x = \bigMeet M$}}{\centering $x = \bigJoin \red J$}1418\end{tabular}14191420\vspace{.3cm}1421\emph{canonical \parbox{\widthof{meet}}{\centering \red join} complex}1422\begin{tabular}[t]{@{}l}1423$=$ simplicial complex of canonical \parbox{\widthof{meet}}{\centering \red join} representations \\1424$=$ a simplex \parbox{\widthof{$M$}}{$\red J$\phantom{y}} for each element \parbox{\widthof{$\bigMeet M$}}{\centering $\bigJoin \red J$} of~$L$1425\end{tabular}14261427\vspace{.2cm}1428\centerline{1429\begin{overpic}[scale=1.7]{canonicalJoinComplexTamari3FullLetters}1430\put(98, 55){$\red \varnothing$}1431\put(30, 125){$\red a$}1432\put(170, 160){$\red b$}1433\put(30, 200){$\red c$}1434\put(83, 275){$\red a \join b$}1435\put(510, 100){$\red a$}1436\put(680, 100){$\red b$}1437\put(590, 70){$\red c$}1438\end{overpic}1439}14401441\vspace*{-1.6cm}1442\hfill\papier{Reading '15}14431444\vspace*{-.3cm}1445\hfill\papier{Barnard '19}14461447\end{slide}14481449%%%14501451%\begin{slide}{Canonical complex of the Tamari lattice}1452%1453%$(L, \le, \meet, \join)$ lattice1454%1455%\vspace{.3cm}1456%\emph{join semidistributive}1457%\begin{tabular}[t]{@{}l}1458%$\iff$ $x \join y = x \join z$ implies $x \join (y \meet z) = x \join y$ for all~$x,y,z \in L$ \\1459%$\iff$ any~$x \in L$ admits a canonical join representation~$x = \bigJoin J$1460%\end{tabular}1461%1462%\vspace{.3cm}1463%\emph{canonical join complex}1464%\begin{tabular}[t]{@{}l}1465%$=$ simplicial complex of canonical join representations \\1466%$=$ a simplex~$J$ for each element~$\bigJoin J$ of~$L$1467%\end{tabular}1468%1469%\vspace{.2cm}1470%\centerline{\includegraphics[scale=1.7]{canonicalJoinComplexTamari3Full}}1471%1472%\vspace*{-1.6cm}1473%\hfill\papier{Reading '15}1474%1475%\vspace*{-.3cm}1476%\hfill\papier{Barnard '19}1477%1478%\end{slide}14791480%%%14811482\begin{slide}{Canonical complex of the Tamari lattice}14831484$(L, \le, \meet, \join)$ lattice14851486\vspace{.3cm}1487\emph{{\blue meet} semidistributive}1488\begin{tabular}[t]{@{}l}1489$\iff$ $x \meet y = x \meet z$ implies $x \meet (y \join z) = x \meet y$ for all~$x,y,z \in L$ \\1490$\iff$ any~$x \in L$ admits a canonical {\blue meet} representation~$x = \bigMeet \blue M$1491\end{tabular}14921493\vspace{.3cm}1494\emph{canonical {\blue meet} complex}1495\begin{tabular}[t]{@{}l}1496$=$ simplicial complex of canonical {\blue meet} representations \\1497$=$ a simplex~$\blue M$ for each element~$\bigMeet \blue M$ of~$L$1498\end{tabular}14991500\vspace{.2cm}1501\centerline{1502\begin{overpic}[scale=1.7]{canonicalJoinMeetComplexTamari3FullLetters}1503\put(98, 55){$\red \varnothing$}1504\put(30, 125){$\red a$}1505\put(170, 160){$\red b$}1506\put(30, 200){$\red c$}1507\put(83, 275){$\red a \join b$}1508\put(336, 55){$\blue b \meet c$}1509\put(280, 125){$\blue a$}1510\put(420, 160){$\blue b$}1511\put(280, 200){$\blue c$}1512\put(345, 275){$\blue \varnothing$}1513\put(510, 100){$\red a$}1514\put(680, 100){$\red b$}1515\put(590, 70){$\red c$}1516\put(590, 230){$\blue a$}1517\put(680, 200){$\blue b$}1518\put(510, 200){$\blue c$}1519\end{overpic}1520}15211522\vspace*{-1.6cm}1523\hfill\phantom{\papier{Reading '15}}15241525\vspace*{-.3cm}1526\hfill1527\papier{Albertin -- P. '22}15281529\end{slide}15301531%%%15321533\begin{slide}{Canonical complex of the Tamari lattice}15341535$(L, \le, \meet, \join)$ lattice15361537\vspace{.3cm}1538\emph{semidistributive}1539\begin{tabular}[t]{@{}l}1540$\iff$ join semidistributive and meet semidistributive \\1541$\iff$ any~$x \in L$ admits canonical representations~$x = \bigJoin {\red J} = \bigMeet {\blue M}$1542\end{tabular}15431544\vspace{.3cm}1545\emph{canonical complex}1546\begin{tabular}[t]{@{}l}1547$=$ simplicial complex of canonical representations \\1548$=$ a simplex~${\red J} \sqcup {\blue M}$ for each interval~$\bigJoin {\red J} \le \bigMeet {\blue M}$ in~$L$1549\end{tabular}15501551\vspace{.2cm}1552\centerline{1553\begin{overpic}[scale=1.7]{canonicalComplexTamari3FullLetters}1554\put(98, 55){$\red \varnothing$}1555\put(30, 125){$\red a$}1556\put(170, 160){$\red b$}1557\put(30, 200){$\red c$}1558\put(83, 275){$\red a \join b$}1559\put(336, 55){$\blue b \meet c$}1560\put(280, 125){$\blue a$}1561\put(420, 160){$\blue b$}1562\put(280, 200){$\blue c$}1563\put(345, 275){$\blue \varnothing$}1564\put(510, 100){$\red a$}1565\put(680, 100){$\red b$}1566\put(590, 70){$\red c$}1567\put(590, 230){$\blue a$}1568\put(680, 200){$\blue b$}1569\put(510, 200){$\blue c$}1570\end{overpic}1571}15721573\vspace*{-1.6cm}1574\hfill\phantom{\papier{Reading '15}}15751576\vspace*{-.3cm}1577\hfill\papier{Albertin -- P. '22}15781579\end{slide}15801581%%%15821583\begin{slide}{Canonical complex of the Tamari lattice}15841585$(L, \le, \meet, \join)$ lattice15861587\vspace{.3cm}1588\emph{semidistributive}1589\begin{tabular}[t]{@{}l}1590$\iff$ join semidistributive and meet semidistributive \\1591$\iff$ any~$x \in L$ admits canonical representations~$x = \bigJoin {\red J} = \bigMeet {\blue M}$1592\end{tabular}15931594\vspace{.3cm}1595\emph{canonical complex}1596\begin{tabular}[t]{@{}l}1597$=$ simplicial complex of canonical representations \\1598$=$ a simplex~$J \sqcup M$ for each interval~$\bigJoin {\red J} \le \bigMeet {\blue M}$ in~$L$1599\end{tabular}16001601\vspace{.2cm}1602\centerline{\includegraphics[scale=1.7]{canonicalComplexTamari3Full}}16031604\vspace*{-1.6cm}1605\hfill\papier{Reading '15}16061607\vspace*{-.3cm}1608\hfill\papier{Albertin -- P. '22}16091610\end{slide}16111612%%%16131614\begin{slide}{Canonical complex of the Tamari lattice}16151616\vspace{.5cm}1617\theo{THM}{1618For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1619\[1620f_k(\mathbb{CC}_n) = \# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}1621\]16221623\vspace{-.4cm}1624}16251626\vspace{1.15cm}1627\centerline{\includegraphics[scale=1.7]{canonicalComplexTamari3Full}}16281629\vspace*{-1.6cm}1630\hfill\papier{Reading '15}16311632\vspace*{-.3cm}1633\hfill\papier{Albertin -- P. '22}16341635\end{slide}16361637%%%16381639\begin{slide}{Canonical complex of the Tamari lattice}16401641\vspace{.5cm}1642\centerline{\includegraphics[scale=.95]{canonicalComplexTamari4}}16431644\centerline{$1 + 12 + 33 + 22 = 68$}16451646\vspace*{-1.45cm}1647\hfill\papier{Reading '15}16481649\vspace*{-.3cm}1650\hfill1651\papier{Albertin -- P. '22}16521653\end{slide}16541655%%%%%%%%%%16561657\begin{slide}{Second refined formula on Tamari intervals}16581659$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes \\1660$\des(T) = $ number of binary trees {\red covered} by~$T$ \\1661$\asc(T) = $ number of binary trees {\blue covering}~$T$16621663\vspace{.5cm}1664\theo{THM}{1665For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1666\[1667%b_{n,k} \eqdef \sum_{\ell = k}^{n-1} a_{n,\ell} \binom{\ell}{k} =1668\sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}1669\]16701671\vspace{-.6cm}1672}16731674\vspace{1cm}1675\centerline{\Large1676\begin{tabular}{c|ccccccccc}1677$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\1678\hline1679$1$ & $1$ \\1680$2$ & $3$ & $2$ \\1681$3$ & $13$ & $18$ & $6$ \\1682$4$ & $68$ & $144$ & $99$ & $22$ \\1683$5$ & $399$ & $1140$ & $1197$ & $546$ & $91$ \\1684$6$ & $2530$ & $9108$ & $12903$ & $8976$ & $3060$ & $408$ \\1685$7$ & $16965$ & $73710$ & $131625$ & $123500$ & $64125$ & $17442$ & $1938$ \\1686$8$ & $118668$ & $604128$ & $1302651$ & $1540770$ & $1078539$ & $446292$ & $100947$ & $9614$ \\1687$9$ & $857956$ & $5008608$ & $12660648$ & $18086640$ & $15958800$ & $8898240$ & $3058770$ & $592020$ & $49335$1688\end{tabular}1689}16901691\end{slide}16921693%%%16941695\begin{slide}{Diagonal of the associahedron}16961697$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron16981699\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron3}}17001701\end{slide}17021703%%%17041705\begin{slide}{Diagonal of the associahedron}17061707$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron17081709\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron5}}17101711\end{slide}17121713%%%17141715\begin{slide}{Diagonal of the associahedron}17161717$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron17181719\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron4}}17201721\theo{THM}{(Magical formula) \hfill\papier{Masuda -- Thomas -- Tonks -- Vallette '21}1722\\[.3cm]1723\centerline{$k$-faces of~$\Delta_{\Asso(n)}$ $\qquad \longleftrightarrow$ \begin{tabular}[t]{c} $(F,G)$ faces of $\Asso(n)$ with \\ $\dim(F) + \dim(G) = k$ and $\max(F) \le \min(G)$ \end{tabular}}1724}17251726\end{slide}17271728%%%17291730\begin{slide}{Diagonal of the associahedron}17311732$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron17331734\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron4}}17351736\theo{THM}{1737For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1738\[1739f_k(\Delta_{\Asso(n)}) = \!\!\! \sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}1740\]17411742\vspace{-.6cm}1743}17441745\end{slide}17461747%%%%%%%%%%17481749\begin{slide}{Connection between the two formulas}17501751\vspace{.5cm}1752\theo{THM}{1753For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1754\[1755f_k(\mathbb{CC}_n) = \# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}1756\]17571758\vspace{-.4cm}1759}17601761\vspace{.5cm}1762\theo{THM}{1763For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1764\[1765f_k(\Delta_{\Asso(n)}) = \!\!\! \sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}1766\]17671768\vspace{-.6cm}1769}17701771\end{slide}17721773%%%%%%%%%%17741775\begin{slide}{Connection between the two formulas}17761777\vspace{.5cm}1778\theo{THM}{1779For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1780\[1781f_k(\mathbb{CC}_n) = \# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}1782\]17831784\vspace{-.4cm}1785}17861787\vspace{.5cm}1788\theo{THM}{1789For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1790\[1791f_k(\Delta_{\Asso(n)}) = \!\!\! \sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}1792\]17931794\vspace{-.6cm}1795}17961797\vspace{1cm}1798Second formula follows from the first since ...17991800\theo{THM}{1801For any~$n,k,r \in \N$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}1802\[1803\sum_{\ell =k}^{n-1} \binom{n+1}{\ell+2} \binom{r}{\ell} \binom{\ell}{k} = \frac{n(n+1)}{(r+1)(r+2)} \binom{n-1}{k} \binom{r+n+1-k}{n+1}.1804\]18051806\vspace{-.6cm}1807}18081809\vspace{.5cm}1810... by application of Chu -- Vandermonde equality18111812\end{slide}18131814%%%%%%%%%%18151816\begin{slide}{Quadratic equation}18171818$n(T) = $ number of nodes of~$T$ \\1819$\ell(T) =$ number of bounded edges on the left branch of~$T$18201821\[1822\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}1823\]18241825\end{slide}18261827%%%18281829\begin{slide}{Quadratic equation}18301831$n(T) = $ number of nodes of~$T$ \\1832$\ell(T) =$ number of bounded edges on the left branch of~$T$18331834\[1835\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}1836\]18371838We want to compute18391840\[1841A \eqdef A(t,z) \eqdef \sum_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = \bbA(1,1,t,z)1842\]18431844we will use $u$ and~$v$ as catalytic variables ...18451846\end{slide}18471848%%%18491850\begin{slide}{Quadratic equation}18511852$n(T) = $ number of nodes of~$T$ \\1853$\ell(T) =$ number of bounded edges on the left branch of~$T$18541855\[1856\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}1857\]18581859We want to compute18601861\[1862A \eqdef A(t,z) \eqdef \sum_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = \bbA(1,1,t,z)1863\]18641865we will use $u$ and~$v$ as catalytic variables ...18661867\vspace{.5cm}1868\theo{PROP}{1869The generating functions~$A_u \eqdef \bbA(u,1,t,z)$ and~$A_1 \eqdef \bbA(1,1,t,z)$ satisfy the quadratic functional equation1870\[1871(u-1) A_u = t \big( u-1 + u (u+z-1) A_u - z A_1 \big) \big( 1 + uz A_u \big)1872\]18731874\vspace{-.4cm}1875}18761877\end{slide}18781879%%%%1880%1881%\begin{slide}{Quadratic equation}1882%1883%$n(T) = $ number of nodes of~$T$ \\1884%$\ell(T) =$ number of bounded edges on the left branch of~$T$1885%1886%\[1887%\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}1888%\]1889%1890%We want to compute1891%1892%\[1893%A \eqdef A(t,z) \eqdef \sum_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = \bbA(1,1,t,z)1894%\]1895%1896%we will use $u$ and~$v$ as catalytic variables ...1897%1898%\vspace{1cm}1899%Define1900%\begin{alignat*}{4}1901%A_u(t,z)1902%& \eqdef \bbA(u,1,t,z)1903%& \text{and}\qquad &&1904%A^\circ_u(t,z) & \eqdef \bbA(u,0,t,z) \\1905%& = \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}1906%&&&1907%& = \sum_{S \le T \text{ ind.}} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}1908%\end{alignat*}1909%1910%\end{slide}1911%1912%%%%1913%1914%\begin{slide}{Quadratic equation}1915%1916%$n(T) = $ number of nodes of~$T$ \\1917%$\ell(T) =$ number of bounded edges on the left branch of~$T$1918%\[1919%A_u(t,z) = \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}1920%\text{and}\qquad1921%A^\circ_u(t,z) = \sum_{S \le T \text{ ind.}} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}1922%\]1923%1924%\end{slide}1925%1926%%%%%%%%%%19271928\begin{slide}{Grafting decompositions}19291930\vspace{.5cm}1931$S \backslash T = $ binary tree obtained by \emph{grafting}~$S$ on the leftmost leaf of~$T$ \\1932$S = S_0 \backslash S_1 \backslash \dots \backslash S_k$ \emph{grafting decomposition}19331934\vspace{.5cm}1935\centerline{\includegraphics[scale=1.8]{graftingDecompositionTree}}19361937\vspace{.5cm}1938\theo{LEM}{1939If~$S = S_0 \backslash S_1 \backslash \dots \backslash S_k$ and~$T = T_0 \backslash T_1 \backslash \dots \backslash T_k$ are s.t.~$n(S_i) = n(T_i)$ for all~$i \in [k]$, then \qquad\qquad\qquad $S \le T \iff S_i \le T_i$ for all~$i \in [k]$1940\hfill \papier{Chapoton '07}1941}19421943\vspace{.5cm}1944\centerline{\includegraphics[scale=1.8]{graftingDecompositionInterval}}19451946\vspace{.3cm}1947\theo{LEM}{1948If~$S \le T$, then we can write~$S = S_0 \backslash S_1 \backslash \dots \backslash S_\ell$ and~$T = T_0 \backslash T_1 \backslash \dots \backslash T_\ell$ where \\ $\ell = \ell(T)$ and $n(S_i) = n(T_i)$ for all~$i \in [\ell]$1949\hfill \papier{Chapoton '07}19501951}19521953\vspace{.5cm}1954$\ell(T) =$ number of bounded edges on the left branch of~$T$19551956\end{slide}19571958%%%%%%%%%%19591960\begin{slide}{Quadratic equation}19611962$n(T) = $ number of nodes of~$T$ \\1963$\ell(T) =$ number of bounded edges on the left branch of~$T$19641965\[1966\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}1967\]19681969Consider1970\begin{alignat*}{4}1971A_u(t,z)1972& \eqdef \bbA(u,1,t,z)1973& \qquad\text{and}\qquad &&1974A^\circ_u(t,z) & \eqdef \bbA(u,0,t,z) \\1975& = \text{all Tamari intervals}1976&&&1977& = \text{indecomposable intervals}1978\end{alignat*}19791980\end{slide}19811982%%%19831984\begin{slide}{Quadratic equation}19851986$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}1987$ \\[-.7cm]1988$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$19891990\vfill1991\hfill \papier{Chapoton '07}1992\vspace*{2.5cm}19931994\end{slide}19951996%%%19971998\begin{slide}{Quadratic equation}19992000$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}2001$ \\[-.7cm]2002$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$20032004\vspace{.8cm}20051.2006$2007\begin{array}[t]{ccccccccc}2008\text{all intervals} & = & \text{indecomposable intervals} & \backslash & (&\varepsilon & + & \text{all intervals} &) \\2009A_u & = & A^\circ_u && (&1 & + & u z A_u&)2010\end{array}2011$20122013\vfill2014\hfill \papier{Chapoton '07}2015\vspace*{2.5cm}20162017\end{slide}20182019%%%20202021\begin{slide}{Quadratic equation}20222023$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}2024$ \\[-.7cm]2025$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$20262027\vspace{.8cm}20281.2029$2030\begin{array}[t]{ccccccccc}2031\text{all intervals} & = & \text{indecomposable intervals} & \backslash & (&\varepsilon & + & \text{all intervals} &) \\2032A_u & = & A^\circ_u && (&1 & + & u z A_u&)2033\end{array}2034$20352036\vspace{.8cm}20372. from any Tamari interval~$(S,T)$ where~$S = S_0 / S_1 / \dots / S_{\ell(S)}$, we can construct $\ell(S)+2$ indecomposable Tamari intervals~$(S_k',T')$ for~$0 \le k \le \ell(S)+1$, where2038\[2039S_k' = \big( S_0 / \dots / S_{k-1} \big) / Y \backslash \big( S_k / \dots / S_{\ell(S)} \big)2040\qquad\text{and}\qquad2041T' = Y \backslash T2042\]20432044\begin{tabular}{c@{\quad}c@{\quad}c@{\quad}c}2045\includegraphics[scale=2]{proofGraftingDecompositions0} &2046\includegraphics[scale=2]{proofGraftingDecompositions1} &2047\includegraphics[scale=2]{proofGraftingDecompositions2} &2048\includegraphics[scale=2]{proofGraftingDecompositions3} \\2049$S_0' = Y / (S_0 / S_1 / S_2)$ &2050$S_1' = S_0 / Y \backslash (S_1 / S_2)$ &2051$S_2' = (S_0 / S_1) / Y \backslash S_2$ &2052$S_3' = (S_0 / S_1 / S_2) / Y$2053\end{tabular}20542055\vspace{.5cm}2056... and all indecomposable intervals are obtained this way20572058\[2059A^\circ_u = t \Big( 1 + z \frac{u A_u - A_1}{u-1} + u A_u \Big)2060\]20612062\vspace*{-3cm}20632064\vfill2065\hfill \papier{Chapoton '07}2066\vspace*{2.5cm}20672068\end{slide}20692070%%%20712072\begin{slide}{Quadratic equation}20732074$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}2075$ \\[-.7cm]2076$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$20772078\vspace{1cm}20791. \centerline{$A_u = A^\circ_u(1+u z A_u)$}20802081\vspace{1cm}20822. \centerline{$\displaystyle A^\circ_u = t \Big( 1 + z \frac{u A_u - A_1}{u-1} + u A_u \Big)$}20832084\vspace{.6cm}2085\theo{PROP}{2086The generating functions~$A_u \eqdef \bbA(u,1,t,z)$ and~$A_1 \eqdef \bbA(1,1,t,z)$ satisfy the quadratic functional equation2087\[2088(u-1) A_u = t \big( u-1 + u (u+z-1) A_u - z A_1 \big) \big( 1 + uz A_u \big)2089\]20902091\vspace{-.4cm}2092}20932094\vfill2095\hfill \papier{Chapoton '07}2096\vspace*{2.5cm}20972098\end{slide}20992100%%%%%%%%%%21012102\begin{slide}{Quadratic method}21032104\theo{PROP}{2105The generating functions~$A_u \eqdef \bbA(u,1,t,z)$ and~$A_1 \eqdef \bbA(1,1,t,z)$ satisfy the quadratic functional equation2106\[2107(u-1) A_u = t \big( u-1 + u (u+z-1) A_u - z A_1 \big) \big( 1 + uz A_u \big)2108\]21092110\vspace{-.4cm}2111}21122113\vspace{.5cm}2114Quadratic equation with a catalytic variable... \emph{quadratic method} \\2115The discriminant of this quadratic polynomial must have multiple roots, hence, its own discriminant vanishes211621172118\theo{CORO}{2119The generating function~$A = A(t,z)$ is a root of the polynomial2120\begin{gather*}2121t^3 z^6 X^4 \\2122{} + t^2 z^4 (t z^2 + 6 t z - 3 t + 3) X^3 \\2123{} + t z^2 (6 t^2 z^3 + 9 t^2 z^2 - 12 t^2 z + 2 t z^2 + 3 t^2 - 6 t z + 21 t + 3) X^2 \\2124{} + (12 t^3 z^4 - 4 t^3 z^3 - 9 t^3 z^2 - 10 t^2 z^3 + 6 t^3 z + 26 t^2 z^2 \hspace{3cm} \\ \hspace{6cm} - \; t^3 + 6 t^2 z + t z^2 + 3 t^2 - 12 t z - 3 t + 1) X \\2125{} + t (8 t^2 z^3 - 12 t^2 z^2 + 6 t^2 z - t z^2 - t^2 + 10 t z + 2 t - 1)2126\end{gather*}21272128\vspace{-.4cm}2129}21302131\end{slide}21322133%%%%%%%%%%21342135\begin{slide}{Reparametrization}21362137\theo{CORO}{2138The generating function~$A = A(t,z)$ is a root of the polynomial2139\begin{gather*}2140t^3 z^6 X^4 \\2141{} + t^2 z^4 (t z^2 + 6 t z - 3 t + 3) X^3 \\2142{} + t z^2 (6 t^2 z^3 + 9 t^2 z^2 - 12 t^2 z + 2 t z^2 + 3 t^2 - 6 t z + 21 t + 3) X^2 \\2143{} + (12 t^3 z^4 - 4 t^3 z^3 - 9 t^3 z^2 - 10 t^2 z^3 + 6 t^3 z + 26 t^2 z^2 \hspace{3cm} \\ \hspace{6cm} - \; t^3 + 6 t^2 z + t z^2 + 3 t^2 - 12 t z - 3 t + 1) X \\2144{} + t (8 t^2 z^3 - 12 t^2 z^2 + 6 t^2 z - t z^2 - t^2 + 10 t z + 2 t - 1)2145\end{gather*}21462147\vspace{-.4cm}2148}21492150\vspace{.5cm}2151Reparametrize by2152\[2153t = \frac{s}{(s+1) (sz+1)^3} \qquad X = s - z s^2 - z s^32154\]21552156\theo{CORO}{2157The generating function~$A = A(t,z)$ can be written2158\[2159A = S - z S^2 - z S^32160\qquad\text{where}\qquad2161t = \frac{S}{(S+1) (Sz+1)^3}2162\]21632164\vspace{-.4cm}2165}216621672168\end{slide}21692170%%%%%%%%%%21712172\begin{slide}{Lagrange inversion}21732174\theo{CORO}{2175The generating function~$A = A(t,z)$ can be written2176\[2177A = S - z S^2 - z S^32178\qquad\text{where}\qquad2179t = \frac{S}{(S+1) (Sz+1)^3}2180\]21812182\vspace{-.4cm}2183}21842185\theo{THM}{(Lagrange inversion)2186If $S = t \psi(S)$, then2187$\displaystyle [t^n] \; S^r = \frac{r}{n} \; [s^{n-r}] \; \phi(s)^n$2188for any2189$r \ge 1$21902191}21922193\vspace{1cm}2194Here $\phi(s) \eqdef (s+1) (sz+1)^3$ \\2195Hence $\displaystyle [s^a] \; \phi(s)^n = [s^a] (s+1)^n (sz+1)^{3n} = \sum_{i+j=a} \binom{n}{i} \binom{3n}{j} z^j$ \\2196Hence $\displaystyle [t^n z^k] S^r = \frac{r}{n} [s^{n-r} z^k] \phi(s)^n = \frac{r}{n} \binom{n}{n-r-k} \binom{3n}{k} = \frac{r}{n} \binom{n}{k+r} \binom{3n}{k}$ \\2197Finally,2198\[2199[t^n z^k] A = [t^n z^k] S - [t^n z^{k-1}] S^2 - [t^n z^{k-1}] S^3 = \frac{2}{n(n+1)} \binom{3n}{k} \binom{n+1}{k+2}2200\]22012202\end{slide}22032204%%%%%%%%%%22052206\begin{slide}{Bijections to planar triangulations}22072208$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes22092210\vspace{.1cm}2211\theo{THM}{2212For any~$n \ge 1$, \hfill \papier{Chapoton '07}2213\[2214\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}2215\]22162217\vspace{-.4cm}2218}22192220\vspace{2cm}2221Also counts rooted $3$-connected planar triangulations with $2n+2$ faces2222\hfill\papier{Tutte}22232224\vspace{1cm}2225\includegraphics[scale=3]{bijectionBinaryTrees}2226\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{9.35cm}}$}\hspace{-1cm}2227\raisebox{-2cm}{\includegraphics[scale=3]{planarTriangulation}}22282229\end{slide}22302231%%%22322233\begin{slide}{Bijections to planar triangulations}22342235$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes22362237\vspace{.1cm}2238\theo{THM}{2239For any~$n \ge 1$, \hfill \papier{Chapoton '07}2240\[2241\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}2242\]22432244\vspace{-.4cm}2245}22462247\vspace{2cm}2248Also counts rooted $3$-connected planar triangulations with $2n+2$ faces2249\hfill\papier{Tutte}22502251\vspace{1cm}2252\includegraphics[scale=3]{bijectionBinaryTrees}2253\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill2254\includegraphics[scale=3]{bijectionDyckPaths}2255\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}2256\raisebox{-2cm}{\includegraphics[scale=3]{planarTriangulation}}22572258\end{slide}22592260%%%22612262\begin{slide}{Bijections to planar triangulations}22632264$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes22652266\vspace{.1cm}2267\theo{THM}{2268For any~$n \ge 1$, \hfill \papier{Chapoton '07}2269\[2270\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}2271\]22722273\vspace{-.4cm}2274}22752276\vspace{2cm}2277Also counts rooted $3$-connected planar triangulations with $2n+2$ faces2278\hfill\papier{Tutte}22792280\vspace{1cm}2281\includegraphics[scale=3]{bijectionBinaryTreesColored}2282\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill2283\includegraphics[scale=3]{bijectionDyckPathsColored}2284\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}2285\raisebox{-2cm}{\includegraphics[scale=3]{bijectionSchnyderWoods}}22862287\hfill\papier{Bernardi -- Bonichon, '09}22882289\end{slide}22902291%%%%%%%%%%22922293\begin{slide}{Schnyder woods}22942295\vspace{.5cm}2296$M$ planar triangulation with external vertices~$v_0, v_1, v_3$ \\2297$n$ internal nodes, $3n$ internal edges, $2n+1$ internal triangles \\[.5cm]2298\emph{Schnyder wood} $=$ color (with~$0,1,2$) and orient the internal edges s.t.2299\begin{compactitem}2300\item the edges colored $i$ form a spanning tree oriented towards~$v_i$2301\item each vertex satisfies the \emph{vertex rule}:2302\end{compactitem}23032304\vspace{-4.5cm}2305\hfill\includegraphics[scale=2]{SchnyderWoodsRule1}23062307\vspace{-1cm}2308\phantom{Used for graph drawing and representations:}23092310\vspace{.3cm}2311\centerline{\includegraphics[scale=.9]{boxicitySchnyderWood1}}23122313\vspace{-1cm}2314\hfill\papier{Schnyder '89}23152316\end{slide}23172318%%%23192320\begin{slide}{Schnyder woods}23212322\vspace{.5cm}2323$M$ planar triangulation with external vertices~$v_0, v_1, v_3$ \\2324$n$ internal nodes, $3n$ internal edges, $2n+1$ internal triangles \\[.5cm]2325\emph{Schnyder wood} $=$ color (with~$0,1,2$) and orient the internal edges s.t.2326\begin{compactitem}2327\item the edges colored $i$ form a spanning tree oriented towards~$v_i$2328\item each vertex satisfies the \emph{vertex rule}:2329\end{compactitem}23302331\vspace{-4.5cm}2332\hfill\includegraphics[scale=2]{SchnyderWoodsRule1}23332334\vspace{-1cm}2335Used for graph drawing and representations:23362337\vspace{.3cm}2338\centerline{\includegraphics[scale=.9]{boxicitySchnyderWood2}}23392340\vspace{-1cm}2341\hfill\papier{Schnyder '89}23422343\end{slide}23442345%%%23462347\begin{slide}{Schnyder woods}23482349\vspace{.5cm}2350$M$ planar triangulation with external vertices~$v_0, v_1, v_3$ \\2351$n$ internal nodes, $3n$ internal edges, $2n+1$ internal triangles \\[.5cm]2352\emph{Schnyder wood} $=$ color (with~$0,1,2$) and orient the internal edges s.t.2353\begin{compactitem}2354\item the edges colored $i$ form a spanning tree oriented towards~$v_i$2355\item each vertex satisfies the \emph{vertex rule}:2356\end{compactitem}23572358\vspace{-4.5cm}2359\hfill\includegraphics[scale=2]{SchnyderWoodsRule1}23602361\theo{THM}{2362The Schnyder woods of a planar triangulation form a lattice structure under reorientations of clockwise essential cycles2363}23642365\theo{CORO}{2366Any planar triangulation admits a unique Schnyder wood with no clockwise~cycle23672368\vspace{-.1cm}2369}23702371\vspace{1.5cm}2372\hfill\papier{Ossona de Mendez '94}23732374\vspace{-.4cm}2375\hfill\papier{Propp '97}23762377\vspace{-.4cm}2378\hfill\papier{Felsner '04}23792380\end{slide}23812382%%%%%%%%%%23832384\begin{slide}{Bernardi -- Bonichon Bijection}23852386\vspace{.5cm}2387\hspace{-1cm}2388\begin{tabular}[t]{c}2389\includegraphics[scale=3]{bijectionBinaryTreesColored}2390\\[-.5cm]2391\includegraphics[scale=3]{bijectionDyckPathsColored}2392\\[-1cm]2393\includegraphics[scale=3]{bijectionSchnyderWoods}2394\end{tabular}2395\hspace{-1.5cm}2396\raisebox{3cm}{2397\begin{tabular}[t]{c}2398binary trees~$S \le T$2399\\2400with $n$ nodes2401\\[2.5cm]2402Dyck paths~$\mu \le \nu$2403\\2404with semilength~$n$2405\\[3cm]2406planar triangulations2407\\2408with $n$ internal vertices2409\end{tabular}2410}2411\hspace{-.5cm}2412\begin{tabular}[t]{l}2413$\left\downarrow \begin{array}{rl} \text{contour of~$T$} \\ \text{transform} & \text{$\searrow$ to $\diagup$} \\ \text{and} & \text{$\nwarrow$ to $\diagdown$}\end{array} \right.$2414\\[2.5cm]2415$\left\uparrow \begin{array}{rl} \text{contour of~$\red T_0$} \\ \text{transform} & \text{${\red \leftarrow} \, \bullet$ to $\red \diagup$ and $\blue \diagup$} \\ & \text{${\red \rightarrow} \, \bullet$ to $\red \diagdown$} \\ \text{and} & \text{${\blue \rightarrow} \, \bullet$ to $\blue \diagdown$} \end{array} \right.$2416\end{tabular}24172418\vspace{1cm}2419\hfill\papier{Bernardi -- Bonichon, '09}24202421\end{slide}24222423%%%24242425\begin{slide}{Bernardi -- Bonichon Bijection}24262427\vspace{.5cm}2428\hspace{-1cm}2429\begin{tabular}[t]{c}2430\includegraphics[scale=3]{bijectionAscentsDescents}2431\\[-.5cm]2432\includegraphics[scale=3]{bijectionValleysDoubleFalls}2433\\[-1cm]2434\includegraphics[scale=3]{bijectionSchnyderWoods}2435\end{tabular}2436\hspace{-1.5cm}2437\raisebox{3cm}{2438\begin{tabular}[t]{c@{\quad}c@{\quad}c}2439binary trees~$S \le T$2440&2441descents of~$S$2442&2443ascents of~$T$2444\\2445with $n$ nodes2446\\[2.5cm]2447Dyck paths~$\mu \le \nu$2448&2449double falls of~$\mu$2450&2451valleys of~$\nu$2452\\2453with semilength~$n$2454\\[3cm]2455planar triangulations2456&2457intermediate2458&2459intermediate2460\\2461with $n$ internal vertices2462&2463red vertices2464&2465blue vertices2466\end{tabular}2467}24682469\vspace{1cm}2470\hfill\papier{Bernardi -- Bonichon, '09}24712472\end{slide}24732474%%%%%%%%%%24752476\begin{slide}{Counting internal degrees}24772478\includegraphics[scale=3]{bijectionAscentsDescents}2479\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill2480\includegraphics[scale=3]{bijectionValleysDoubleFalls}2481\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}2482\raisebox{-2cm}{\includegraphics[scale=3]{bijectionSchnyderWoods}}24832484%\vspace{-1.5cm}2485%$f_{i,j,k} =$ \# Tamari intervals~$S \le T$ with2486%\begin{tabular}[t]{@{}l}2487%$\#\set{p}{\can(S)_p = \can(T)_p = {-}} = i$ \\2488%$\#\set{p}{\can(S)_p = \can(T)_p = {+}} = j$ \\2489%$\#\set{p}{\can(S)_p \ne \can(T)_p} = k$ \\2490%\end{tabular}24912492\theo{THM}{2493%The generating function~$F \eqdef F(u,v,w) \eqdef \sum\limits_{i,j,k} f_{i,j,k} u^i v^j w^k$ is given by2494The generating function~$\displaystyle F \eqdef F(u,v,w) \eqdef \sum_{S \le T} u^{\,\diagup\diagup} v^{\diagdown\diagdown\,} w^{\diagdown\,\,\diagup}$ is given by2495\[2496uvF = uU + vV + wUV - \frac{UV}{(1+U)(1+V)}2497\]2498where the series~$U \eqdef U(u,v,w)$ and~$V \eqdef V(u,v,w)$ satisfy the system2499\begin{align*}2500U & = (v+wU)(1+U)(1+V)^2 \\2501V & = (u+wV)(1+V)(1+U)^22502\end{align*}25032504\vspace{-1.3cm}2505\hfill\papier{Fusy -- Humbert '19}2506}25072508\end{slide}25092510%%%25112512\begin{slide}{Counting internal degrees}25132514\includegraphics[scale=3]{bijectionAscentsDescents}2515\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill2516\includegraphics[scale=3]{bijectionValleysDoubleFalls}2517\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}2518\raisebox{-2cm}{\includegraphics[scale=3]{bijectionSchnyderWoods}}25192520%\vspace{-1.5cm}2521%$f_{i,j,k} =$ \# Tamari intervals~$S \le T$ with2522%\begin{tabular}[t]{@{}l}2523%$\#\set{p}{\can(S)_p = \can(T)_p = {-}} = i$ \\2524%$\#\set{p}{\can(S)_p = \can(T)_p = {+}} = j$ \\2525%$\#\set{p}{\can(S)_p \ne \can(T)_p} = k$ \\2526%\end{tabular}25272528\theo{CORO}{2529The function~$A \eqdef A(t,z) \eqdef \sum\limits_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = tF(tz,tz,t)$ is given by2530\[2531t z^2 A = 2tz S + t S^2 - \frac{S^2}{(1+S)^2}2532\]2533where the series~$S \eqdef S(t,z)$ satisfies2534\[2535S = t(z+S)(1+S)^32536\]25372538\vspace{-.5cm}2539}25402541\vspace{.8cm}2542... and Lagrange inversion again2543\hfill\papier{(thanks to Éric Fusy)}25442545\end{slide}25462547%%%%%%%%%%25482549\begin{slide}{Canopy}25502551\vspace{.5cm}2552$T$ binary tree with~$n$ nodes, labeled in inorder and oriented towards its root. \\[.3cm]2553\emph{canopy} of~$T =$ vector $\can(T) \in \{-,+\}^{n-1}$ with~$\can(T)_i = -$ \\2554\begin{tabular}{@{\qquad$\iff$}l}2555$(j+1)$st leaf of~$T$ is a right leaf \\2556there is an oriented path joining its $j$th node to its $(j+1)$st node \\2557the $j$th node of $T$ has an empty right subtree \\2558the $(j+1)$st node of~$T$ has a non-empty left subtree \\2559the cone corresponding to~$T$ is located in the halfspace~$x_j \le x_{j+1}$2560\end{tabular}25612562\vspace{.5cm}2563\centerline{\includegraphics[scale=3]{Canopy}}25642565\end{slide}25662567%%%25682569\begin{slide}{Canopy agreements}25702571\vspace{.5cm}2572$T$ binary tree with~$n$ nodes, labeled in inorder and oriented towards its root. \\[.3cm]2573\emph{canopy} of~$T =$ vector $\can(T) \in \{-,+\}^{n-1}$ with~$\can(T)_i = -$ \\2574\begin{tabular}{@{\qquad$\iff$}l}2575the $j$th node of $T$ has an empty right subtree \\2576the $(j+1)$st node of~$T$ has a non-empty left subtree \\2577\end{tabular}25782579\theo{LEM}{\qquad $\asc(T) = \#\set{i}{\can(T)_i = -}$ \quad and \quad $\des(T) = \#\set{i}{\can(T)_i = +}$}25802581\theo{LEM}{If~$S \le T$, then \\2582\begin{tabular}{@{$\bullet$\;}l}2583$\can(S) \le \can(T)$ componentwise \\2584$\des(S) = \#\set{i}{\can(S)_i = \can(T)_i = +}$ and $\asc(S) = \#\set{i}{\can(S)_i = \can(T)_i = -}$2585\end{tabular}2586}25872588\theo{CORO}{2589\hspace{2.5cm}2590$\des(S) + \asc(T) = \#\text{canopy agreements between $S$ and $T$}$2591}25922593\vspace{.5cm}2594\centerline{2595\includegraphics[scale=3]{bijectionAscentsDescents}2596\qquad2597\includegraphics[scale=3]{bijectionCanopy}2598}25992600\end{slide}26012602%%%%%%%%%%26032604\begin{slide}{Fang -- Fusy -- Nadeau bijection}26052606\vspace{.5cm}2607\centerline{\includegraphics[scale=3]{bijectionRectangle1}}26082609\vfill2610\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2611\vspace{3cm}26122613\end{slide}26142615%%%26162617\begin{slide}{Fang -- Fusy -- Nadeau bijection}26182619\vspace{.5cm}2620\centerline{\includegraphics[scale=3]{bijectionRectangle2}}26212622\vfill2623\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2624\vspace{3cm}26252626\end{slide}26272628%%%26292630\begin{slide}{Fang -- Fusy -- Nadeau bijection}26312632\vspace{.5cm}2633\centerline{\includegraphics[scale=3]{bijectionRectangle3}}26342635\vfill2636\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2637\vspace{3cm}26382639\end{slide}26402641%%%26422643\begin{slide}{Fang -- Fusy -- Nadeau bijection}26442645\vspace{.5cm}2646\centerline{\includegraphics[scale=3]{bijectionRectangle4}}26472648\vfill2649\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2650\vspace{3cm}26512652\end{slide}26532654%%%26552656\begin{slide}{Fang -- Fusy -- Nadeau bijection}26572658\vspace{.5cm}2659\centerline{\includegraphics[scale=3]{bijectionRectangle5}}26602661\vfill2662\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2663\vspace{3cm}26642665\end{slide}26662667%%%26682669\begin{slide}{Fang -- Fusy -- Nadeau bijection}26702671\vspace{.5cm}2672\centerline{\includegraphics[scale=3]{bijectionRectangle6}}26732674\vfill2675\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2676\vspace{3cm}26772678\end{slide}26792680%%%26812682\begin{slide}{Fang -- Fusy -- Nadeau bijection}26832684\vspace{.5cm}2685\centerline{\includegraphics[scale=3]{bijectionRectangle7}}26862687\vfill2688\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2689\vspace{3cm}26902691\end{slide}26922693%%%26942695\begin{slide}{Fang -- Fusy -- Nadeau bijection}26962697\vspace{.5cm}2698\centerline{\includegraphics[scale=3]{bijectionRectangle8}}26992700\vfill2701\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2702\vspace{3cm}27032704\end{slide}27052706%%%27072708\begin{slide}{Fang -- Fusy -- Nadeau bijection}27092710\vspace{-.8cm}2711\[2712\sum_{\text{meandres}} \phantom{(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \; \phantom{= \sum_{\substack{\text{cyan} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \cdot \sum_{\substack{\text{orange} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} }2713\]27142715\vspace{.5cm}2716\centerline{\includegraphics[scale=4]{bijectionRectangle9}}27172718\vfill2719\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2720\vspace{3cm}27212722\end{slide}27232724%%%27252726\begin{slide}{Fang -- Fusy -- Nadeau bijection}27272728\vspace{-.8cm}2729\[2730\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \; \phantom{= \sum_{\substack{\text{cyan} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \cdot \sum_{\substack{\text{orange} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} }2731\]27322733\vspace{.5cm}2734\centerline{\includegraphics[scale=4]{bijectionRectangle10}}27352736\vfill2737\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2738\vspace{3cm}27392740\end{slide}27412742%%%27432744\begin{slide}{Fang -- Fusy -- Nadeau bijection}27452746\vspace{-.8cm}2747\[2748\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \sum_{\substack{\text{cyan} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \cdot \sum_{\substack{\text{orange} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM}2749\]27502751\vspace{.5cm}2752\centerline{\includegraphics[scale=4]{bijectionRectangle11}}27532754\vfill2755\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2756\vspace{3cm}27572758\end{slide}27592760%%%27612762\begin{slide}{Fang -- Fusy -- Nadeau bijection}27632764\vspace{-.8cm}2765\[2766\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \quad\, \CHM(u,v,w) \; \cdot \; \OHM(u,v,w) \; \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}2767\]27682769\vspace{.55cm}2770\centerline{\includegraphics[scale=4]{bijectionRectangle11}}27712772\vfill2773\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2774\vspace{3cm}27752776\end{slide}27772778%%%27792780\begin{slide}{Fang -- Fusy -- Nadeau bijection}27812782\vspace{-.8cm}2783\[2784\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \quad\, \CHM(u,v,w) \; \cdot \; \OHM(u,v,w) \; \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}2785\]27862787\vspace{.55cm}2788\centerline{\includegraphics[scale=4]{bijectionRectangle11}}27892790\[2791\CHM = \frac{1}{(1-\CHM)^2} \Big( u + \frac{w \; \OHM}{1-\OHM} \Big)2792\phantom{\qquad\text{and}\qquad2793\OHM = \frac{1}{(1-\OHM)^2} \Big( v + \frac{w \; \CHM}{1-\CHM} \Big)}2794\]27952796\vspace{.5cm}2797\includegraphics[scale=4]{bijectionRectangle12}2798\vspace{-3cm}27992800\vfill2801\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2802\vspace{3cm}28032804\end{slide}28052806%%%28072808\begin{slide}{Fang -- Fusy -- Nadeau bijection}28092810\vspace{-.8cm}2811\[2812\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \quad\, \CHM(u,v,w) \; \cdot \; \OHM(u,v,w) \; \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}2813\]28142815\vspace{.55cm}2816\centerline{\includegraphics[scale=4]{bijectionRectangle11}}28172818\[2819\CHM = \frac{1}{(1-\CHM)^2} \Big( u + \frac{w \; \OHM}{1-\OHM} \Big)2820\qquad\text{and}\qquad2821\OHM = \frac{1}{(1-\OHM)^2} \Big( v + \frac{w \; \CHM}{1-\CHM} \Big)2822\]28232824\vfill2825\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2826\vspace{3cm}28272828\end{slide}28292830%%%28312832\begin{slide}{Fang -- Fusy -- Nadeau bijection}28332834\vspace{-.3cm}2835\[2836\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; (tz) \raisebox{.3cm}{\teeM} (tz) \raisebox{.3cm}{\perpM} t \raisebox{.3cm}{\crossM} = \HM(t,z)^2 \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}2837\]28382839\[2840\text{where} \qquad \HM = \frac{t}{(1-\HM)^2} \Big( z + \frac{\HM}{1-\HM} \Big)2841\]28422843\vfill2844\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2845\vspace{3cm}28462847\end{slide}28482849%%%28502851\begin{slide}{Fang -- Fusy -- Nadeau bijection}28522853\vspace{-.3cm}2854\[2855\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; (tz) \raisebox{.3cm}{\teeM} (tz) \raisebox{.3cm}{\perpM} t \raisebox{.3cm}{\crossM} = \HM(t,z)^2 \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}2856\]28572858\[2859\text{where} \qquad \HM = \frac{t}{(1-\HM)^2} \Big( z + \frac{\HM}{1-\HM} \Big)2860\]28612862\vspace{1cm}2863Lagrange inversion again:2864\begin{align*}2865[t^nz^k] \; \HM^22866& = \frac{2}{n} \; [s^{n-2} z^k] \; \frac{1}{(1-s)^{2n}} \Big( z + \frac{s}{1-s} \Big)^n2867= \frac{2}{n} \binom{n}{k} \; [s^{n-2}] \; \frac{s^{n-k}}{(1-s)^{3n-k}} \\2868& = \frac{2}{n} \binom{n}{k} \; [s^{k-2}] \; \frac{1}{(1-s)^{3n-k}}2869= \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2}2870\end{align*}28712872\vfill2873\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2874\vspace{3cm}28752876\end{slide}28772878%%%28792880\begin{slide}{Fang -- Fusy -- Nadeau bijection}28812882\vspace{-.3cm}2883\[2884\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; (tz) \raisebox{.3cm}{\teeM} (tz) \raisebox{.3cm}{\perpM} t \raisebox{.3cm}{\crossM} = \HM(t,z)^2 \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}2885\]28862887\[2888\text{where} \qquad \HM = \frac{t}{(1-\HM)^2} \Big( z + \frac{\HM}{1-\HM} \Big)2889\]28902891\vspace{1cm}2892Lagrange inversion again:2893\begin{align*}2894[t^nz^k] \; \HM^22895& = \frac{2}{n} \; [s^{n-2} z^k] \; \frac{1}{(1-s)^{2n}} \Big( z + \frac{s}{1-s} \Big)^n2896= \frac{2}{n} \binom{n}{k} \; [s^{n-2}] \; \frac{s^{n-k}}{(1-s)^{3n-k}} \\2897& = \frac{2}{n} \binom{n}{k} \; [s^{k-2}] \; \frac{1}{(1-s)^{3n-k}}2898= \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2}2899\end{align*}29002901\vspace{1cm}2902Hence2903\[2904[t^n z^k] \; A(t,z) = \frac{1}{n+1} \; [t^{n+1} z^{k+2}] \; \HM^2 = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}2905\]29062907\vfill2908\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}2909\vspace{3cm}29102911\end{slide}29122913%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%2914%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%29152916\partie{Diagonal of the permutahedron}29172918\centerline{2919\includegraphics[scale=1.2]{diagonalPermutahedron1}2920\qquad2921\includegraphics[scale=.5]{diagonalPermutahedronGuillaume}2922}29232924\vspace{-2cm}2925\hfill2926{\small \textcopyright\,G.\,Laplante-Anfossi}29272928\vspace{.5cm}2929\begin{center}2930with \\2931Bérénice DELCROIX-OGER (Univ.\,Montpellier) \\2932Matthieu JOSUAT-VERGÈS (CNRS \& Univ.\,Paris Cité) \\2933Guillaume LAPLANTE-ANFOSSI (Univ.\,Melbourne) \\2934Kurt STOECKL (Univ.\,Melbourne)2935\end{center}29362937%%%%%%%%%%29382939\begin{slide}{Diagonal of the permutahedron}29402941$\Delta_{\Perm(n)} = $ diagonal of $(n-1)$-dimensional permutahedron29422943\vspace{.2cm}2944\centerline{\includegraphics[scale=1.3]{diagonalPermutahedron3}}29452946\vspace{-.2cm}2947\theo{THM}{2948$k$-faces of~$\Delta_{\Perm(n)}$ $\quad \longleftrightarrow$ \begin{tabular}[t]{c} $(\mu,\nu)$ ordered partitions of~$[n]$ such that \\ $\forall (I,J) \in D(n), \; \exists k \in [n], \; \# \mu_{[k]} \cap I > \# \mu_{[k]} \cap J$ \\ $\qquad\qquad\quad\; \text{ or } \exists \ell \in [n], \; \# \mu_{[\ell]} \cap I < \# \mu_{[\ell]} \cap J$ \end{tabular}29492950\vspace{-1cm}2951\papier{Laplante-Anfossi '22}29522953\vspace{.5cm}2954where $D(n) \eqdef \{ (I,J) \ | \ I,J\subseteq [n], \, \#I = \#J, \, I \cap J = \varnothing, \min(I \cup J) \in I \}$29552956}29572958\end{slide}29592960%%%29612962\begin{slide}{Diagonal of the permutahedron}29632964$\Delta_{\Perm(n)} = $ diagonal of $(n-1)$-dimensional permutahedron29652966\vspace{.13cm}2967\centerline{\includegraphics[scale=1.3]{diagonalPermutahedron4}}29682969\vspace{1cm}2970\theo{PROP}{2971$\BA[2][n] = $ two generically translated copies of the braid arrangement2972\[2973f_k \big( \, \Delta_{\Perm(n)} \, \big) = f_{n-k-1} \big( \, \BA[2][n] \, \big)2974\]29752976\vspace{-.6cm}2977\hfill\papier{Laplante-Anfossi '22}29782979}29802981\end{slide}29822983%%%%%%%%%%29842985\begin{slide}{Flat poset \& Zaslavsky's theorem}29862987\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\2988\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$29892990\vspace{.5cm}2991\centerline{\includegraphics[scale=1.5]{intersectionPoset}}29922993\end{slide}29942995%%%29962997\begin{slide}{Flat poset \& Zaslavsky's theorem}29982999\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\3000\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$30013002\vspace{.5cm}3003\centerline{\includegraphics[scale=1.5]{intersectionPoset}}30043005\theo{EXM}{3006\begin{tabular}[t]{@{}c@{\quad\;\;}c}3007flat poset of braid arrangement~$\BA[][n]$3008&3009$\set{\b{x} \in \R^n}{\! \begin{array}{l} x_i = x_j \text{ for all } i,j \text{ in} \\ \text{the same part of } \pi \end{array} \! }$3010\\3011\rotatebox[origin=c]{90}{$\longleftrightarrow$}3012&3013\rotatebox[origin=c]{90}{$\longmapsto$}3014\\[.3cm]3015refinement poset on partitions of~$[n]$3016&3017$\pi$3018\end{tabular}3019\qquad30203021}30223023\end{slide}30243025%%%30263027\begin{slide}{Flat poset \& Zaslavsky's theorem}30283029\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\3030\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$30313032\vspace{.5cm}3033\centerline{\includegraphics[scale=1.5]{intersectionPoset}}30343035\vspace{.5cm}3036\emph{M\"obius function} $\mu$ of a poset: $\mu(x,x) = 1$ and $\sum_{x \le y \le z} \mu(x,y) = 0$ for all~$x < z$30373038\end{slide}30393040%%%30413042\begin{slide}{Flat poset \& Zaslavsky's theorem}30433044\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\3045\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$30463047\vspace{.5cm}3048\centerline{3049\begin{overpic}[scale=1.5]{intersectionPoset}3050\put(453, -15){$1$}3051\put(310, 60){$-1$}3052\put(377, 60){$-1$}3053\put(444, 60){$-1$}3054\put(511, 60){$-1$}3055\put(578, 60){$-1$}3056\put(322, 195){$2$}3057\put(408, 195){$1$}3058\put(496, 195){$1$}3059\put(583, 195){$2$}3060\end{overpic}3061}30623063\vspace{.5cm}3064\emph{M\"obius function} $\mu$ of a poset: $\mu(x,x) = 1$ and $\sum_{x \le y \le z} \mu(x,y) = 0$ for all~$x < z$30653066\end{slide}30673068%%%30693070\begin{slide}{Flat poset \& Zaslavsky's theorem}30713072\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\3073\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$30743075\vspace{.5cm}3076\centerline{3077\begin{overpic}[scale=1.5]{intersectionPoset}3078\put(453, -15){$1$}3079\put(310, 60){$-1$}3080\put(377, 60){$-1$}3081\put(444, 60){$-1$}3082\put(511, 60){$-1$}3083\put(578, 60){$-1$}3084\put(322, 195){$2$}3085\put(408, 195){$1$}3086\put(496, 195){$1$}3087\put(583, 195){$2$}3088\end{overpic}3089}30903091\vspace{.5cm}3092\emph{M\"obius function} $\mu$ of a poset: $\mu(x,x) = 1$ and $\sum_{x \le y \le z} \mu(x,y) = 0$ for all~$x < z$30933094\vspace{.5cm}3095\emph{M\"obius polynomial}3096$\displaystyle \b{\mu}_{\c{A}}(x,y) = \sum_{F \le G} \mu(F,G) \, x^{\dim(F)} \, y^{\dim(G)}$30973098\theo{THM}{3099$\b{f}_{\!\!\c{A}}(x) = \b{\mu}_{\c{A}}(-x,-1)$3100\qquad\text{and}\qquad3101$\b{b}_\c{A}(x) = \b{\mu}_{\c{A}}(-x,1)$3102\hfill\papier{Zaslavsky '75}3103}31043105\end{slide}31063107%%%%%%%%%%31083109\begin{slide}{$\ell$-braid arrangement \& partition forests}31103111\hspace{15cm}3112\includegraphics[scale=1.5]{lBraidArrangement3}31133114\vspace{-11.5cm}3115$\BA =$3116\begin{tabular}[t]{@{}l}3117union of $\ell$ \emph{generically} translated \\3118copies of the braid arrangement3119\end{tabular}31203121\end{slide}31223123%%%%%%%%%%31243125\begin{slide}{$\ell$-braid arrangement \& partition forests}31263127\hspace{15cm}3128\includegraphics[scale=1.5]{lBraidArrangement3}31293130\vspace{-11.5cm}3131$\BA =$3132\begin{tabular}[t]{@{}l}3133union of $\ell$ \emph{generically} translated \\3134copies of the braid arrangement3135\end{tabular}31363137\vspace{.5cm}3138$(\ell,n)$ \emph{partition forest} $=$ \\3139\hspace*{1cm}3140\begin{tabular}[t]{@{}l}3141$\ell$-tuple of partitions of~$[n]$ whose \\3142intersection hypergraph is a forest3143\end{tabular}31443145\includegraphics[scale=1.65]{partitionForest1}31463147\vfill3148\theo{PROP}{3149Intersection poset of~$\BA$ $\quad\longleftrightarrow\quad$ refinement poset on $(\ell,n)$ partition forests3150}3151\vspace{3cm}31523153\end{slide}31543155%%%%%%%%%%31563157\begin{slide}{$\ell$-braid arrangement \& partition forests}31583159\hspace{15cm}3160\includegraphics[scale=1.5]{lBraidArrangement3}31613162\vspace{-11.5cm}3163$\BA =$3164\begin{tabular}[t]{@{}l}3165union of $\ell$ \emph{generically} translated \\3166copies of the braid arrangement3167\end{tabular}31683169\vspace{.5cm}3170$(\ell,n)$ \emph{partition forest} $=$ \\3171\hspace*{1cm}3172\begin{tabular}[t]{@{}l}3173$\ell$-tuple of partitions of~$[n]$ whose \\3174intersection hypergraph is a forest3175\end{tabular}31763177\includegraphics[scale=1.65]{partitionForest2}31783179\vfill3180\theo{PROP}{3181Intersection poset of~$\BA$ $\quad\longleftrightarrow\quad$ refinement poset on $(\ell,n)$ partition forests3182}3183\vspace{3cm}31843185\end{slide}31863187%%%%%%%%%%31883189\begin{slide}{M\"obius polynomial}31903191$\P_p = $ refinement poset on partitions of~$[p]$ \\3192$\PF = $ refinement poset on $(\ell,n)$ partition forests31933194\theo{FACT 1}{3195The M\"obius function of~$\P_p$ is3196$3197\displaystyle3198\mu(\hat 0, \hat 1) = (-1)^{p-1} (p-1)!3199$3200}32013202\theo{FACT 2}{3203In~$\P_p$,3204\qquad\quad3205$3206\displaystyle3207[F,G] \simeq \prod_{p \in G} \P_{\# F[p]}3208$3209\qquad\quad3210where~$F[p] =$ restriction of~$F$ to~$p$3211}32123213\theo{FACT 2}{3214$3215\displaystyle3216[\b{F}, \b{G}] \simeq \prod_{i \in [\ell]} [F_i, G_i]3217$3218\qquad3219for~$\b{F} = (F_1, \dots, F_\ell)$ and~$\b{G} = (G_1, \dots, G_\ell)$ in~$\PF$3220}32213222\theo{FACT 4}{3223M\"obius is multiplicative3224\qquad3225\(3226\mu_{P \times Q} \big( (p,q), (p’,q’) \big) = \mu_P(p,p’) \cdot \mu_Q(q,q’)3227\)32283229}32303231%\theo{THM}{3232%\hspace*{5.5cm}3233%$3234%\displaystyle3235%f_{n-k-1}(\BA) = \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} \prod_{p \in G_i} (\# F_i[p]-1)!3236%$3237%\\3238%where~$\b{F} \le \b{G}$ are intervals of~$\PF$ such that~$\sum_{i \in [\ell]} \#F_i = \ell n - k$3239%3240%\vspace{.2cm}3241%\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3242%\vspace{-.2cm}3243%3244%}32453246\end{slide}32473248%%%32493250\begin{slide}{M\"obius polynomial}32513252$\P_p = $ refinement poset on partitions of~$[p]$ \\3253$\PF = $ refinement poset on $(\ell,n)$ partition forests32543255\theo{FACT 1}{3256The M\"obius function of~$\P_p$ is3257$3258\displaystyle3259\mu(\hat 0, \hat 1) = (-1)^{p-1} (p-1)!3260$3261}32623263\theo{FACT 2}{3264In~$\P_p$,3265\qquad\quad3266$3267\displaystyle3268[F,G] \simeq \prod_{p \in G} \P_{\# F[p]}3269$3270\qquad\quad3271where~$F[p] =$ restriction of~$F$ to~$p$3272}32733274\theo{FACT 2}{3275$3276\displaystyle3277[\b{F}, \b{G}] \simeq \prod_{i \in [\ell]} [F_i, G_i]3278$3279\qquad3280for~$\b{F} = (F_1, \dots, F_\ell)$ and~$\b{G} = (G_1, \dots, G_\ell)$ in~$\PF$3281}32823283\theo{FACT 4}{3284M\"obius is multiplicative3285\qquad3286\(3287\mu_{P \times Q} \big( (p,q), (p’,q’) \big) = \mu_P(p,p’) \cdot \mu_Q(q,q’)3288\)32893290}32913292\theo{THM}{3293$3294\qquad3295\displaystyle3296\b{\mu}_{\BA} = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\#F_i} y^{\#G_i} \prod_{p \in G_i} (-1)^{\#F_i[p]-1} (\# F_i[p]-1)!3297$32983299\vspace{.5cm}3300\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3301\vspace{-.2cm}33023303}33043305\end{slide}33063307%%%%%%%%%%33083309\begin{slide}{face polynomial}33103311\theo{THM}{3312\hspace*{4.5cm}3313$3314\displaystyle3315\b{f}_{\!\BA}(x) = x^{n-1-\ell n}\sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\#F_i} \prod_{p \in G_i} (\# F_i[p]-1)!3316$33173318\vspace{.5cm}3319\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3320\vspace{-.2cm}33213322}33233324\vfill3325\centerline{3326\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c}3327\includegraphics[scale=1]{lBraidArrangement1}3328&3329\includegraphics[scale=1]{lBraidArrangement2}3330&3331\includegraphics[scale=1]{lBraidArrangement3}3332\\3333\begin{tabular}[t]{c|cccc|c}3334$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3335\hline3336$1$ & $1$ &&&& $1$ \\3337$2$ & $2$ & $1$ &&& $3$ \\3338$3$ & $6$ & $6$ & $1$ && $13$ \\3339$4$ & $24$ & $36$ & $14$ & $1$ & $75$ \\3340\end{tabular}3341&3342\begin{tabular}[t]{c|cccc|c}3343$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3344\hline3345$1$ & $1$ &&&& $1$ \\3346$2$ & $3$ & $2$ &&& $5$ \\3347$3$ & $17$ & $24$ & $8$ && $49$ \\3348$4$ & $149$ & $324$ & $226$ & $50$ & $749$3349\end{tabular}3350&3351\begin{tabular}[t]{c|cccc|c}3352$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3353\hline3354$1$ & $1$ &&&& $1$ \\3355$2$ & $4$ & $3$ &&& $7$ \\3356$3$ & $34$ & $54$ & $21$ && $109$ \\3357$4$ & $472$ & $1152$ & $924$ & $243$ & $2791$3358\end{tabular}3359% &3360% \begin{tabular}[t]{c|cccc|c}3361% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3362% \hline3363% $1$ & $1$ &&&& $1$ \\3364% $2$ & $5$ & $4$ &&& $9$ \\3365% $3$ & $57$ & $96$ & $40$ && $193$ \\3366% $4$ & $1089$ & $2808$ & $2396$ & $676$ & $6969$3367% \end{tabular}3368\\3369\hspace{8.5cm} & \hspace{8.5cm} & \hspace{9.5cm}3370\\[-.8cm]3371$\ell = 1$ & $\ell = 2$ & $\ell = 3$ % & $\ell = 4$3372\end{tabular}3373}3374\vspace*{2.5cm}33753376\end{slide}33773378%%%%%%%%%%33793380\begin{slide}{bounded face polynomial}33813382\theo{THM}{3383\hspace*{3.5cm}3384$3385\displaystyle3386\b{b}_{\BA}(x) = (-1)^\ell x^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\#F_i} \prod_{p \in G_i} -(\# F_i[p]-1)!3387$33883389\vspace{.4cm}3390\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3391\vspace{-.2cm}33923393}33943395\vfill3396\centerline{3397\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c}3398\includegraphics[scale=.9]{lBraidArrangement1}3399&3400\includegraphics[scale=.9]{lBraidArrangement2}3401&3402\includegraphics[scale=.9]{lBraidArrangement3}3403\\3404\begin{tabular}[t]{c|cccc|c}3405$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3406\hline3407$1$ & $1$ &&&& $1$ \\3408$2$ & $0$ & $1$ &&& $1$ \\3409$3$ & $0$ & $0$ & $1$ && $1$ \\3410$4$ & $0$ & $0$ & $0$ & $1$ & $1$3411\end{tabular}3412&3413\begin{tabular}[t]{c|cccc|c}3414$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3415\hline3416$1$ & $1$ &&&& $1$ \\3417$2$ & $1$ & $2$ &&& $3$ \\3418$3$ & $5$ & $12$ & $8$ && $25$ \\3419$4$ & $43$ & $132$ & $138$ & $50$ & $363$3420\end{tabular}3421&3422\begin{tabular}[t]{c|cccc|c}3423$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3424\hline3425$1$ & $1$ &&&& $1$ \\3426$2$ & $2$ & $3$ &&& $5$ \\3427$3$ & $16$ & $36$ & $21$ && $73$ \\3428$4$ & $224$ & $684$ & $702$ & $243$ & $1853$3429\end{tabular}3430% &3431% \begin{tabular}[t]{c|cccc|c}3432% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\3433% \hline3434% $1$ & $1$ &&&& $1$ \\3435% $2$ & $3$ & $4$ &&& $7$ \\3436% $3$ & $33$ & $72$ & $40$ && $145$ \\3437% $4$ & $639$ & $1944$ & $1980$ & $676$ & $5239$3438% \end{tabular}3439\\3440\hspace{8.5cm} & \hspace{8.5cm} & \hspace{9.5cm}3441\\[-.8cm]3442$\ell = 1$ & $\ell = 2$ & $\ell = 3$ % & $\ell = 4$3443\end{tabular}3444}3445\vspace*{2.5cm}34463447\end{slide}34483449%%%%%%%%%%34503451\begin{slide}{Vertices}34523453\theo{THM}{3454\(3455f_0(\BA[\ell][n]) = \#\{\text{$(\ell,n)$\,partition\,trees}\} = \ell \big( n (\ell-1) + 1 \big)^{n-2}3456\)34573458\vspace{.1cm}3459\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3460\vspace{-.2cm}34613462}34633464%\vspace{.7cm}3465%\centerline{\includegraphics[scale=1.8]{partitionTree}}34663467\vspace{1cm}3468\centerline{3469\hspace{6cm}3470\begin{tabular}{c|ccccccl}3471$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\3472\cline{1-7}3473$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $\leftarrow$ $1$ \\3474$2$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $\leftarrow$ $\ell$ \\3475$3$ & {\color{red} $1$} & {\color{green} $8$} & {\color{blue} $21$} & {\color{orange} $40$} & $65$ & $96$ & $\leftarrow$ $\ell(3\ell-2)$ [OEIS, A000567] \\3476$4$ & $1$ & $50$ & $243$ & $676$ & $1445$ & $2646$ \\[.3cm]3477\multicolumn{2}{r}{$1$\;\rotatebox[origin=c]{-90}{$\Lsh$}} & \multicolumn{6}{l}{\;\;\rotatebox[origin=c]{90}{$\Rsh$} \;$2(n+1)^{n-2}$ [OEIS, A007334]}3478\end{tabular}3479}34803481\vfill3482\centerline{3483\includegraphics[scale=.9]{lBraidArrangement1}3484\includegraphics[scale=.9]{lBraidArrangement2}3485\includegraphics[scale=.9]{lBraidArrangement3}3486\includegraphics[scale=.9]{lBraidArrangement4}3487}3488\vspace*{2.5cm}34893490\end{slide}34913492%%%34933494\begin{slide}{Vertices}34953496\theo{THM}{3497\(3498f_0(\BA[2][n]) = \#\{\text{$(2,n)$\,partition\,trees}\} = \#\text{spanning\,trees\,of\,} K_{n+1} \text{\,with\,} 01 % = 2 (n+1)^{n-2}3499\)35003501\vspace{.1cm}3502\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3503\vspace{-.2cm}35043505}35063507\vspace{.7cm}3508$1$, $2$, $8$, $50$, $432$, $4802$, $65536$, $1062882$, $20000000$, $428717762$, \dots3509\hfill [OEIS, A007334]35103511\vspace{.7cm}3512\centerline{\includegraphics[scale=1.8]{partitionTree}}3513\vspace*{-1cm}35143515%\vspace{.7cm}3516%\begin{gather*}3517%n \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \\3518%= \#\set{(e,T)}{e \in T \text{ spanning tree of } K_{n+1}} \\3519%= \textstyle \binom{n+1}{2} \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \text{\,with\,} 013520%\end{gather*}35213522\end{slide}35233524%%%35253526\begin{slide}{Vertices}35273528\theo{THM}{3529\(3530f_0(\BA[2][n]) = \#\{\text{$(2,n)$\,partition\,trees}\} = \#\text{spanning\,trees\,of\,} K_{n+1} \cdot \frac{2}{n+1} = 2 (n+1)^{n-2}3531\)35323533\vspace{.1cm}3534\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3535\vspace{-.2cm}35363537}35383539\vspace{.7cm}3540$1$, $2$, $8$, $50$, $432$, $4802$, $65536$, $1062882$, $20000000$, $428717762$, \dots3541\hfill [OEIS, A007334]35423543\vspace{.7cm}3544\centerline{\includegraphics[scale=1.8]{partitionTree}}3545\vspace*{-1cm}35463547%\vspace{.7cm}3548%\begin{gather*}3549%n \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \\3550%= \#\set{(e,T)}{e \in T \text{ spanning tree of } K_{n+1}} \\3551%= \textstyle \binom{n+1}{2} \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \text{\,with\,} 013552%\end{gather*}35533554\end{slide}35553556%%%%%%%%%%35573558\begin{slide}{Regions}35593560\theo{THM}{3561\(3562\displaystyle3563f_{n-1}(\BA) = n! \, [z^n] \exp \Bigg( \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \Bigg)3564\)3565\hfill3566where3567$\displaystyle F_{\ell,m} = \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$35683569\vspace{.4cm}3570\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3571\vspace{-.2cm}35723573}35743575\vfill3576\centerline{3577\hspace{6cm}3578\begin{tabular}{c|ccccccl}3579$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\3580\cline{1-7}3581$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $\leftarrow$ $1$ \\3582$2$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $\leftarrow$ $\ell+1$ \\3583$3$ & {\color{red} $6$} & {\color{green} $17$} & {\color{blue} $34$} & {\color{orange} $57$} & $86$ & $121$ & $\leftarrow$ $3\ell^2+2\ell+1$ [OEIS, A056109]\\3584$4$ & $24$ & $149$ & $472$ & $1089$ & $2096$ & $3589$ \\[.3cm]3585\multicolumn{2}{r}{$n!$\;\rotatebox[origin=c]{-90}{$\Lsh$}\;} & \multicolumn{6}{l}{\;\;\rotatebox[origin=c]{90}{$\Rsh$} [OEIS, A213507]}3586\end{tabular}3587}35883589\vspace{.2cm}3590\centerline{3591\includegraphics[scale=.9]{lBraidArrangement1}3592\includegraphics[scale=.9]{lBraidArrangement2}3593\includegraphics[scale=.9]{lBraidArrangement3}3594\includegraphics[scale=.9]{lBraidArrangement4}3595}3596\vspace*{2.5cm}35973598\end{slide}35993600%%%%%%%%%%36013602\begin{slide}{Bounded regions}36033604\theo{THM}{3605\(3606\displaystyle3607b_{n-1}(\BA) = (n-1)! \, [z^{n-1}] \exp \bigg( (\ell-1) \sum_{m \ge 1} F_{\ell,m} \, z^m \bigg) \phantom{\Bigg(}3608\)36093610\vspace{.4cm}3611\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}3612\vspace{-.2cm}36133614}36153616\vfill3617\centerline{3618\hspace{6cm}3619\begin{tabular}{c|ccccccl}3620$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\3621\cline{1-7}3622$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $\leftarrow$ $1$ \\3623$2$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $\leftarrow$ $\ell-1$ \\3624$3$ & {\color{red} $0$} & {\color{green} $5$} & {\color{blue} $16$} & {\color{orange} $33$} & $56$ & $85$ & $\leftarrow$ $3\ell^2-4\ell+1$ [OEIS, A045944] \\3625$4$ & $0$ & $43$ & $224$ & $639$ & $1384$ & $2555$ & \qquad $= 3(\ell-1)^2+2(\ell-1)$ \\[.3cm]3626\multicolumn{2}{r}{$0$\;\rotatebox[origin=c]{-90}{$\Lsh$}} & \multicolumn{6}{l}{\;\;\rotatebox[origin=c]{90}{$\Rsh$} [OEIS, A251568]}3627\end{tabular}3628}36293630\vspace{.2cm}3631\centerline{3632\includegraphics[scale=.9]{lBraidArrangement1}3633\includegraphics[scale=.9]{lBraidArrangement2}3634\includegraphics[scale=.9]{lBraidArrangement3}3635\includegraphics[scale=.9]{lBraidArrangement4}3636}3637\vspace*{2.5cm}36383639\end{slide}36403641%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3642%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%36433644\newpage3645\phantomsection\label{thanks}36463647\vspace*{3cm}3648\centerline{3649\includegraphics[scale=1.4]{diagonalPermutahedron23650}3651\includegraphics[scale=2.5]{thanks}3652\includegraphics[scale=1.4]{diagonalAssociahedron2}3653}36543655\end{document}365636573658