Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
GuillaumeLaplante-Anfossi
GitHub Repository: GuillaumeLaplante-Anfossi/Poissons
Path: blob/main/slidesVincent/expose3DMaps.tex
1016 views
1
\documentclass[12pt,titlepage,landscape,a4paper]{article}
2
3
%QUELQUES PACKAGES PLUS OU MOINS UTILES
4
\special{landscape}
5
\usepackage[T1]{fontenc}
6
\usepackage[utf8]{inputenc}
7
\usepackage[english]{babel}
8
\usepackage{amsfonts, amsmath, amssymb, amsthm, stmaryrd, mathtools}
9
\usepackage{aeguill}
10
\usepackage{graphics, graphicx}
11
\usepackage{xcolor}
12
\usepackage{geometry}
13
\usepackage{paralist}
14
\usepackage{multido,ifthen}
15
\usepackage{tikz}\usetikzlibrary{trees,shapes,arrows,matrix,calc,arrows.meta}
16
\usepackage{hyperref}
17
\hypersetup{colorlinks=true, citecolor=blue, linkcolor=blue, urlcolor=blue}
18
\usepackage{movie15}
19
\usepackage[abs]{overpic}
20
\usepackage{xargs}
21
\usepackage{extarrows}
22
\usepackage{shuffle}
23
\usepackage{multicol}
24
\usepackage{etoolbox}
25
\usepackage{dsfont}
26
\usepackage{pifont}
27
\usepackage{array, blkarray}
28
\usepackage{multicol, multirow}
29
\usepackage{ulem}
30
\usepackage{xifthen}
31
\usepackage{soul}
32
\usepackage{wasysym}
33
34
% ZONE DE TEXTE ET POLICE
35
\setlength{\topmargin}{-2.8cm}
36
\setlength{\textheight}{19cm}
37
\setlength{\oddsidemargin}{-1cm}
38
\setlength{\textwidth}{26.8cm}
39
\newcommand{\textenormal}{\fontsize{22}{28}\selectfont}
40
\newcommand{\textemoyen}{\fontsize{23}{27}\selectfont}
41
\newcommand{\textegrand}{\fontsize{55}{48}\selectfont}
42
43
% COMMANDE DE NOUVELLE PAGE
44
\newenvironment{slide}[1]
45
{
46
\newpage
47
\begin{center}
48
{\blue \textemoyen \smash{\uppercase{#1}}}\\
49
\end{center}
50
\vspace{-1cm}
51
\rule{\textwidth}{0.5 pt}\\
52
\vspace{-.8cm}
53
}
54
{\vspace*{-3cm}}
55
56
% COMMANDE DE PARTIE
57
%\newcounter{partie}
58
%\setcounter{partie}{1}
59
%\newcommand{\thePartie}{Part \arabic{partie}}
60
\newcommand{\partie}[1]
61
{
62
\newpage
63
\vspace*{0pt plus 1 fill}
64
\begin{center}
65
%\thePartie \\[-.75cm]
66
\rule{.9\textwidth}{0.5 pt} \\[.5cm]
67
\fontsize{35}{35}\selectfont {\blue\uppercase{#1}} \\[-.35cm]
68
\rule{.9\textwidth}{0.5 pt} \\
69
\end{center}
70
\vspace*{0pt plus 1.2 fill}
71
%\addtocounter{partie}{1}
72
}
73
74
% COMMANDE D'EXPOSE
75
\newcommand{\expose}[2]
76
{
77
\newpage
78
\vspace*{0pt plus 1 fill}
79
\begin{center}
80
%\thePartie \\[-.75cm]
81
\rule{.8\textwidth}{0.5 pt} \\[.5cm]
82
\fontsize{35}{35}\selectfont {\red\uppercase{#1}} \\[-.35cm]
83
\rule{.8\textwidth}{0.5 pt} \\
84
\vspace{1cm}
85
\textemoyen #2
86
\end{center}
87
\vspace*{0pt plus 1.2 fill}
88
%\addtocounter{partie}{1}
89
}
90
91
% COMMANDE POUR LES BOITES
92
% centre
93
\newcommand{\cboite}[1]
94
{
95
\vspace*{.5cm}
96
\fcolorbox{blue}{grisclair}{
97
\begin{minipage}{.97\linewidth}
98
\vspace*{.3cm}
99
\begin{center} #1 \end{center}
100
\vspace*{-.1cm}
101
\end{minipage}
102
}
103
}
104
% alignement gauche
105
\newcommand{\gboite}[1]
106
{
107
\vspace*{.5cm}
108
\fcolorbox{blue}{grisclair}{
109
\begin{minipage}{.97\linewidth}
110
\vspace*{.3cm}
111
#1
112
\vspace{.3cm}
113
\end{minipage}
114
}
115
}
116
117
\newcommand{\chapitre}[1]{{\blue \fontsize{23}{25}\selectfont {Chap\,#1}}}
118
119
% AUTRES COMMANDES
120
% quelques couleurs manquantes
121
\newcommand{\orange}{\color{orange}} % couleur orange
122
\newcommand{\green}{\color{green}} % couleur verte
123
\newcommand{\violet}{\color{violet}} % couleur violet
124
\newcommand{\blue}{\color{blue}} % couleur bleu
125
\newcommand{\red}{\color{red}} % couleur rouge
126
\definecolor{violet}{rgb}{.5,.1,.9}
127
\definecolor{orange}{rgb}{.94,.57,0}
128
\definecolor{green}{rgb}{0.2,0.6,0.2}
129
\definecolor{grisclair}{gray}{1}
130
\definecolor{grisfonce}{gray}{.1}
131
\definecolor{bblue}{rgb}{.8,.8,1}
132
% maths
133
\newcommand{\set}[2]{\left\{ #1 \;\middle|\; #2 \right\}} % ensemble
134
\newcommand{\bigset}[2]{\big\{ #1 \;\big|\; #2 \big\}} % ensemble
135
\newcommand{\biggset}[2]{\bigg\{ #1 \;\bigg|\; #2 \bigg\}} % ensemble
136
\newcommand{\setangle}[2]{\left\langle #1 \;\middle|\; #2 \right\rangle} % ensemble
137
\newcommand{\dotprod}[2]{\left\langle\; #1 \;\middle|\; #2 \;\right\rangle} % produit scalaire
138
\newcommand{\ssm}{\smallsetminus} % small set minus
139
\newcommand{\symdif}{\triangle} % symmetric difference
140
\newcommand{\eqdef}{\mbox{\,\raisebox{0.3ex}{\normalsize\ensuremath{\mathrm:}}\ensuremath{=}\,}} % :=
141
\newcommand{\defeq}{\mbox{~\ensuremath{=}\raisebox{0.3ex}{\normalsize\ensuremath{\mathrm:}} }} % =:
142
\newcommand{\Fracfloor}[2]{\left\lfloor \frac{#1}{#2} \right\rfloor} % floor of a fraction
143
\newcommand{\one}{1\!\!1} % one bold
144
\DeclareMathOperator{\conv}{conv} % enveloppe convexe
145
\DeclareMathOperator{\cone}{cone} % cone engendre
146
\DeclareMathOperator{\vol}{vol} % volume
147
\DeclareMathOperator{\rank}{rk} % rank
148
\newcommand{\C}{\mathbb{C}} % complexes
149
\newcommand{\R}{\mathbb{R}} % reels
150
\newcommand{\Q}{\mathbb{Q}} % rationals
151
\newcommand{\Z}{\mathbb{Z}} % entiers
152
\newcommand{\N}{\mathbb{N}} % naturels
153
\newcommand{\I}{\mathbb{I}} % set of integers
154
\newcommand{\K}{\mathbb{K}} % field
155
\newcommand{\fS}{\mathfrak{S}} % symmetric group
156
\newcommand{\cA}{\mathcal{A}} % algebra
157
\newcommand{\cF}{\mathcal{F}} % flip graph
158
\newcommand{\cN}{\mathcal{N}} % sorting network
159
\renewcommand{\b}[1]{\boldsymbol{#1}} % bold letters
160
\renewcommand{\c}[1]{\mathcal{#1}} % caligraphic letters
161
\newcommand{\f}[1]{\mathfrak{#1}} % frak letters
162
% autres
163
\setlength{\parindent}{0pt} % aucune indentation dans tout le document
164
\graphicspath{{figures/}{figures/nodes/}{figuresGuillaume/}} % les repertoires ou se trouvent les figures
165
\newcommand{\papier}[1]{{\violet\fontsize{15}{20}\selectfont #1}} % citation papier
166
\newcommand{\theo}[2]{\gboite{{\blue \fontsize{18}{25}\selectfont #1.} #2}}
167
\newcommand{\HUGE}[1]{{\fontsize{35}{33}\selectfont #1}}
168
\newcommand{\esperluette}{ \\ --- \& --- \\ } % esperluette stylisée nouvelle ligne
169
\DeclareRobustCommand{\verylongrightarrow}{\joinrel\relbar\joinrel\relbar\joinrel\relbar\joinrel\relbar\joinrel\relbar\joinrel\rightarrow}
170
\renewcommand{\emph}[1]{\uline{#1}}
171
172
% DIAGONALS
173
\newcommand{\poly}[1]{\mathds{#1}} % polytope font
174
\newcommand{\Asso}{\mathds{A}\mathsf{sso}} % associahedron
175
\newcommand{\Perm}{\mathds{P}\mathsf{erm}} % permutahedron
176
\newcommand{\Cube}{\mathds{C}\mathsf{ube}} % cube
177
\newcommand{\Simplex}{\mathds{S}\mathsf{implex}} % cube
178
\newcommand{\HH}{\poly{H}} % hyperplane
179
\newcommand{\Tam}{\mathrm{Tam}} % Tamari lattice
180
\DeclareMathOperator{\des}{{\red des}} % descents
181
\DeclareMathOperator{\asc}{{\blue asc}} % ascents
182
\DeclareMathOperator{\agree}{agr} % agree
183
\DeclareMathOperator{\can}{can} % canopy
184
\newcommand{\meet}{\mathbin{\blue \wedge}} % meet
185
\newcommand{\join}{\mathbin{\red \vee}} % join
186
\newcommand{\bigMeet}{\mathbin{\blue \bigwedge}} % meet
187
\newcommand{\bigJoin}{\mathbin{\red \bigvee}} % join
188
\newcommandx{\BA}[2][1=\ell, 2=n]{\mathcal{B}_{#2}^{#1}} % braid arrangement
189
\newcommandx{\PF}[2][1=\ell, 2=n]{\mathbb{PF}_{#2}^{#1}} % partition forests poset
190
\renewcommand{\P}{\mathbb{P}} % partition poset
191
\newcommand{\bbA}{\mathbb{A}}
192
\newcommand{\teeM}{\hspace{-.4cm}\raisebox{-.7cm}{\includegraphics[scale=3]{tee}}\hspace{-.1cm}}
193
\newcommand{\perpM}{\hspace{-.4cm}\raisebox{-.7cm}{\includegraphics[scale=3]{perp}}\hspace{-.1cm}}
194
\newcommand{\crossM}{\hspace{-.4cm}\raisebox{-.7cm}{\includegraphics[scale=3]{cross}}\hspace{-.1cm}}
195
\newcommand{\HM}{\mathbb{HM}}
196
\newcommand{\CHM}{{\color{cyan}\mathbb{CHM}}}
197
\newcommand{\OHM}{{\color{orange}\mathbb{OHM}}}
198
199
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
200
201
\newcommand{\titre}{From permutahedra to associahedra, a walk through geometric and algebraic combinatorics}
202
\newcommand{\auteur}{Vincent Pilaud}
203
204
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
205
206
\begin{document}
207
208
\fontshape{sf}\fontsize{22}{28}\selectfont % police par defaut
209
\sf
210
\pagestyle{empty} % bas de page par defaut
211
212
%\vspace*{.1cm}
213
\begin{center}
214
{\blue \fontsize{60}{60}\selectfont
215
\uppercase{Unexpected diagonals}
216
}
217
218
\vspace{.4cm}
219
Vincent PILAUD (CNRS \& École Polytechnique)
220
221
\vspace{.3cm}
222
\centerline{
223
\begin{tabular}{c@{\hspace{-1.8cm}}c}
224
Bérénice DELCROIX-OGER (Univ.\,Montpellier)
225
&
226
Alin BOSTAN (INRIA)
227
\\
228
Matthieu JOSUAT-VERGÈS (CNRS \& Univ.\,Paris Cité)
229
&
230
Frédéric CHYZAK (INRIA)
231
\\
232
Guillaume LAPLANTE-ANFOSSI (Univ.\,Melbourne)
233
&
234
\\
235
Kurt STOECKL (Univ.\,Melbourne)
236
&
237
\href{http://arxiv.org/abs/2303.10986}{\texttt{arXiv:2303.10986}}
238
\\
239
\includegraphics[scale=1.2]{diagonalPermutahedron2
240
}
241
&
242
\includegraphics[scale=1.2]{diagonalAssociahedron2}\hspace{1cm}
243
\end{tabular}
244
}
245
246
\vspace{.1cm}
247
248
\large
249
Rencontre 3DMaps \\
250
Wednesday June 21st, 2023 \\
251
slides available at: \url{http://www.lix.polytechnique.fr/~pilaud/documents/presentations/diagonals.pdf}
252
253
\vspace*{-1cm}
254
255
\end{center}
256
257
%%%%%%%%%%
258
259
%\setul{0ex}{.3ex}
260
%\setstcolor{red}
261
%
262
%\begin{slide}{Unexpected talk}
263
%
264
%\vspace{.5cm}
265
%
266
%\phantom{\;\;{\red This}} \\[-.3cm]
267
%A usual talk consists in (?)
268
%
269
%\begin{itemize}
270
%
271
%\item a definition % {\red $\longleftarrow$ that we don't need for the talk}
272
%
273
%\item its motivation % \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
274
%
275
%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\
276
%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}
277
%
278
%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}
279
%
280
%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}
281
%
282
%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
283
%
284
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
285
%
286
%\end{itemize}
287
%
288
%\end{slide}
289
%
290
%%%%
291
%
292
%\setul{0ex}{.3ex}
293
%\setstcolor{red}
294
%
295
%\begin{slide}{Unexpected talk}
296
%
297
%\vspace{.5cm}
298
%
299
%\;\;{\red This} \\[-.3cm]
300
%\st{A usual} talk consists in \st{(?)}
301
%
302
%\begin{itemize}
303
%
304
%\item a definition % {\red $\longleftarrow$ that we don't need for the talk}
305
%
306
%\item its motivation % \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
307
%
308
%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\
309
%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}
310
%
311
%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}
312
%
313
%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}
314
%
315
%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
316
%
317
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
318
%
319
%\end{itemize}
320
%
321
%\end{slide}
322
%
323
%%%%
324
%
325
%\setul{0ex}{.3ex}
326
%\setstcolor{red}
327
%
328
%\begin{slide}{Unexpected talk}
329
%
330
%\vspace{.5cm}
331
%
332
%\;\;{\red This} \\[-.3cm]
333
%\st{A usual} talk consists in \st{(?)}
334
%
335
%\begin{itemize}
336
%
337
%\item a definition {\red $\longleftarrow$ that we don't need for the talk}
338
%
339
%\item its motivation % \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
340
%
341
%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\
342
%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}
343
%
344
%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}
345
%
346
%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}
347
%
348
%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
349
%
350
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
351
%
352
%\end{itemize}
353
%
354
%\end{slide}
355
%
356
%%%%
357
%
358
%\setul{0ex}{.3ex}
359
%\setstcolor{red}
360
%
361
%\begin{slide}{Unexpected talk}
362
%
363
%\vspace{.5cm}
364
%
365
%\;\;{\red This} \\[-.3cm]
366
%\st{A usual} talk consists in \st{(?)}
367
%
368
%\begin{itemize}
369
%
370
%\item a definition {\red $\longleftarrow$ that we don't need for the talk}
371
%
372
%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
373
%
374
%\item some results that you hope the audience will remember \\ % {\red $\longleftarrow$ remember the message:} \\
375
%\phantom{.} % \hfill {\red ``diagonals have nice enumerative combinatorics''}
376
%
377
%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}
378
%
379
%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}
380
%
381
%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
382
%
383
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
384
%
385
%\end{itemize}
386
%
387
%\end{slide}
388
%
389
%%%%
390
%
391
%\setul{0ex}{.3ex}
392
%\setstcolor{red}
393
%
394
%\begin{slide}{Unexpected talk}
395
%
396
%\vspace{.5cm}
397
%
398
%\;\;{\red This} \\[-.3cm]
399
%\st{A usual} talk consists in \st{(?)}
400
%
401
%\begin{itemize}
402
%
403
%\item a definition {\red $\longleftarrow$ that we don't need for the talk}
404
%
405
%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
406
%
407
%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}
408
%
409
%\item no proofs (your time is limited) % \quad {\red $\longleftarrow$ this is the interesting part}
410
%
411
%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}
412
%
413
%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
414
%
415
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
416
%
417
%\end{itemize}
418
%
419
%\end{slide}
420
%
421
%%%%
422
%
423
%\setul{0ex}{.3ex}
424
%\setstcolor{red}
425
%
426
%\begin{slide}{Unexpected talk}
427
%
428
%\vspace{.5cm}
429
%
430
%\;\;{\red This} \\[-.3cm]
431
%\st{A usual} talk consists in \st{(?)}
432
%
433
%\begin{itemize}
434
%
435
%\item a definition {\red $\longleftarrow$ that we don't need for the talk}
436
%
437
%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
438
%
439
%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}
440
%
441
%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}
442
%
443
%\item concerning something you though about for years % \quad {\red $\longleftarrow$ I started in January}
444
%
445
%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
446
%
447
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
448
%
449
%\end{itemize}
450
%
451
%\end{slide}
452
%
453
%%%%
454
%
455
%\setul{0ex}{.3ex}
456
%\setstcolor{red}
457
%
458
%\begin{slide}{Unexpected talk}
459
%
460
%\vspace{.5cm}
461
%
462
%\;\;{\red This} \\[-.3cm]
463
%\st{A usual} talk consists in \st{(?)}
464
%
465
%\begin{itemize}
466
%
467
%\item a definition {\red $\longleftarrow$ that we don't need for the talk}
468
%
469
%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
470
%
471
%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}
472
%
473
%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}
474
%
475
%\item \st{concerning something you though about for years} \quad {\red $\longleftarrow$ I started in January}
476
%
477
%\item some pictures % \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
478
%
479
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
480
%
481
%\end{itemize}
482
%
483
%\end{slide}
484
%
485
%%%%
486
%
487
%\setul{0ex}{.3ex}
488
%\setstcolor{red}
489
%
490
%\begin{slide}{Unexpected talk}
491
%
492
%\vspace{.5cm}
493
%
494
%\;\;{\red This} \\[-.3cm]
495
%\st{A usual} talk consists in \st{(?)}
496
%
497
%\begin{itemize}
498
%
499
%\item a definition {\red $\longleftarrow$ that we don't need for the talk}
500
%
501
%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
502
%
503
%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}
504
%
505
%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}
506
%
507
%\item \st{concerning something you though about for years} \quad {\red $\longleftarrow$ I started in January}
508
%
509
%\item some pictures \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
510
%
511
%\item a joke % \quad {\red $\longleftarrow$ this slide is not the joke}
512
%
513
%\end{itemize}
514
%
515
%\end{slide}
516
%
517
%%%%
518
%
519
%\setul{0ex}{.3ex}
520
%\setstcolor{red}
521
%
522
%\begin{slide}{Unexpected talk}
523
%
524
%\vspace{.5cm}
525
%
526
%\;\;{\red This} \\[-.3cm]
527
%\st{A usual} talk consists in \st{(?)}
528
%
529
%\begin{itemize}
530
%
531
%\item a definition {\red $\longleftarrow$ that we don't need for the talk}
532
%
533
%\item \st{its motivation} \quad {\red $\longleftarrow$ I barely understand it ... see Daria's talk}
534
%
535
%\item some results that \st{you hope the audience will remember} {\red $\longleftarrow$ remember the message:} \\ \phantom{.} \hfill {\red ``diagonals have nice enumerative combinatorics''}
536
%
537
%\item \st{no} proofs \st{(your time is limited)} \quad {\red $\longleftarrow$ this is the interesting part}
538
%
539
%\item \st{concerning something you though about for years} \quad {\red $\longleftarrow$ I started in January}
540
%
541
%\item some pictures \quad {\red $\longleftarrow$ \raisebox{-.3cm}{\scalebox{2}{\smiley{}}}}
542
%
543
%\item a joke \quad {\red $\longleftarrow$ this slide is not the joke}
544
%
545
%\end{itemize}
546
%
547
%\end{slide}
548
549
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
550
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
551
552
\partie{Diagonals of polytopes}
553
554
%%%%%%%%%%
555
556
\begin{slide}{Diagonals of polytopes}
557
558
$\poly{P}$ polytope in~$\R^d$
559
560
\vspace{-.5cm}
561
\emph{diagonal} of~$\poly{P} = \delta : \begin{array}[t]{ccc} \poly{P} & \to & \poly{P} \times \poly{P} \\ p & \mapsto & (p,p) \end{array}$
562
\hfill
563
\raisebox{-2cm}{\includegraphics[scale=2.5]{diagonalSegment1}}
564
565
\vfill
566
\centerline{
567
\begin{tabular}{c@{}cc@{}c}
568
\includegraphics[scale=1.8]{diagonalTriangle3}
569
&
570
\phantom{\includegraphics[scale=1.8]{diagonalTriangle4}}
571
&
572
\includegraphics[scale=1.8]{diagonalSquarre3}
573
\hspace{-1cm}
574
&
575
\phantom{\includegraphics[scale=1.8]{diagonalSquarre4}}
576
\\
577
\multicolumn{2}{c}{\phantom{Alexander -- Whitney}}
578
&
579
\multicolumn{2}{c}{\phantom{Serre}}
580
\\
581
\multicolumn{2}{c}{\phantom{singular homology}}
582
&
583
\multicolumn{2}{c}{\phantom{cubical singular homology}}
584
\end{tabular}
585
}
586
\vspace{2.5cm}
587
588
\end{slide}
589
590
%%%
591
592
\begin{slide}{Diagonals of polytopes}
593
594
$\poly{P}$ polytope in~$\R^d$
595
596
\vspace{-.5cm}
597
\emph{diagonal} of~$\poly{P} = \delta : \begin{array}[t]{ccc} \poly{P} & \to & \poly{P} \times \poly{P} \\ p & \mapsto & (p,p) \end{array}$
598
\hfill
599
\raisebox{-2cm}{\includegraphics[scale=2.5]{diagonalSegment1}}
600
601
\vspace{.3cm}
602
\emph{cellular approximation} of the diagonal of~$\poly{P} =$ map $\poly{P} \to \poly{P} \times \poly{P}$ s.t.
603
\begin{compactitem}
604
\item its image is a union of faces of~$\poly{P} \times \poly{P}$
605
\item it agrees with~$\delta$ on the vertices of~$\poly{P}$
606
\item it is homotopic to~$\delta$
607
\end{compactitem}
608
609
\vspace{-4cm}
610
\hfill
611
\raisebox{2cm}{\includegraphics[scale=2.5]{diagonalSegment2}}
612
613
\vspace*{-10cm}
614
615
\vfill
616
\centerline{
617
\begin{tabular}{c@{}cc@{}c}
618
\includegraphics[scale=1.8]{diagonalTriangle3}
619
&
620
\includegraphics[scale=1.8]{diagonalTriangle4}
621
&
622
\includegraphics[scale=1.8]{diagonalSquarre3}
623
\hspace{-1cm}
624
&
625
\includegraphics[scale=1.8]{diagonalSquarre4}
626
\\
627
\multicolumn{2}{c}{\phantom{Alexander -- Whitney}}
628
&
629
\multicolumn{2}{c}{\phantom{Serre}}
630
\\
631
\multicolumn{2}{c}{\phantom{singular homology}}
632
&
633
\multicolumn{2}{c}{\phantom{cubical singular homology}}
634
\end{tabular}
635
}
636
\vspace{2.5cm}
637
638
\end{slide}
639
%%%
640
641
\begin{slide}{Diagonals of polytopes}
642
643
$\poly{P}$ polytope in~$\R^d$
644
645
\vspace{-.5cm}
646
\emph{diagonal} of~$\poly{P} = \delta : \begin{array}[t]{ccc} \poly{P} & \to & \poly{P} \times \poly{P} \\ p & \mapsto & (p,p) \end{array}$
647
\hfill
648
\raisebox{-2cm}{\includegraphics[scale=2.5]{diagonalSegment1}}
649
650
\vspace{.3cm}
651
\emph{cellular approximation} of the diagonal of~$\poly{P} =$ map $\poly{P} \to \poly{P} \times \poly{P}$ s.t.
652
\begin{compactitem}
653
\item its image is a union of faces of~$\poly{P} \times \poly{P}$
654
\item it agrees with~$\delta$ on the vertices of~$\poly{P}$
655
\item it is homotopic to~$\delta$
656
\end{compactitem}
657
658
\vspace{-4cm}
659
\hfill
660
\raisebox{2cm}{\includegraphics[scale=2.5]{diagonalSegment2}}
661
662
\vspace*{-10cm}
663
664
\vfill
665
\centerline{
666
\begin{tabular}{c@{}cc@{}c}
667
\includegraphics[scale=1.8]{diagonalTriangle3}
668
&
669
\includegraphics[scale=1.8]{diagonalTriangle4}
670
&
671
\includegraphics[scale=1.8]{diagonalSquarre3}
672
\hspace{-1cm}
673
&
674
\includegraphics[scale=1.8]{diagonalSquarre4}
675
\\
676
\multicolumn{2}{c}{Alexander -- Whitney}
677
&
678
\multicolumn{2}{c}{Serre}
679
\\
680
\multicolumn{2}{c}{singular homology}
681
&
682
\multicolumn{2}{c}{cubical singular homology}
683
\end{tabular}
684
}
685
\vspace{2.5cm}
686
687
\end{slide}
688
689
%%%
690
691
\begin{slide}{Diagonals of polytopes}
692
693
\hfill\papier{Masuda -- Thomas -- Tonks -- Vallette '21}
694
695
\vspace{-.3cm}
696
\hfill\papier{Laplante-Anfossi '22}
697
698
\vspace{-1.7cm}
699
any vertex of the fiber polytope \phantom{selected by~$(-v,v)$}
700
\[
701
\displaystyle
702
\sum \left( \!\! \begin{array}{ccc} \poly{P} \times \poly{P} & & (p,q) \\[.1cm] \rotatebox[origin=c]{-90}{$\xrightarrow{\hspace*{.6cm}}$} & , & \rotatebox[origin=c]{-90}{$\xmapsto{\hspace*{.6cm}}$} \\[.4cm] \poly{P} & & \frac{p+q}{2} \end{array} \!\! \right)
703
\]
704
gives a cellular approximation of the diagonal of~$\poly{P}$ \\
705
projecting back on~$\poly{P}$, we see it as a polyhedral subdivision of~$\poly{P}$
706
\vspace{-5cm}
707
708
\vfill
709
\hfill{\small \textcopyright\,G.\,Laplante-Anfossi} \\[-2.5cm]
710
\centerline{
711
\begin{tabular}{c@{}cc@{}c}
712
\hspace{2cm}\includegraphics[scale=1.2]{diagonalTriangle4}
713
&&
714
\hspace{-1.3cm}\includegraphics[scale=1.2]{diagonalSquarre3}\hspace{3.5cm}
715
\\[-1.8cm]
716
\raisebox{.9cm}{\includegraphics[scale=1.4]{diagonalTriangle1}}
717
&
718
\includegraphics[scale=.4]{diagonalSimplexGuillaume}
719
&
720
\includegraphics[scale=1.4]{diagonalSquarre1}
721
&
722
\includegraphics[scale=.45]{diagonalCubeGuillaume}
723
% \\[-.5cm]
724
% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$}
725
% &
726
% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$}
727
% \\[.6cm]
728
% \multicolumn{2}{c}{[OEIS, A127717]}
729
% &
730
% \multicolumn{2}{c}{[OEIS, A038220]}
731
\end{tabular}
732
}
733
\vspace{2cm}
734
735
\end{slide}
736
737
%%%
738
739
\begin{slide}{Diagonals of polytopes}
740
741
\hfill\papier{Masuda -- Thomas -- Tonks -- Vallette '21}
742
743
\vspace{-.3cm}
744
\hfill\papier{Laplante-Anfossi '22}
745
746
\vspace{-1.7cm}
747
\parbox{\widthof{any}}{the\phantom{y}} vertex of the fiber polytope selected by~$(-v,v)$
748
\[
749
\displaystyle
750
\sum \left( \!\! \begin{array}{ccc} \poly{P} \times \poly{P} & & (p,q) \\[.1cm] \rotatebox[origin=c]{-90}{$\xrightarrow{\hspace*{.6cm}}$} & , & \rotatebox[origin=c]{-90}{$\xmapsto{\hspace*{.6cm}}$} \\[.4cm] \poly{P} & & \frac{p+q}{2} \end{array} \!\! \right)
751
\]
752
gives a cellular approximation of the diagonal of~$\poly{P}$ \\
753
projecting back on~$\poly{P}$, we see it as a polyhedral subdivision~$\Delta_{\poly{P},v}$ of~$\poly{P}$
754
\vspace{-5cm}
755
756
\vfill
757
\hfill{\small \textcopyright\,G.\,Laplante-Anfossi} \\[-2.5cm]
758
\centerline{
759
\begin{tabular}{c@{}cc@{}c}
760
\hspace{2cm}\includegraphics[scale=1.2]{diagonalTriangle4}
761
&&
762
\hspace{-1.3cm}\includegraphics[scale=1.2]{diagonalSquarre3}\hspace{3.5cm}
763
\\[-1.8cm]
764
\raisebox{.9cm}{\includegraphics[scale=1.4]{diagonalTriangle1}}
765
&
766
\includegraphics[scale=.4]{diagonalSimplexGuillaume}
767
&
768
\includegraphics[scale=1.4]{diagonalSquarre1}
769
&
770
\includegraphics[scale=.45]{diagonalCubeGuillaume}
771
% \\[-.5cm]
772
% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$}
773
% &
774
% \multicolumn{2}{c}{$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$}
775
% \\[.6cm]
776
% \multicolumn{2}{c}{[OEIS, A127717]}
777
% &
778
% \multicolumn{2}{c}{[OEIS, A038220]}
779
\end{tabular}
780
}
781
\vspace{2cm}
782
783
\end{slide}
784
785
%%%
786
787
\begin{slide}{Diagonals of polytopes}
788
789
\theo{THM}{
790
\vspace{-1.2cm}
791
\begin{center}
792
combinatorics of the diagonal~$\Delta_{\poly{P},v}$ of~$\poly{P}$ \\
793
$\simeq$ \\
794
common refinement of two copies of the normal fan of~$\poly{P}$ translated by~$v$
795
\end{center}
796
797
\hfill\papier{Laplante-Anfossi '22}
798
799
}
800
801
\vspace{1cm}
802
\centerline{
803
\begin{tabular}{c@{\hspace{-.5cm}}c@{\qquad}c@{\quad}c}
804
\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle5}}
805
&
806
\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle2}}
807
&
808
\includegraphics[scale=1.2]{diagonalSquarre5}
809
&
810
\includegraphics[scale=1.2]{diagonalSquarre2}
811
\end{tabular}
812
}
813
814
\end{slide}
815
816
%%%
817
818
\begin{slide}{Diagonals of polytopes}
819
820
\theo{THM}{
821
Faces of~$\Delta_{\poly{P},v} \subseteq$ pairs $(F,G)$ such that~$\max_v(F) \le \min_v(G)$
822
823
\hfill\papier{Laplante-Anfossi '22}
824
825
}
826
827
\vspace{1cm}
828
When these are exactly the faces, it is called ``magical formula'' \\
829
This is the case for simplices, cubes, associahedra, but not permutahedra (see later)
830
831
\vspace{1cm}
832
\centerline{
833
\begin{tabular}{c@{\qquad}c}
834
\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle6}}
835
&
836
\includegraphics[scale=1.2]{diagonalSquarre6}
837
\\
838
\phantom{$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$}
839
&
840
\phantom{$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$}
841
\end{tabular}
842
}
843
844
\end{slide}
845
846
%%%
847
848
\begin{slide}{Diagonals of polytopes}
849
850
\theo{THM}{
851
Faces of~$\Delta_{\poly{P},v} \subseteq$ pairs $(F,G)$ such that~$\max_v(F) \le \min_v(G)$
852
853
\hfill\papier{Laplante-Anfossi '22}
854
855
}
856
857
\vspace{1cm}
858
When these are exactly the faces, it is called ``magical formula'' \\
859
This is the case for simplices, cubes, associahedra, but not permutahedra (see later)
860
861
\vspace{1cm}
862
\centerline{
863
\begin{tabular}{c@{\qquad}c}
864
\raisebox{.6cm}{\includegraphics[scale=1.4]{diagonalTriangle6}}
865
&
866
\includegraphics[scale=1.2]{diagonalSquarre6}
867
\\
868
$\displaystyle f_k(\Delta_{\Simplex(n)}) = (k+1) \binom{n+1}{k+2}$
869
% choose k+2 points of [n] where 2 consecutive are distinguished and might be equal, and the rest is distinct
870
% this is the same as choosing k+2 points of [n+1], and the position of the consecutive pair of distinguished points among them
871
% hence (k+1) \binom{n+1}{k+2}
872
&
873
$\displaystyle f_k(\Delta_{\Cube(n)}) = \binom{n}{k} 2^k 3^{n-k}$
874
% choose a < b <= c < d in the boolean lattice such that |b-a| + |d-c| = k.
875
% choose the positions of the ones in (b-a) + (d-c) => \binom{n}{k}
876
% choose whether each of this ones is in (b-a) or in (d-c) => 2^k
877
% choose the values of b and c on the remaining n-k positions to be either 00, 01 or 11 => 3^(n-k)
878
\\[1cm]
879
[OEIS, A127717]
880
&
881
[OEIS, A038220]
882
\end{tabular}
883
}
884
885
\end{slide}
886
887
888
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
889
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
890
891
\partie{Permutahedron \& associahedron}
892
893
%%%%%%%%%%
894
895
\begin{slide}{Lattices: Weak order \& Tamari lattice}
896
897
\vspace{.3cm}
898
899
\centerline{
900
\begin{tabular}{l@{\qquad}l}
901
\hspace{-1cm}\includegraphics[scale=1.25]{weakOrder}
902
&
903
\includegraphics[scale=1]{TamariLattice}
904
\\
905
\emph{weak order} = permutations of~$[n]$
906
&
907
\emph{Tamari lattice} = binary trees on~$[n]$
908
\\
909
ordered by paths of simple transpositions
910
&
911
ordered by paths of right rotations
912
\end{tabular}
913
}
914
915
\end{slide}
916
917
%%%
918
919
\begin{slide}{Lattices: Weak order \& Tamari lattice}
920
921
\vspace{.3cm}
922
923
\centerline{
924
\begin{tabular}{l@{\qquad}l}
925
\hspace{-1cm}\includegraphics[scale=1.25]{weakOrderZoom}
926
&
927
\includegraphics[scale=1]{TamariLatticeZoom1}\hspace{-1cm}
928
\\
929
\emph{weak order} = permutations of~$[n]$
930
&
931
\emph{Tamari lattice} = binary trees on~$[n]$
932
\\
933
ordered by paths of simple transpositions
934
&
935
ordered by paths of right rotations
936
\end{tabular}
937
}
938
939
\end{slide}
940
941
%%%
942
943
\begin{slide}{Lattices: Weak order \& Tamari lattice}
944
945
\vspace{.3cm}
946
947
\centerline{
948
\begin{tabular}{l@{\qquad}l}
949
\hspace{-1cm}\includegraphics[scale=1.25]{sylvesterCongruence}
950
&
951
\includegraphics[scale=1]{TamariLattice}
952
\\
953
\emph{weak order} = permutations of~$[n]$
954
&
955
\emph{Tamari lattice} = binary trees on~$[n]$
956
\\
957
ordered by paths of simple transpositions
958
&
959
ordered by paths of right rotations
960
\end{tabular}
961
}
962
963
\vspace{.6cm}
964
\emph{sylvester congruence} \begin{tabular}[t]{@{}l@{}} = equivalence classes are sets of linear extensions of binary trees \\ = equivalence classes are fibers of BST insertion \\ = rewriting rule~$UacVbW \equiv_{\mathrm{sylv}} UcaVbW$ with $a < b < c$\end{tabular}
965
966
\vspace{.6cm}
967
\emph{quotient lattice} = lattice on classes with $X \le Y \iff \exists \; x \in X, \; y \in Y, x \le y$
968
969
\end{slide}
970
971
%%%
972
973
\begin{slide}{Lattices: Weak order \& Tamari lattice}
974
975
\vspace{.3cm}
976
977
\centerline{
978
\begin{tabular}{l@{\qquad}l}
979
\hspace{-1cm}\includegraphics[scale=1.25]{sylvesterCongruenceZoom}
980
&
981
\includegraphics[scale=1]{TamariLatticeZoom2}\hspace{-3cm}
982
\\
983
\emph{weak order} = permutations of~$[n]$
984
&
985
\emph{Tamari lattice} = binary trees on~$[n]$
986
\\
987
ordered by paths of simple transpositions
988
&
989
ordered by paths of right rotations
990
\end{tabular}
991
}
992
993
\vspace{.6cm}
994
\emph{sylvester congruence} \begin{tabular}[t]{@{}l@{}} = equivalence classes are sets of linear extensions of binary trees \\ = equivalence classes are fibers of BST insertion \\ = rewriting rule~$UacVbW \equiv_{\mathrm{sylv}} UcaVbW$ with $a < b < c$\end{tabular}
995
996
\vspace{.6cm}
997
\emph{quotient lattice} = lattice on classes with $X \le Y \iff \exists \; x \in X, \; y \in Y, x \le y$
998
999
\end{slide}
1000
1001
%%%%%%%%%%
1002
1003
\begin{slide}{Fans: braid fan \& sylvester fan}
1004
1005
\vspace{.6cm}
1006
1007
\centerline{
1008
\begin{tabular}{l@{\qquad}l}
1009
\includegraphics[scale=1.4]{braidFan}
1010
&
1011
\raisebox{-.6cm}{\includegraphics[scale=1.4]{sylvesterFan}}
1012
\\[-.5cm]
1013
\emph{braid fan} =
1014
&
1015
\emph{sylvester fan} =
1016
\\
1017
$\quad \poly{C}(\sigma) = \set{\b{x} \in \R^n}{x_{\sigma(1)} \le \dots \le x_{\sigma(n)}}$
1018
&
1019
$\quad \poly{C}(T) = \set{\b{x} \in \R^n}{x_i \le x_j \text{ if $i \to j$ in $T$}}$
1020
\end{tabular}
1021
}
1022
1023
\end{slide}
1024
1025
%%%
1026
1027
\begin{slide}{Fans: braid fan \& sylvester fan}
1028
1029
\vspace{.6cm}
1030
1031
\centerline{
1032
\begin{tabular}{l@{\qquad}l}
1033
\includegraphics[scale=1.4]{braidFanZoom}
1034
&
1035
\raisebox{-.6cm}{\includegraphics[scale=1.4]{sylvesterFanZoom}}
1036
\\[-.5cm]
1037
\emph{braid fan} =
1038
&
1039
\emph{sylvester fan} =
1040
\\
1041
$\quad \poly{C}(\sigma) = \set{\b{x} \in \R^n}{x_{\sigma(1)} \le \dots \le x_{\sigma(n)}}$
1042
&
1043
$\quad \poly{C}(T) = \set{\b{x} \in \R^n}{x_i \le x_j \text{ if $i \to j$ in $T$}}$
1044
\end{tabular}
1045
}
1046
1047
\end{slide}
1048
1049
%%%
1050
1051
\begin{slide}{Fans: braid fan \& sylvester fan}
1052
1053
\vspace{.6cm}
1054
1055
\centerline{
1056
\begin{tabular}{l@{\qquad}l}
1057
\includegraphics[scale=1.4]{braidFan}
1058
&
1059
\raisebox{-.6cm}{\includegraphics[scale=1.4]{sylvesterFan}}
1060
\\[-.5cm]
1061
\emph{braid fan} =
1062
&
1063
\emph{sylvester fan} =
1064
\\
1065
$\quad \poly{C}(\sigma) = \set{\b{x} \in \R^n}{x_{\sigma(1)} \le \dots \le x_{\sigma(n)}}$
1066
&
1067
$\quad \poly{C}(T) = \set{\b{x} \in \R^n}{x_i \le x_j \text{ if $i \to j$ in $T$}}$
1068
\end{tabular}
1069
}
1070
1071
\vspace{1cm}
1072
\emph{quotient fan} = $\poly{C}(T)$ is obtained by glueing $\poly{C}(\sigma)$ for all linear extensions~$\sigma$ of~$T$
1073
1074
\end{slide}
1075
1076
%%%%%%%%%%
1077
1078
\begin{slide}{Polytopes: Permutahedron \& associahedron}
1079
1080
\vspace{.6cm}
1081
1082
\centerline{
1083
\begin{tabular}{ll}
1084
\includegraphics[scale=1.25]{permutahedron}
1085
&
1086
\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedron}}
1087
\\[.1cm]
1088
\emph{permutahedron} $\Perm(n)$
1089
&
1090
\emph{associahedron} $\Asso(n)$
1091
\\[.1cm]
1092
$\quad = \conv\bigset{[\sigma^{-1}(i)]_{i \in [n]}}{\sigma \in \fS_n}$
1093
&
1094
$\quad = \conv \set{[\ell(T,i) \cdot r(T,i)]_{i \in [n]}}{T \text{ binary tree}}$
1095
\\[.1cm]
1096
$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{\varnothing \ne J \subsetneq [n]} \HH_J$
1097
&
1098
$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{1 \le i < j \le n} \HH_{[i,j]}$
1099
\\[-.8cm]
1100
where $\HH_J = \bigset{\b{x} \in \R^{n}}{\sum_{j \in J} x_j \ge \binom{|J|+1}{2}}$ \hspace{-1cm}
1101
&
1102
\raisebox{.5cm}{\begin{minipage}{14cm}
1103
\flushright \papier{Stasheff ('63) \\ Shnider -- Sternberg ('93) \\[-.3cm] Loday ('04)}
1104
\end{minipage}}
1105
\end{tabular}
1106
}
1107
1108
\end{slide}
1109
1110
%%%
1111
1112
\begin{slide}{Polytopes: Permutahedron \& associahedron}
1113
1114
\vspace{.6cm}
1115
1116
\centerline{
1117
\begin{tabular}{ll}
1118
\includegraphics[scale=1.25]{permutahedronZoom}
1119
&
1120
\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedronZoom}} \hspace*{-1cm}
1121
\\[.1cm]
1122
\emph{permutahedron} $\Perm(n)$
1123
&
1124
\emph{associahedron} $\Asso(n)$
1125
\\[.1cm]
1126
$\quad = \conv\bigset{[\sigma^{-1}(i)]_{i \in [n]}}{\sigma \in \fS_n}$
1127
&
1128
$\quad = \conv \set{[\ell(T,i) \cdot r(T,i)]_{i \in [n]}}{T \text{ binary tree}}$
1129
\\[.1cm]
1130
$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{\varnothing \ne J \subsetneq [n]} \HH_J$
1131
&
1132
$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{1 \le i < j \le n} \HH_{[i,j]}$
1133
\\[-.8cm]
1134
where $\HH_J = \bigset{\b{x} \in \R^{n}}{\sum_{j \in J} x_j \ge \binom{|J|+1}{2}}$ \hspace{-1cm}
1135
&
1136
\raisebox{.5cm}{\begin{minipage}{14cm}
1137
\flushright \papier{Stasheff ('63) \\ Shnider -- Sternberg ('93) \\[-.3cm] Loday ('04)}
1138
\end{minipage}}
1139
\end{tabular}
1140
}
1141
1142
\end{slide}
1143
1144
%%%
1145
1146
\begin{slide}{Polytopes: Permutahedron \& associahedron}
1147
1148
\vspace{.6cm}
1149
1150
\centerline{
1151
\begin{tabular}{ll}
1152
\includegraphics[scale=1.25]{permutahedron}
1153
&
1154
\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedronPermutahedron}}
1155
\\[.1cm]
1156
\emph{permutahedron} $\Perm(n)$
1157
&
1158
\emph{associahedron} $\Asso(n)$
1159
\\[.1cm]
1160
$\quad = \conv\bigset{[\sigma^{-1}(i)]_{i \in [n]}}{\sigma \in \fS_n}$
1161
&
1162
$\quad = \conv \set{[\ell(T,i) \cdot r(T,i)]_{i \in [n]}}{T \text{ binary tree}}$
1163
\\[.1cm]
1164
$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{\varnothing \ne J \subsetneq [n]} \HH_J$
1165
&
1166
$\quad = \displaystyle \HH \, \cap \; \bigcap\nolimits_{1 \le i < j \le n} \HH_{[i,j]}$
1167
\\[-.8cm]
1168
where $\HH_J = \bigset{\b{x} \in \R^{n}}{\sum_{j \in J} x_j \ge \binom{|J|+1}{2}}$ \hspace{-1cm}
1169
&
1170
\raisebox{.5cm}{\begin{minipage}{14cm}
1171
\flushright \papier{Stasheff ('63) \\ Shnider -- Sternberg ('93) \\[-.3cm] Loday ('04)}
1172
\end{minipage}}
1173
\end{tabular}
1174
}
1175
1176
%\gboite{
1177
% \emph{removahedron} = $\Asso(n)$ is obtained from $\Perm(n)$ by removing facet inequalities
1178
%}
1179
1180
\end{slide}
1181
1182
%%%
1183
1184
\begin{slide}{Polytopes: Permutahedron \& associahedron}
1185
1186
1187
\centerline{
1188
\includemovie[autoplay, repeat, text={}, mouse=true]{600pt}{392pt}{polywood/outsidahedra_perm2asso2cube_penche_framed_fast_bothWays_cropped.mov}
1189
}
1190
1191
\vfill
1192
\includegraphics[scale=.5]{polywood/polywood}
1193
\vspace{2.8cm}
1194
1195
\vspace{-.1cm}
1196
1197
\end{slide}
1198
1199
%%%%%%%%%%
1200
1201
\begin{slide}{lattices -- fans -- polytopes}
1202
1203
\vspace{.3cm}
1204
\centerline{
1205
\begin{tabular}{l@{\hspace{2.4cm}}l}
1206
\emph{permutahedron} $\Perm(n)$
1207
&
1208
\emph{associahedron} $\Asso(n)$
1209
\\[.1cm]
1210
$\quad \Longrightarrow$ braid fan
1211
&
1212
$\quad \Longrightarrow$ Sylvester fan \hspace{2.9cm}
1213
\\[.1cm]
1214
$\quad \Longrightarrow$ weak order on permutations
1215
&
1216
$\quad \Longrightarrow$ Tamari lattice on binary trees \hspace{2.9cm}
1217
\\[.5cm]
1218
\includegraphics[scale=1.25]{permutahedronWeakOrder}
1219
&
1220
\raisebox{-.9cm}{\includegraphics[scale=1.25]{associahedronTamariLattice}}
1221
\\[-.8cm]
1222
\end{tabular}
1223
}
1224
1225
\end{slide}
1226
1227
%%%%%%%%%%
1228
1229
\begin{slide}{$f$-vector of diagonals}
1230
1231
\centerline{
1232
\begin{tabular}{c@{}c}
1233
\hspace{2cm}\includegraphics[scale=1.15]{diagonalPermutahedron2}\hspace{2cm}
1234
&
1235
\hspace{2cm}\includegraphics[scale=1.15]{diagonalAssociahedron2}\hspace{2cm}
1236
\\[-.4cm]
1237
\includegraphics[scale=.45]{diagonalPermutahedronGuillaume}
1238
&
1239
\includegraphics[scale=.45]{diagonalAssociahedronGuillaume}
1240
\end{tabular}
1241
}
1242
\vspace{-10cm}
1243
1244
\hfill
1245
\papier{Saneblidze -- Umble '04}
1246
1247
\vspace{-.3cm}
1248
\hfill
1249
\papier{Markl -- Shnider '06}
1250
1251
\vspace{-.3cm}
1252
\hfill
1253
\papier{Loday '11}
1254
1255
\vspace{6.8cm}
1256
{\small \textcopyright\,G.\,Laplante-Anfossi}
1257
\hfill
1258
\papier{Masuda -- Thomas -- Tonks -- Vallette '21}
1259
1260
\vspace{-.3cm}
1261
\hfill
1262
\papier{Laplante-Anfossi '22}
1263
1264
\end{slide}
1265
1266
%%%
1267
1268
\begin{slide}{$f$-vector of diagonals}
1269
1270
\centerline{
1271
\begin{tabular}{c@{}c}
1272
\hspace*{2cm}\includegraphics[scale=1.15]{diagonalPermutahedron2}\hspace{2cm}
1273
&
1274
\hspace{2cm}\includegraphics[scale=1.15]{diagonalAssociahedron2}\hspace*{2cm}
1275
\\[.5cm]
1276
% $\displaystyle f_k(\Delta_{\Perm(n)}) = \sum_{\b{F} \le \b{G}} \prod_{i \in [2]} \prod_{p \in G_i} (\# F_i[p]-1)!$
1277
$\displaystyle f_k = \sum_{\b{F} \le \b{G}} \prod_{i \in [2]} \prod_{p \in G_i} (\# F_i[p]-1)!$
1278
&
1279
$\displaystyle f_k = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}$
1280
\\
1281
% $f_0(\Delta_{\Perm(n)}) = [x^n] \; \exp \! \bigg( \sum_m \frac{x^m}{m(m+1)}\binom{2m}{m} \! \bigg)$
1282
$\displaystyle f_0 = [x^n] \; \exp \! \bigg( \sum_m \frac{x^m}{m(m+1)}\binom{2m}{m} \! \bigg)$
1283
\\[1cm]
1284
% $f_{n-1}(\Delta_{\Perm(n)}) = 2 (n+1)^{n-2}$
1285
$f_{n-1} = 2 (n+1)^{n-2}$
1286
\\[-.8cm]
1287
\end{tabular}
1288
}
1289
1290
\vspace{2.5cm}
1291
\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
1292
\hfill
1293
\papier{Bostan -- Chyzak -- P. '23$^+$}
1294
1295
\end{slide}
1296
1297
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1298
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1299
1300
\partie{Diagonal of the associahedron}
1301
1302
\centerline{
1303
\raisebox{.5cm}{\includegraphics[scale=1.2]{diagonalAssociahedron1}}
1304
\includegraphics[scale=.6]{diagonalAssociahedronGuillaume}
1305
}
1306
1307
\vspace{-2cm}
1308
\hfill
1309
{\small \textcopyright\,G.\,Laplante-Anfossi}
1310
1311
\begin{center}
1312
\href{http://arxiv.org/abs/2303.10986}{\texttt{arXiv:2303.10986}}
1313
\\[.1cm]
1314
with \\
1315
Alin BOSTAN (INRIA) \\
1316
Frédéric CHYZAK (INRIA)
1317
\end{center}
1318
1319
%%%%%%%%%%
1320
1321
\begin{slide}{Number of Tamari intervals}
1322
1323
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes
1324
1325
\vfill
1326
\centerline{\includegraphics[scale=1.1]{TamariLattices}}
1327
\vspace{2.7cm}
1328
1329
\end{slide}
1330
1331
%%%
1332
1333
\begin{slide}{Number of Tamari intervals}
1334
1335
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes
1336
1337
\vspace{.1cm}
1338
\theo{THM}{
1339
For any~$n \ge 1$, \hfill \papier{Chapoton '07}
1340
\[
1341
\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}
1342
\]
1343
1344
\vspace{-.4cm}
1345
}
1346
1347
\vspace{.8cm}
1348
$1, 3, 13, 68, 399, 2530, 16965, ...$ [OEIS A000260]
1349
\vspace*{-1cm}
1350
1351
\vfill
1352
\centerline{\includegraphics[scale=1.1]{TamariLattices}}
1353
\vspace*{2.7cm}
1354
1355
\end{slide}
1356
1357
%%%%%%%%%%
1358
1359
\begin{slide}{First refined formula on Tamari intervals}
1360
1361
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes \\
1362
$\des(T) = $ number of binary trees {\red covered} by~$T$ \\
1363
$\asc(T) = $ number of binary trees {\blue covering}~$T$
1364
1365
\vfill
1366
\centerline{\includegraphics[scale=1.1]{TamariLatticesColored}}
1367
\vspace{2.7cm}
1368
1369
\end{slide}
1370
1371
%%%
1372
1373
\begin{slide}{First refined formula on Tamari intervals}
1374
1375
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes \\
1376
$\des(T) = $ number of binary trees {\red covered} by~$T$ \\
1377
$\asc(T) = $ number of binary trees {\blue covering}~$T$
1378
1379
\vspace{.5cm}
1380
\theo{THM}{
1381
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1382
\[
1383
\# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}
1384
\]
1385
1386
\vspace{-.4cm}
1387
}
1388
1389
\vspace{1cm}
1390
\centerline{\Large
1391
\begin{tabular}{c|ccccccccc|c}
1392
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ & $\Sigma$\\
1393
\hline
1394
$1$ & $1$ &&&&&&&&& $1$ \\
1395
$2$ & $1$ & $2$ &&&&&&&& $3$ \\
1396
$3$ & $1$ & $6$ & $6$ &&&&&&& $13$ \\
1397
$4$ & $1$ & $12$ & $33$ & $22$ &&&&&& $68$ \\
1398
$5$ & $1$ & $20$ & $105$ & $182$ & $91$ &&&&& $399$ \\
1399
$6$ & $1$ & $30$ & $255$ & $816$ & $1020$ & $408$ &&&& $2530$ \\
1400
$7$ & $1$ & $42$ & $525$ & $2660$ & $5985$ & $5814$ & $1938$ &&& $16965$ \\
1401
$8$ & $1$ & $56$ & $966$ & $7084$ & $24794$ & $42504$ & $33649$ & $9614$ && $118668$ \\
1402
$9$ & $1$ & $72$ & $1638$ & $16380$ & $81900$ & $215280$ & $296010$ & $197340$ & $49335$ & $857956$
1403
\end{tabular}
1404
}
1405
1406
\end{slide}
1407
1408
%%%%%%%%%%
1409
1410
\begin{slide}{Canonical complex of the Tamari lattice}
1411
1412
$(L, \le, \meet, \join)$ lattice
1413
1414
\vspace{.3cm}
1415
\emph{\parbox{\widthof{meet}}{\centering \red join} semidistributive}
1416
\begin{tabular}[t]{@{}l}
1417
$\iff$ $x \join y = x \join z$ implies $x \join (y \meet z) = x \join y$ for all~$x,y,z \in L$ \\
1418
$\iff$ any~$x \in L$ admits a canonical \parbox{\widthof{meet}}{\centering \red join} representation \parbox{\widthof{$x = \bigMeet M$}}{\centering $x = \bigJoin \red J$}
1419
\end{tabular}
1420
1421
\vspace{.3cm}
1422
\emph{canonical \parbox{\widthof{meet}}{\centering \red join} complex}
1423
\begin{tabular}[t]{@{}l}
1424
$=$ simplicial complex of canonical \parbox{\widthof{meet}}{\centering \red join} representations \\
1425
$=$ a simplex \parbox{\widthof{$M$}}{$\red J$\phantom{y}} for each element \parbox{\widthof{$\bigMeet M$}}{\centering $\bigJoin \red J$} of~$L$
1426
\end{tabular}
1427
1428
\vspace{.2cm}
1429
\centerline{
1430
\begin{overpic}[scale=1.7]{canonicalJoinComplexTamari3FullLetters}
1431
\put(98, 55){$\red \varnothing$}
1432
\put(30, 125){$\red a$}
1433
\put(170, 160){$\red b$}
1434
\put(30, 200){$\red c$}
1435
\put(83, 275){$\red a \join b$}
1436
\put(510, 100){$\red a$}
1437
\put(680, 100){$\red b$}
1438
\put(590, 70){$\red c$}
1439
\end{overpic}
1440
}
1441
1442
\vspace*{-1.6cm}
1443
\hfill\papier{Reading '15}
1444
1445
\vspace*{-.3cm}
1446
\hfill\papier{Barnard '19}
1447
1448
\end{slide}
1449
1450
%%%
1451
1452
%\begin{slide}{Canonical complex of the Tamari lattice}
1453
%
1454
%$(L, \le, \meet, \join)$ lattice
1455
%
1456
%\vspace{.3cm}
1457
%\emph{join semidistributive}
1458
%\begin{tabular}[t]{@{}l}
1459
%$\iff$ $x \join y = x \join z$ implies $x \join (y \meet z) = x \join y$ for all~$x,y,z \in L$ \\
1460
%$\iff$ any~$x \in L$ admits a canonical join representation~$x = \bigJoin J$
1461
%\end{tabular}
1462
%
1463
%\vspace{.3cm}
1464
%\emph{canonical join complex}
1465
%\begin{tabular}[t]{@{}l}
1466
%$=$ simplicial complex of canonical join representations \\
1467
%$=$ a simplex~$J$ for each element~$\bigJoin J$ of~$L$
1468
%\end{tabular}
1469
%
1470
%\vspace{.2cm}
1471
%\centerline{\includegraphics[scale=1.7]{canonicalJoinComplexTamari3Full}}
1472
%
1473
%\vspace*{-1.6cm}
1474
%\hfill\papier{Reading '15}
1475
%
1476
%\vspace*{-.3cm}
1477
%\hfill\papier{Barnard '19}
1478
%
1479
%\end{slide}
1480
1481
%%%
1482
1483
\begin{slide}{Canonical complex of the Tamari lattice}
1484
1485
$(L, \le, \meet, \join)$ lattice
1486
1487
\vspace{.3cm}
1488
\emph{{\blue meet} semidistributive}
1489
\begin{tabular}[t]{@{}l}
1490
$\iff$ $x \meet y = x \meet z$ implies $x \meet (y \join z) = x \meet y$ for all~$x,y,z \in L$ \\
1491
$\iff$ any~$x \in L$ admits a canonical {\blue meet} representation~$x = \bigMeet \blue M$
1492
\end{tabular}
1493
1494
\vspace{.3cm}
1495
\emph{canonical {\blue meet} complex}
1496
\begin{tabular}[t]{@{}l}
1497
$=$ simplicial complex of canonical {\blue meet} representations \\
1498
$=$ a simplex~$\blue M$ for each element~$\bigMeet \blue M$ of~$L$
1499
\end{tabular}
1500
1501
\vspace{.2cm}
1502
\centerline{
1503
\begin{overpic}[scale=1.7]{canonicalJoinMeetComplexTamari3FullLetters}
1504
\put(98, 55){$\red \varnothing$}
1505
\put(30, 125){$\red a$}
1506
\put(170, 160){$\red b$}
1507
\put(30, 200){$\red c$}
1508
\put(83, 275){$\red a \join b$}
1509
\put(336, 55){$\blue b \meet c$}
1510
\put(280, 125){$\blue a$}
1511
\put(420, 160){$\blue b$}
1512
\put(280, 200){$\blue c$}
1513
\put(345, 275){$\blue \varnothing$}
1514
\put(510, 100){$\red a$}
1515
\put(680, 100){$\red b$}
1516
\put(590, 70){$\red c$}
1517
\put(590, 230){$\blue a$}
1518
\put(680, 200){$\blue b$}
1519
\put(510, 200){$\blue c$}
1520
\end{overpic}
1521
}
1522
1523
\vspace*{-1.6cm}
1524
\hfill\phantom{\papier{Reading '15}}
1525
1526
\vspace*{-.3cm}
1527
\hfill
1528
\papier{Albertin -- P. '22}
1529
1530
\end{slide}
1531
1532
%%%
1533
1534
\begin{slide}{Canonical complex of the Tamari lattice}
1535
1536
$(L, \le, \meet, \join)$ lattice
1537
1538
\vspace{.3cm}
1539
\emph{semidistributive}
1540
\begin{tabular}[t]{@{}l}
1541
$\iff$ join semidistributive and meet semidistributive \\
1542
$\iff$ any~$x \in L$ admits canonical representations~$x = \bigJoin {\red J} = \bigMeet {\blue M}$
1543
\end{tabular}
1544
1545
\vspace{.3cm}
1546
\emph{canonical complex}
1547
\begin{tabular}[t]{@{}l}
1548
$=$ simplicial complex of canonical representations \\
1549
$=$ a simplex~${\red J} \sqcup {\blue M}$ for each interval~$\bigJoin {\red J} \le \bigMeet {\blue M}$ in~$L$
1550
\end{tabular}
1551
1552
\vspace{.2cm}
1553
\centerline{
1554
\begin{overpic}[scale=1.7]{canonicalComplexTamari3FullLetters}
1555
\put(98, 55){$\red \varnothing$}
1556
\put(30, 125){$\red a$}
1557
\put(170, 160){$\red b$}
1558
\put(30, 200){$\red c$}
1559
\put(83, 275){$\red a \join b$}
1560
\put(336, 55){$\blue b \meet c$}
1561
\put(280, 125){$\blue a$}
1562
\put(420, 160){$\blue b$}
1563
\put(280, 200){$\blue c$}
1564
\put(345, 275){$\blue \varnothing$}
1565
\put(510, 100){$\red a$}
1566
\put(680, 100){$\red b$}
1567
\put(590, 70){$\red c$}
1568
\put(590, 230){$\blue a$}
1569
\put(680, 200){$\blue b$}
1570
\put(510, 200){$\blue c$}
1571
\end{overpic}
1572
}
1573
1574
\vspace*{-1.6cm}
1575
\hfill\phantom{\papier{Reading '15}}
1576
1577
\vspace*{-.3cm}
1578
\hfill\papier{Albertin -- P. '22}
1579
1580
\end{slide}
1581
1582
%%%
1583
1584
\begin{slide}{Canonical complex of the Tamari lattice}
1585
1586
$(L, \le, \meet, \join)$ lattice
1587
1588
\vspace{.3cm}
1589
\emph{semidistributive}
1590
\begin{tabular}[t]{@{}l}
1591
$\iff$ join semidistributive and meet semidistributive \\
1592
$\iff$ any~$x \in L$ admits canonical representations~$x = \bigJoin {\red J} = \bigMeet {\blue M}$
1593
\end{tabular}
1594
1595
\vspace{.3cm}
1596
\emph{canonical complex}
1597
\begin{tabular}[t]{@{}l}
1598
$=$ simplicial complex of canonical representations \\
1599
$=$ a simplex~$J \sqcup M$ for each interval~$\bigJoin {\red J} \le \bigMeet {\blue M}$ in~$L$
1600
\end{tabular}
1601
1602
\vspace{.2cm}
1603
\centerline{\includegraphics[scale=1.7]{canonicalComplexTamari3Full}}
1604
1605
\vspace*{-1.6cm}
1606
\hfill\papier{Reading '15}
1607
1608
\vspace*{-.3cm}
1609
\hfill\papier{Albertin -- P. '22}
1610
1611
\end{slide}
1612
1613
%%%
1614
1615
\begin{slide}{Canonical complex of the Tamari lattice}
1616
1617
\vspace{.5cm}
1618
\theo{THM}{
1619
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1620
\[
1621
f_k(\mathbb{CC}_n) = \# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}
1622
\]
1623
1624
\vspace{-.4cm}
1625
}
1626
1627
\vspace{1.15cm}
1628
\centerline{\includegraphics[scale=1.7]{canonicalComplexTamari3Full}}
1629
1630
\vspace*{-1.6cm}
1631
\hfill\papier{Reading '15}
1632
1633
\vspace*{-.3cm}
1634
\hfill\papier{Albertin -- P. '22}
1635
1636
\end{slide}
1637
1638
%%%
1639
1640
\begin{slide}{Canonical complex of the Tamari lattice}
1641
1642
\vspace{.5cm}
1643
\centerline{\includegraphics[scale=.95]{canonicalComplexTamari4}}
1644
1645
\centerline{$1 + 12 + 33 + 22 = 68$}
1646
1647
\vspace*{-1.45cm}
1648
\hfill\papier{Reading '15}
1649
1650
\vspace*{-.3cm}
1651
\hfill
1652
\papier{Albertin -- P. '22}
1653
1654
\end{slide}
1655
1656
%%%%%%%%%%
1657
1658
\begin{slide}{Second refined formula on Tamari intervals}
1659
1660
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes \\
1661
$\des(T) = $ number of binary trees {\red covered} by~$T$ \\
1662
$\asc(T) = $ number of binary trees {\blue covering}~$T$
1663
1664
\vspace{.5cm}
1665
\theo{THM}{
1666
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1667
\[
1668
%b_{n,k} \eqdef \sum_{\ell = k}^{n-1} a_{n,\ell} \binom{\ell}{k} =
1669
\sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}
1670
\]
1671
1672
\vspace{-.6cm}
1673
}
1674
1675
\vspace{1cm}
1676
\centerline{\Large
1677
\begin{tabular}{c|ccccccccc}
1678
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $8$ \\
1679
\hline
1680
$1$ & $1$ \\
1681
$2$ & $3$ & $2$ \\
1682
$3$ & $13$ & $18$ & $6$ \\
1683
$4$ & $68$ & $144$ & $99$ & $22$ \\
1684
$5$ & $399$ & $1140$ & $1197$ & $546$ & $91$ \\
1685
$6$ & $2530$ & $9108$ & $12903$ & $8976$ & $3060$ & $408$ \\
1686
$7$ & $16965$ & $73710$ & $131625$ & $123500$ & $64125$ & $17442$ & $1938$ \\
1687
$8$ & $118668$ & $604128$ & $1302651$ & $1540770$ & $1078539$ & $446292$ & $100947$ & $9614$ \\
1688
$9$ & $857956$ & $5008608$ & $12660648$ & $18086640$ & $15958800$ & $8898240$ & $3058770$ & $592020$ & $49335$
1689
\end{tabular}
1690
}
1691
1692
\end{slide}
1693
1694
%%%
1695
1696
\begin{slide}{Diagonal of the associahedron}
1697
1698
$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron
1699
1700
\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron3}}
1701
1702
\end{slide}
1703
1704
%%%
1705
1706
\begin{slide}{Diagonal of the associahedron}
1707
1708
$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron
1709
1710
\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron5}}
1711
1712
\end{slide}
1713
1714
%%%
1715
1716
\begin{slide}{Diagonal of the associahedron}
1717
1718
$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron
1719
1720
\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron4}}
1721
1722
\theo{THM}{(Magical formula) \hfill\papier{Masuda -- Thomas -- Tonks -- Vallette '21}
1723
\\[.3cm]
1724
\centerline{$k$-faces of~$\Delta_{\Asso(n)}$ $\qquad \longleftrightarrow$ \begin{tabular}[t]{c} $(F,G)$ faces of $\Asso(n)$ with \\ $\dim(F) + \dim(G) = k$ and $\max(F) \le \min(G)$ \end{tabular}}
1725
}
1726
1727
\end{slide}
1728
1729
%%%
1730
1731
\begin{slide}{Diagonal of the associahedron}
1732
1733
$\Delta_{\Asso(n)} = $ diagonal of $(n-1)$-dimensional associahedron
1734
1735
\centerline{\includegraphics[scale=1.3]{diagonalAssociahedron4}}
1736
1737
\theo{THM}{
1738
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1739
\[
1740
f_k(\Delta_{\Asso(n)}) = \!\!\! \sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}
1741
\]
1742
1743
\vspace{-.6cm}
1744
}
1745
1746
\end{slide}
1747
1748
%%%%%%%%%%
1749
1750
\begin{slide}{Connection between the two formulas}
1751
1752
\vspace{.5cm}
1753
\theo{THM}{
1754
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1755
\[
1756
f_k(\mathbb{CC}_n) = \# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}
1757
\]
1758
1759
\vspace{-.4cm}
1760
}
1761
1762
\vspace{.5cm}
1763
\theo{THM}{
1764
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1765
\[
1766
f_k(\Delta_{\Asso(n)}) = \!\!\! \sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}
1767
\]
1768
1769
\vspace{-.6cm}
1770
}
1771
1772
\end{slide}
1773
1774
%%%%%%%%%%
1775
1776
\begin{slide}{Connection between the two formulas}
1777
1778
\vspace{.5cm}
1779
\theo{THM}{
1780
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1781
\[
1782
f_k(\mathbb{CC}_n) = \# \set{S \le T \in \Tam(n)}{\des(S) + \asc(T) = k} = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}
1783
\]
1784
1785
\vspace{-.4cm}
1786
}
1787
1788
\vspace{.5cm}
1789
\theo{THM}{
1790
For any~$n,k \ge 1$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1791
\[
1792
f_k(\Delta_{\Asso(n)}) = \!\!\! \sum_{S \le T \in \Tam(n)} \binom{\des(S) + \asc(T)}{k} = \frac{2}{(3n+1)(3n+2)} \binom{n-1}{k} \binom{4n+1-k}{n+1}
1793
\]
1794
1795
\vspace{-.6cm}
1796
}
1797
1798
\vspace{1cm}
1799
Second formula follows from the first since ...
1800
1801
\theo{THM}{
1802
For any~$n,k,r \in \N$, \hfill \papier{Bostan -- Chyzak -- P. '23$^+$}
1803
\[
1804
\sum_{\ell =k}^{n-1} \binom{n+1}{\ell+2} \binom{r}{\ell} \binom{\ell}{k} = \frac{n(n+1)}{(r+1)(r+2)} \binom{n-1}{k} \binom{r+n+1-k}{n+1}.
1805
\]
1806
1807
\vspace{-.6cm}
1808
}
1809
1810
\vspace{.5cm}
1811
... by application of Chu -- Vandermonde equality
1812
1813
\end{slide}
1814
1815
%%%%%%%%%%
1816
1817
\begin{slide}{Quadratic equation}
1818
1819
$n(T) = $ number of nodes of~$T$ \\
1820
$\ell(T) =$ number of bounded edges on the left branch of~$T$
1821
1822
\[
1823
\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}
1824
\]
1825
1826
\end{slide}
1827
1828
%%%
1829
1830
\begin{slide}{Quadratic equation}
1831
1832
$n(T) = $ number of nodes of~$T$ \\
1833
$\ell(T) =$ number of bounded edges on the left branch of~$T$
1834
1835
\[
1836
\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}
1837
\]
1838
1839
We want to compute
1840
1841
\[
1842
A \eqdef A(t,z) \eqdef \sum_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = \bbA(1,1,t,z)
1843
\]
1844
1845
we will use $u$ and~$v$ as catalytic variables ...
1846
1847
\end{slide}
1848
1849
%%%
1850
1851
\begin{slide}{Quadratic equation}
1852
1853
$n(T) = $ number of nodes of~$T$ \\
1854
$\ell(T) =$ number of bounded edges on the left branch of~$T$
1855
1856
\[
1857
\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}
1858
\]
1859
1860
We want to compute
1861
1862
\[
1863
A \eqdef A(t,z) \eqdef \sum_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = \bbA(1,1,t,z)
1864
\]
1865
1866
we will use $u$ and~$v$ as catalytic variables ...
1867
1868
\vspace{.5cm}
1869
\theo{PROP}{
1870
The generating functions~$A_u \eqdef \bbA(u,1,t,z)$ and~$A_1 \eqdef \bbA(1,1,t,z)$ satisfy the quadratic functional equation
1871
\[
1872
(u-1) A_u = t \big( u-1 + u (u+z-1) A_u - z A_1 \big) \big( 1 + uz A_u \big)
1873
\]
1874
1875
\vspace{-.4cm}
1876
}
1877
1878
\end{slide}
1879
1880
%%%%
1881
%
1882
%\begin{slide}{Quadratic equation}
1883
%
1884
%$n(T) = $ number of nodes of~$T$ \\
1885
%$\ell(T) =$ number of bounded edges on the left branch of~$T$
1886
%
1887
%\[
1888
%\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}
1889
%\]
1890
%
1891
%We want to compute
1892
%
1893
%\[
1894
%A \eqdef A(t,z) \eqdef \sum_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = \bbA(1,1,t,z)
1895
%\]
1896
%
1897
%we will use $u$ and~$v$ as catalytic variables ...
1898
%
1899
%\vspace{1cm}
1900
%Define
1901
%\begin{alignat*}{4}
1902
%A_u(t,z)
1903
%& \eqdef \bbA(u,1,t,z)
1904
%& \text{and}\qquad &&
1905
%A^\circ_u(t,z) & \eqdef \bbA(u,0,t,z) \\
1906
%& = \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
1907
%&&&
1908
%& = \sum_{S \le T \text{ ind.}} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
1909
%\end{alignat*}
1910
%
1911
%\end{slide}
1912
%
1913
%%%%
1914
%
1915
%\begin{slide}{Quadratic equation}
1916
%
1917
%$n(T) = $ number of nodes of~$T$ \\
1918
%$\ell(T) =$ number of bounded edges on the left branch of~$T$
1919
%\[
1920
%A_u(t,z) = \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
1921
%\text{and}\qquad
1922
%A^\circ_u(t,z) = \sum_{S \le T \text{ ind.}} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
1923
%\]
1924
%
1925
%\end{slide}
1926
%
1927
%%%%%%%%%%
1928
1929
\begin{slide}{Grafting decompositions}
1930
1931
\vspace{.5cm}
1932
$S \backslash T = $ binary tree obtained by \emph{grafting}~$S$ on the leftmost leaf of~$T$ \\
1933
$S = S_0 \backslash S_1 \backslash \dots \backslash S_k$ \emph{grafting decomposition}
1934
1935
\vspace{.5cm}
1936
\centerline{\includegraphics[scale=1.8]{graftingDecompositionTree}}
1937
1938
\vspace{.5cm}
1939
\theo{LEM}{
1940
If~$S = S_0 \backslash S_1 \backslash \dots \backslash S_k$ and~$T = T_0 \backslash T_1 \backslash \dots \backslash T_k$ are s.t.~$n(S_i) = n(T_i)$ for all~$i \in [k]$, then \qquad\qquad\qquad $S \le T \iff S_i \le T_i$ for all~$i \in [k]$
1941
\hfill \papier{Chapoton '07}
1942
}
1943
1944
\vspace{.5cm}
1945
\centerline{\includegraphics[scale=1.8]{graftingDecompositionInterval}}
1946
1947
\vspace{.3cm}
1948
\theo{LEM}{
1949
If~$S \le T$, then we can write~$S = S_0 \backslash S_1 \backslash \dots \backslash S_\ell$ and~$T = T_0 \backslash T_1 \backslash \dots \backslash T_\ell$ where \\ $\ell = \ell(T)$ and $n(S_i) = n(T_i)$ for all~$i \in [\ell]$
1950
\hfill \papier{Chapoton '07}
1951
1952
}
1953
1954
\vspace{.5cm}
1955
$\ell(T) =$ number of bounded edges on the left branch of~$T$
1956
1957
\end{slide}
1958
1959
%%%%%%%%%%
1960
1961
\begin{slide}{Quadratic equation}
1962
1963
$n(T) = $ number of nodes of~$T$ \\
1964
$\ell(T) =$ number of bounded edges on the left branch of~$T$
1965
1966
\[
1967
\bbA(u,v,t,z) \eqdef \sum_{S \le T} u^{\ell(S)} v^{\ell(T)} t^{n(S)} z^{\des(S) + \asc(T)}
1968
\]
1969
1970
Consider
1971
\begin{alignat*}{4}
1972
A_u(t,z)
1973
& \eqdef \bbA(u,1,t,z)
1974
& \qquad\text{and}\qquad &&
1975
A^\circ_u(t,z) & \eqdef \bbA(u,0,t,z) \\
1976
& = \text{all Tamari intervals}
1977
&&&
1978
& = \text{indecomposable intervals}
1979
\end{alignat*}
1980
1981
\end{slide}
1982
1983
%%%
1984
1985
\begin{slide}{Quadratic equation}
1986
1987
$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
1988
$ \\[-.7cm]
1989
$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$
1990
1991
\vfill
1992
\hfill \papier{Chapoton '07}
1993
\vspace*{2.5cm}
1994
1995
\end{slide}
1996
1997
%%%
1998
1999
\begin{slide}{Quadratic equation}
2000
2001
$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
2002
$ \\[-.7cm]
2003
$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$
2004
2005
\vspace{.8cm}
2006
1.
2007
$
2008
\begin{array}[t]{ccccccccc}
2009
\text{all intervals} & = & \text{indecomposable intervals} & \backslash & (&\varepsilon & + & \text{all intervals} &) \\
2010
A_u & = & A^\circ_u && (&1 & + & u z A_u&)
2011
\end{array}
2012
$
2013
2014
\vfill
2015
\hfill \papier{Chapoton '07}
2016
\vspace*{2.5cm}
2017
2018
\end{slide}
2019
2020
%%%
2021
2022
\begin{slide}{Quadratic equation}
2023
2024
$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
2025
$ \\[-.7cm]
2026
$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$
2027
2028
\vspace{.8cm}
2029
1.
2030
$
2031
\begin{array}[t]{ccccccccc}
2032
\text{all intervals} & = & \text{indecomposable intervals} & \backslash & (&\varepsilon & + & \text{all intervals} &) \\
2033
A_u & = & A^\circ_u && (&1 & + & u z A_u&)
2034
\end{array}
2035
$
2036
2037
\vspace{.8cm}
2038
2. from any Tamari interval~$(S,T)$ where~$S = S_0 / S_1 / \dots / S_{\ell(S)}$, we can construct $\ell(S)+2$ indecomposable Tamari intervals~$(S_k',T')$ for~$0 \le k \le \ell(S)+1$, where
2039
\[
2040
S_k' = \big( S_0 / \dots / S_{k-1} \big) / Y \backslash \big( S_k / \dots / S_{\ell(S)} \big)
2041
\qquad\text{and}\qquad
2042
T' = Y \backslash T
2043
\]
2044
2045
\begin{tabular}{c@{\quad}c@{\quad}c@{\quad}c}
2046
\includegraphics[scale=2]{proofGraftingDecompositions0} &
2047
\includegraphics[scale=2]{proofGraftingDecompositions1} &
2048
\includegraphics[scale=2]{proofGraftingDecompositions2} &
2049
\includegraphics[scale=2]{proofGraftingDecompositions3} \\
2050
$S_0' = Y / (S_0 / S_1 / S_2)$ &
2051
$S_1' = S_0 / Y \backslash (S_1 / S_2)$ &
2052
$S_2' = (S_0 / S_1) / Y \backslash S_2$ &
2053
$S_3' = (S_0 / S_1 / S_2) / Y$
2054
\end{tabular}
2055
2056
\vspace{.5cm}
2057
... and all indecomposable intervals are obtained this way
2058
2059
\[
2060
A^\circ_u = t \Big( 1 + z \frac{u A_u - A_1}{u-1} + u A_u \Big)
2061
\]
2062
2063
\vspace*{-3cm}
2064
2065
\vfill
2066
\hfill \papier{Chapoton '07}
2067
\vspace*{2.5cm}
2068
2069
\end{slide}
2070
2071
%%%
2072
2073
\begin{slide}{Quadratic equation}
2074
2075
$A_u = A_u(t,z) = \text{all Tamari intervals}$ \hfill $\displaystyle \sum_{S \le T} u^{\ell(S)} t^{n(S)} z^{\des(S) + \asc(T)}
2076
$ \\[-.7cm]
2077
$A^\circ_u = A^\circ_u(t,z) = \text{indecomposable intervals}$
2078
2079
\vspace{1cm}
2080
1. \centerline{$A_u = A^\circ_u(1+u z A_u)$}
2081
2082
\vspace{1cm}
2083
2. \centerline{$\displaystyle A^\circ_u = t \Big( 1 + z \frac{u A_u - A_1}{u-1} + u A_u \Big)$}
2084
2085
\vspace{.6cm}
2086
\theo{PROP}{
2087
The generating functions~$A_u \eqdef \bbA(u,1,t,z)$ and~$A_1 \eqdef \bbA(1,1,t,z)$ satisfy the quadratic functional equation
2088
\[
2089
(u-1) A_u = t \big( u-1 + u (u+z-1) A_u - z A_1 \big) \big( 1 + uz A_u \big)
2090
\]
2091
2092
\vspace{-.4cm}
2093
}
2094
2095
\vfill
2096
\hfill \papier{Chapoton '07}
2097
\vspace*{2.5cm}
2098
2099
\end{slide}
2100
2101
%%%%%%%%%%
2102
2103
\begin{slide}{Quadratic method}
2104
2105
\theo{PROP}{
2106
The generating functions~$A_u \eqdef \bbA(u,1,t,z)$ and~$A_1 \eqdef \bbA(1,1,t,z)$ satisfy the quadratic functional equation
2107
\[
2108
(u-1) A_u = t \big( u-1 + u (u+z-1) A_u - z A_1 \big) \big( 1 + uz A_u \big)
2109
\]
2110
2111
\vspace{-.4cm}
2112
}
2113
2114
\vspace{.5cm}
2115
Quadratic equation with a catalytic variable... \emph{quadratic method} \\
2116
The discriminant of this quadratic polynomial must have multiple roots, hence, its own discriminant vanishes
2117
2118
2119
\theo{CORO}{
2120
The generating function~$A = A(t,z)$ is a root of the polynomial
2121
\begin{gather*}
2122
t^3 z^6 X^4 \\
2123
{} + t^2 z^4 (t z^2 + 6 t z - 3 t + 3) X^3 \\
2124
{} + t z^2 (6 t^2 z^3 + 9 t^2 z^2 - 12 t^2 z + 2 t z^2 + 3 t^2 - 6 t z + 21 t + 3) X^2 \\
2125
{} + (12 t^3 z^4 - 4 t^3 z^3 - 9 t^3 z^2 - 10 t^2 z^3 + 6 t^3 z + 26 t^2 z^2 \hspace{3cm} \\ \hspace{6cm} - \; t^3 + 6 t^2 z + t z^2 + 3 t^2 - 12 t z - 3 t + 1) X \\
2126
{} + t (8 t^2 z^3 - 12 t^2 z^2 + 6 t^2 z - t z^2 - t^2 + 10 t z + 2 t - 1)
2127
\end{gather*}
2128
2129
\vspace{-.4cm}
2130
}
2131
2132
\end{slide}
2133
2134
%%%%%%%%%%
2135
2136
\begin{slide}{Reparametrization}
2137
2138
\theo{CORO}{
2139
The generating function~$A = A(t,z)$ is a root of the polynomial
2140
\begin{gather*}
2141
t^3 z^6 X^4 \\
2142
{} + t^2 z^4 (t z^2 + 6 t z - 3 t + 3) X^3 \\
2143
{} + t z^2 (6 t^2 z^3 + 9 t^2 z^2 - 12 t^2 z + 2 t z^2 + 3 t^2 - 6 t z + 21 t + 3) X^2 \\
2144
{} + (12 t^3 z^4 - 4 t^3 z^3 - 9 t^3 z^2 - 10 t^2 z^3 + 6 t^3 z + 26 t^2 z^2 \hspace{3cm} \\ \hspace{6cm} - \; t^3 + 6 t^2 z + t z^2 + 3 t^2 - 12 t z - 3 t + 1) X \\
2145
{} + t (8 t^2 z^3 - 12 t^2 z^2 + 6 t^2 z - t z^2 - t^2 + 10 t z + 2 t - 1)
2146
\end{gather*}
2147
2148
\vspace{-.4cm}
2149
}
2150
2151
\vspace{.5cm}
2152
Reparametrize by
2153
\[
2154
t = \frac{s}{(s+1) (sz+1)^3} \qquad X = s - z s^2 - z s^3
2155
\]
2156
2157
\theo{CORO}{
2158
The generating function~$A = A(t,z)$ can be written
2159
\[
2160
A = S - z S^2 - z S^3
2161
\qquad\text{where}\qquad
2162
t = \frac{S}{(S+1) (Sz+1)^3}
2163
\]
2164
2165
\vspace{-.4cm}
2166
}
2167
2168
2169
\end{slide}
2170
2171
%%%%%%%%%%
2172
2173
\begin{slide}{Lagrange inversion}
2174
2175
\theo{CORO}{
2176
The generating function~$A = A(t,z)$ can be written
2177
\[
2178
A = S - z S^2 - z S^3
2179
\qquad\text{where}\qquad
2180
t = \frac{S}{(S+1) (Sz+1)^3}
2181
\]
2182
2183
\vspace{-.4cm}
2184
}
2185
2186
\theo{THM}{(Lagrange inversion)
2187
If $S = t \psi(S)$, then
2188
$\displaystyle [t^n] \; S^r = \frac{r}{n} \; [s^{n-r}] \; \phi(s)^n$
2189
for any
2190
$r \ge 1$
2191
2192
}
2193
2194
\vspace{1cm}
2195
Here $\phi(s) \eqdef (s+1) (sz+1)^3$ \\
2196
Hence $\displaystyle [s^a] \; \phi(s)^n = [s^a] (s+1)^n (sz+1)^{3n} = \sum_{i+j=a} \binom{n}{i} \binom{3n}{j} z^j$ \\
2197
Hence $\displaystyle [t^n z^k] S^r = \frac{r}{n} [s^{n-r} z^k] \phi(s)^n = \frac{r}{n} \binom{n}{n-r-k} \binom{3n}{k} = \frac{r}{n} \binom{n}{k+r} \binom{3n}{k}$ \\
2198
Finally,
2199
\[
2200
[t^n z^k] A = [t^n z^k] S - [t^n z^{k-1}] S^2 - [t^n z^{k-1}] S^3 = \frac{2}{n(n+1)} \binom{3n}{k} \binom{n+1}{k+2}
2201
\]
2202
2203
\end{slide}
2204
2205
%%%%%%%%%%
2206
2207
\begin{slide}{Bijections to planar triangulations}
2208
2209
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes
2210
2211
\vspace{.1cm}
2212
\theo{THM}{
2213
For any~$n \ge 1$, \hfill \papier{Chapoton '07}
2214
\[
2215
\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}
2216
\]
2217
2218
\vspace{-.4cm}
2219
}
2220
2221
\vspace{2cm}
2222
Also counts rooted $3$-connected planar triangulations with $2n+2$ faces
2223
\hfill\papier{Tutte}
2224
2225
\vspace{1cm}
2226
\includegraphics[scale=3]{bijectionBinaryTrees}
2227
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{9.35cm}}$}\hspace{-1cm}
2228
\raisebox{-2cm}{\includegraphics[scale=3]{planarTriangulation}}
2229
2230
\end{slide}
2231
2232
%%%
2233
2234
\begin{slide}{Bijections to planar triangulations}
2235
2236
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes
2237
2238
\vspace{.1cm}
2239
\theo{THM}{
2240
For any~$n \ge 1$, \hfill \papier{Chapoton '07}
2241
\[
2242
\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}
2243
\]
2244
2245
\vspace{-.4cm}
2246
}
2247
2248
\vspace{2cm}
2249
Also counts rooted $3$-connected planar triangulations with $2n+2$ faces
2250
\hfill\papier{Tutte}
2251
2252
\vspace{1cm}
2253
\includegraphics[scale=3]{bijectionBinaryTrees}
2254
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill
2255
\includegraphics[scale=3]{bijectionDyckPaths}
2256
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}
2257
\raisebox{-2cm}{\includegraphics[scale=3]{planarTriangulation}}
2258
2259
\end{slide}
2260
2261
%%%
2262
2263
\begin{slide}{Bijections to planar triangulations}
2264
2265
$\Tam(n) = $ Tamari lattice on binary trees with $n$ nodes
2266
2267
\vspace{.1cm}
2268
\theo{THM}{
2269
For any~$n \ge 1$, \hfill \papier{Chapoton '07}
2270
\[
2271
\# \{S \le T \in \Tam(n)\} = \frac{2}{(3n+1)(3n+2)} \binom{4n+1}{n+1}
2272
\]
2273
2274
\vspace{-.4cm}
2275
}
2276
2277
\vspace{2cm}
2278
Also counts rooted $3$-connected planar triangulations with $2n+2$ faces
2279
\hfill\papier{Tutte}
2280
2281
\vspace{1cm}
2282
\includegraphics[scale=3]{bijectionBinaryTreesColored}
2283
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill
2284
\includegraphics[scale=3]{bijectionDyckPathsColored}
2285
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}
2286
\raisebox{-2cm}{\includegraphics[scale=3]{bijectionSchnyderWoods}}
2287
2288
\hfill\papier{Bernardi -- Bonichon, '09}
2289
2290
\end{slide}
2291
2292
%%%%%%%%%%
2293
2294
\begin{slide}{Schnyder woods}
2295
2296
\vspace{.5cm}
2297
$M$ planar triangulation with external vertices~$v_0, v_1, v_3$ \\
2298
$n$ internal nodes, $3n$ internal edges, $2n+1$ internal triangles \\[.5cm]
2299
\emph{Schnyder wood} $=$ color (with~$0,1,2$) and orient the internal edges s.t.
2300
\begin{compactitem}
2301
\item the edges colored $i$ form a spanning tree oriented towards~$v_i$
2302
\item each vertex satisfies the \emph{vertex rule}:
2303
\end{compactitem}
2304
2305
\vspace{-4.5cm}
2306
\hfill\includegraphics[scale=2]{SchnyderWoodsRule1}
2307
2308
\vspace{-1cm}
2309
\phantom{Used for graph drawing and representations:}
2310
2311
\vspace{.3cm}
2312
\centerline{\includegraphics[scale=.9]{boxicitySchnyderWood1}}
2313
2314
\vspace{-1cm}
2315
\hfill\papier{Schnyder '89}
2316
2317
\end{slide}
2318
2319
%%%
2320
2321
\begin{slide}{Schnyder woods}
2322
2323
\vspace{.5cm}
2324
$M$ planar triangulation with external vertices~$v_0, v_1, v_3$ \\
2325
$n$ internal nodes, $3n$ internal edges, $2n+1$ internal triangles \\[.5cm]
2326
\emph{Schnyder wood} $=$ color (with~$0,1,2$) and orient the internal edges s.t.
2327
\begin{compactitem}
2328
\item the edges colored $i$ form a spanning tree oriented towards~$v_i$
2329
\item each vertex satisfies the \emph{vertex rule}:
2330
\end{compactitem}
2331
2332
\vspace{-4.5cm}
2333
\hfill\includegraphics[scale=2]{SchnyderWoodsRule1}
2334
2335
\vspace{-1cm}
2336
Used for graph drawing and representations:
2337
2338
\vspace{.3cm}
2339
\centerline{\includegraphics[scale=.9]{boxicitySchnyderWood2}}
2340
2341
\vspace{-1cm}
2342
\hfill\papier{Schnyder '89}
2343
2344
\end{slide}
2345
2346
%%%
2347
2348
\begin{slide}{Schnyder woods}
2349
2350
\vspace{.5cm}
2351
$M$ planar triangulation with external vertices~$v_0, v_1, v_3$ \\
2352
$n$ internal nodes, $3n$ internal edges, $2n+1$ internal triangles \\[.5cm]
2353
\emph{Schnyder wood} $=$ color (with~$0,1,2$) and orient the internal edges s.t.
2354
\begin{compactitem}
2355
\item the edges colored $i$ form a spanning tree oriented towards~$v_i$
2356
\item each vertex satisfies the \emph{vertex rule}:
2357
\end{compactitem}
2358
2359
\vspace{-4.5cm}
2360
\hfill\includegraphics[scale=2]{SchnyderWoodsRule1}
2361
2362
\theo{THM}{
2363
The Schnyder woods of a planar triangulation form a lattice structure under reorientations of clockwise essential cycles
2364
}
2365
2366
\theo{CORO}{
2367
Any planar triangulation admits a unique Schnyder wood with no clockwise~cycle
2368
2369
\vspace{-.1cm}
2370
}
2371
2372
\vspace{1.5cm}
2373
\hfill\papier{Ossona de Mendez '94}
2374
2375
\vspace{-.4cm}
2376
\hfill\papier{Propp '97}
2377
2378
\vspace{-.4cm}
2379
\hfill\papier{Felsner '04}
2380
2381
\end{slide}
2382
2383
%%%%%%%%%%
2384
2385
\begin{slide}{Bernardi -- Bonichon Bijection}
2386
2387
\vspace{.5cm}
2388
\hspace{-1cm}
2389
\begin{tabular}[t]{c}
2390
\includegraphics[scale=3]{bijectionBinaryTreesColored}
2391
\\[-.5cm]
2392
\includegraphics[scale=3]{bijectionDyckPathsColored}
2393
\\[-1cm]
2394
\includegraphics[scale=3]{bijectionSchnyderWoods}
2395
\end{tabular}
2396
\hspace{-1.5cm}
2397
\raisebox{3cm}{
2398
\begin{tabular}[t]{c}
2399
binary trees~$S \le T$
2400
\\
2401
with $n$ nodes
2402
\\[2.5cm]
2403
Dyck paths~$\mu \le \nu$
2404
\\
2405
with semilength~$n$
2406
\\[3cm]
2407
planar triangulations
2408
\\
2409
with $n$ internal vertices
2410
\end{tabular}
2411
}
2412
\hspace{-.5cm}
2413
\begin{tabular}[t]{l}
2414
$\left\downarrow \begin{array}{rl} \text{contour of~$T$} \\ \text{transform} & \text{$\searrow$ to $\diagup$} \\ \text{and} & \text{$\nwarrow$ to $\diagdown$}\end{array} \right.$
2415
\\[2.5cm]
2416
$\left\uparrow \begin{array}{rl} \text{contour of~$\red T_0$} \\ \text{transform} & \text{${\red \leftarrow} \, \bullet$ to $\red \diagup$ and $\blue \diagup$} \\ & \text{${\red \rightarrow} \, \bullet$ to $\red \diagdown$} \\ \text{and} & \text{${\blue \rightarrow} \, \bullet$ to $\blue \diagdown$} \end{array} \right.$
2417
\end{tabular}
2418
2419
\vspace{1cm}
2420
\hfill\papier{Bernardi -- Bonichon, '09}
2421
2422
\end{slide}
2423
2424
%%%
2425
2426
\begin{slide}{Bernardi -- Bonichon Bijection}
2427
2428
\vspace{.5cm}
2429
\hspace{-1cm}
2430
\begin{tabular}[t]{c}
2431
\includegraphics[scale=3]{bijectionAscentsDescents}
2432
\\[-.5cm]
2433
\includegraphics[scale=3]{bijectionValleysDoubleFalls}
2434
\\[-1cm]
2435
\includegraphics[scale=3]{bijectionSchnyderWoods}
2436
\end{tabular}
2437
\hspace{-1.5cm}
2438
\raisebox{3cm}{
2439
\begin{tabular}[t]{c@{\quad}c@{\quad}c}
2440
binary trees~$S \le T$
2441
&
2442
descents of~$S$
2443
&
2444
ascents of~$T$
2445
\\
2446
with $n$ nodes
2447
\\[2.5cm]
2448
Dyck paths~$\mu \le \nu$
2449
&
2450
double falls of~$\mu$
2451
&
2452
valleys of~$\nu$
2453
\\
2454
with semilength~$n$
2455
\\[3cm]
2456
planar triangulations
2457
&
2458
intermediate
2459
&
2460
intermediate
2461
\\
2462
with $n$ internal vertices
2463
&
2464
red vertices
2465
&
2466
blue vertices
2467
\end{tabular}
2468
}
2469
2470
\vspace{1cm}
2471
\hfill\papier{Bernardi -- Bonichon, '09}
2472
2473
\end{slide}
2474
2475
%%%%%%%%%%
2476
2477
\begin{slide}{Counting internal degrees}
2478
2479
\includegraphics[scale=3]{bijectionAscentsDescents}
2480
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill
2481
\includegraphics[scale=3]{bijectionValleysDoubleFalls}
2482
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}
2483
\raisebox{-2cm}{\includegraphics[scale=3]{bijectionSchnyderWoods}}
2484
2485
%\vspace{-1.5cm}
2486
%$f_{i,j,k} =$ \# Tamari intervals~$S \le T$ with
2487
%\begin{tabular}[t]{@{}l}
2488
%$\#\set{p}{\can(S)_p = \can(T)_p = {-}} = i$ \\
2489
%$\#\set{p}{\can(S)_p = \can(T)_p = {+}} = j$ \\
2490
%$\#\set{p}{\can(S)_p \ne \can(T)_p} = k$ \\
2491
%\end{tabular}
2492
2493
\theo{THM}{
2494
%The generating function~$F \eqdef F(u,v,w) \eqdef \sum\limits_{i,j,k} f_{i,j,k} u^i v^j w^k$ is given by
2495
The generating function~$\displaystyle F \eqdef F(u,v,w) \eqdef \sum_{S \le T} u^{\,\diagup\diagup} v^{\diagdown\diagdown\,} w^{\diagdown\,\,\diagup}$ is given by
2496
\[
2497
uvF = uU + vV + wUV - \frac{UV}{(1+U)(1+V)}
2498
\]
2499
where the series~$U \eqdef U(u,v,w)$ and~$V \eqdef V(u,v,w)$ satisfy the system
2500
\begin{align*}
2501
U & = (v+wU)(1+U)(1+V)^2 \\
2502
V & = (u+wV)(1+V)(1+U)^2
2503
\end{align*}
2504
2505
\vspace{-1.3cm}
2506
\hfill\papier{Fusy -- Humbert '19}
2507
}
2508
2509
\end{slide}
2510
2511
%%%
2512
2513
\begin{slide}{Counting internal degrees}
2514
2515
\includegraphics[scale=3]{bijectionAscentsDescents}
2516
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hfill
2517
\includegraphics[scale=3]{bijectionValleysDoubleFalls}
2518
\hfill\raisebox{2cm}{$\xleftrightarrow{\hspace*{.7cm}}$}\hspace{-1cm}
2519
\raisebox{-2cm}{\includegraphics[scale=3]{bijectionSchnyderWoods}}
2520
2521
%\vspace{-1.5cm}
2522
%$f_{i,j,k} =$ \# Tamari intervals~$S \le T$ with
2523
%\begin{tabular}[t]{@{}l}
2524
%$\#\set{p}{\can(S)_p = \can(T)_p = {-}} = i$ \\
2525
%$\#\set{p}{\can(S)_p = \can(T)_p = {+}} = j$ \\
2526
%$\#\set{p}{\can(S)_p \ne \can(T)_p} = k$ \\
2527
%\end{tabular}
2528
2529
\theo{CORO}{
2530
The function~$A \eqdef A(t,z) \eqdef \sum\limits_{S \le T} t^{n(S)} z^{\des(S) + \asc(T)} = tF(tz,tz,t)$ is given by
2531
\[
2532
t z^2 A = 2tz S + t S^2 - \frac{S^2}{(1+S)^2}
2533
\]
2534
where the series~$S \eqdef S(t,z)$ satisfies
2535
\[
2536
S = t(z+S)(1+S)^3
2537
\]
2538
2539
\vspace{-.5cm}
2540
}
2541
2542
\vspace{.8cm}
2543
... and Lagrange inversion again
2544
\hfill\papier{(thanks to Éric Fusy)}
2545
2546
\end{slide}
2547
2548
%%%%%%%%%%
2549
2550
\begin{slide}{Canopy}
2551
2552
\vspace{.5cm}
2553
$T$ binary tree with~$n$ nodes, labeled in inorder and oriented towards its root. \\[.3cm]
2554
\emph{canopy} of~$T =$ vector $\can(T) \in \{-,+\}^{n-1}$ with~$\can(T)_i = -$ \\
2555
\begin{tabular}{@{\qquad$\iff$}l}
2556
$(j+1)$st leaf of~$T$ is a right leaf \\
2557
there is an oriented path joining its $j$th node to its $(j+1)$st node \\
2558
the $j$th node of $T$ has an empty right subtree \\
2559
the $(j+1)$st node of~$T$ has a non-empty left subtree \\
2560
the cone corresponding to~$T$ is located in the halfspace~$x_j \le x_{j+1}$
2561
\end{tabular}
2562
2563
\vspace{.5cm}
2564
\centerline{\includegraphics[scale=3]{Canopy}}
2565
2566
\end{slide}
2567
2568
%%%
2569
2570
\begin{slide}{Canopy agreements}
2571
2572
\vspace{.5cm}
2573
$T$ binary tree with~$n$ nodes, labeled in inorder and oriented towards its root. \\[.3cm]
2574
\emph{canopy} of~$T =$ vector $\can(T) \in \{-,+\}^{n-1}$ with~$\can(T)_i = -$ \\
2575
\begin{tabular}{@{\qquad$\iff$}l}
2576
the $j$th node of $T$ has an empty right subtree \\
2577
the $(j+1)$st node of~$T$ has a non-empty left subtree \\
2578
\end{tabular}
2579
2580
\theo{LEM}{\qquad $\asc(T) = \#\set{i}{\can(T)_i = -}$ \quad and \quad $\des(T) = \#\set{i}{\can(T)_i = +}$}
2581
2582
\theo{LEM}{If~$S \le T$, then \\
2583
\begin{tabular}{@{$\bullet$\;}l}
2584
$\can(S) \le \can(T)$ componentwise \\
2585
$\des(S) = \#\set{i}{\can(S)_i = \can(T)_i = +}$ and $\asc(S) = \#\set{i}{\can(S)_i = \can(T)_i = -}$
2586
\end{tabular}
2587
}
2588
2589
\theo{CORO}{
2590
\hspace{2.5cm}
2591
$\des(S) + \asc(T) = \#\text{canopy agreements between $S$ and $T$}$
2592
}
2593
2594
\vspace{.5cm}
2595
\centerline{
2596
\includegraphics[scale=3]{bijectionAscentsDescents}
2597
\qquad
2598
\includegraphics[scale=3]{bijectionCanopy}
2599
}
2600
2601
\end{slide}
2602
2603
%%%%%%%%%%
2604
2605
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2606
2607
\vspace{.5cm}
2608
\centerline{\includegraphics[scale=3]{bijectionRectangle1}}
2609
2610
\vfill
2611
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2612
\vspace{3cm}
2613
2614
\end{slide}
2615
2616
%%%
2617
2618
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2619
2620
\vspace{.5cm}
2621
\centerline{\includegraphics[scale=3]{bijectionRectangle2}}
2622
2623
\vfill
2624
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2625
\vspace{3cm}
2626
2627
\end{slide}
2628
2629
%%%
2630
2631
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2632
2633
\vspace{.5cm}
2634
\centerline{\includegraphics[scale=3]{bijectionRectangle3}}
2635
2636
\vfill
2637
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2638
\vspace{3cm}
2639
2640
\end{slide}
2641
2642
%%%
2643
2644
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2645
2646
\vspace{.5cm}
2647
\centerline{\includegraphics[scale=3]{bijectionRectangle4}}
2648
2649
\vfill
2650
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2651
\vspace{3cm}
2652
2653
\end{slide}
2654
2655
%%%
2656
2657
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2658
2659
\vspace{.5cm}
2660
\centerline{\includegraphics[scale=3]{bijectionRectangle5}}
2661
2662
\vfill
2663
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2664
\vspace{3cm}
2665
2666
\end{slide}
2667
2668
%%%
2669
2670
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2671
2672
\vspace{.5cm}
2673
\centerline{\includegraphics[scale=3]{bijectionRectangle6}}
2674
2675
\vfill
2676
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2677
\vspace{3cm}
2678
2679
\end{slide}
2680
2681
%%%
2682
2683
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2684
2685
\vspace{.5cm}
2686
\centerline{\includegraphics[scale=3]{bijectionRectangle7}}
2687
2688
\vfill
2689
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2690
\vspace{3cm}
2691
2692
\end{slide}
2693
2694
%%%
2695
2696
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2697
2698
\vspace{.5cm}
2699
\centerline{\includegraphics[scale=3]{bijectionRectangle8}}
2700
2701
\vfill
2702
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2703
\vspace{3cm}
2704
2705
\end{slide}
2706
2707
%%%
2708
2709
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2710
2711
\vspace{-.8cm}
2712
\[
2713
\sum_{\text{meandres}} \phantom{(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \; \phantom{= \sum_{\substack{\text{cyan} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \cdot \sum_{\substack{\text{orange} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} }
2714
\]
2715
2716
\vspace{.5cm}
2717
\centerline{\includegraphics[scale=4]{bijectionRectangle9}}
2718
2719
\vfill
2720
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2721
\vspace{3cm}
2722
2723
\end{slide}
2724
2725
%%%
2726
2727
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2728
2729
\vspace{-.8cm}
2730
\[
2731
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \; \phantom{= \sum_{\substack{\text{cyan} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \cdot \sum_{\substack{\text{orange} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} }
2732
\]
2733
2734
\vspace{.5cm}
2735
\centerline{\includegraphics[scale=4]{bijectionRectangle10}}
2736
2737
\vfill
2738
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2739
\vspace{3cm}
2740
2741
\end{slide}
2742
2743
%%%
2744
2745
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2746
2747
\vspace{-.8cm}
2748
\[
2749
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \sum_{\substack{\text{cyan} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} \cdot \sum_{\substack{\text{orange} \\ \text{half-meanders}}} \!\!\!\!\!\! u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM}
2750
\]
2751
2752
\vspace{.5cm}
2753
\centerline{\includegraphics[scale=4]{bijectionRectangle11}}
2754
2755
\vfill
2756
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2757
\vspace{3cm}
2758
2759
\end{slide}
2760
2761
%%%
2762
2763
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2764
2765
\vspace{-.8cm}
2766
\[
2767
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \quad\, \CHM(u,v,w) \; \cdot \; \OHM(u,v,w) \; \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}
2768
\]
2769
2770
\vspace{.55cm}
2771
\centerline{\includegraphics[scale=4]{bijectionRectangle11}}
2772
2773
\vfill
2774
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2775
\vspace{3cm}
2776
2777
\end{slide}
2778
2779
%%%
2780
2781
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2782
2783
\vspace{-.8cm}
2784
\[
2785
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \quad\, \CHM(u,v,w) \; \cdot \; \OHM(u,v,w) \; \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}
2786
\]
2787
2788
\vspace{.55cm}
2789
\centerline{\includegraphics[scale=4]{bijectionRectangle11}}
2790
2791
\[
2792
\CHM = \frac{1}{(1-\CHM)^2} \Big( u + \frac{w \; \OHM}{1-\OHM} \Big)
2793
\phantom{\qquad\text{and}\qquad
2794
\OHM = \frac{1}{(1-\OHM)^2} \Big( v + \frac{w \; \CHM}{1-\CHM} \Big)}
2795
\]
2796
2797
\vspace{.5cm}
2798
\includegraphics[scale=4]{bijectionRectangle12}
2799
\vspace{-3cm}
2800
2801
\vfill
2802
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2803
\vspace{3cm}
2804
2805
\end{slide}
2806
2807
%%%
2808
2809
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2810
2811
\vspace{-.8cm}
2812
\[
2813
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; u \raisebox{.3cm}{\teeM} v \raisebox{.3cm}{\perpM} w \raisebox{.3cm}{\crossM} = \quad\, \CHM(u,v,w) \; \cdot \; \OHM(u,v,w) \; \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}
2814
\]
2815
2816
\vspace{.55cm}
2817
\centerline{\includegraphics[scale=4]{bijectionRectangle11}}
2818
2819
\[
2820
\CHM = \frac{1}{(1-\CHM)^2} \Big( u + \frac{w \; \OHM}{1-\OHM} \Big)
2821
\qquad\text{and}\qquad
2822
\OHM = \frac{1}{(1-\OHM)^2} \Big( v + \frac{w \; \CHM}{1-\CHM} \Big)
2823
\]
2824
2825
\vfill
2826
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2827
\vspace{3cm}
2828
2829
\end{slide}
2830
2831
%%%
2832
2833
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2834
2835
\vspace{-.3cm}
2836
\[
2837
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; (tz) \raisebox{.3cm}{\teeM} (tz) \raisebox{.3cm}{\perpM} t \raisebox{.3cm}{\crossM} = \HM(t,z)^2 \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}
2838
\]
2839
2840
\[
2841
\text{where} \qquad \HM = \frac{t}{(1-\HM)^2} \Big( z + \frac{\HM}{1-\HM} \Big)
2842
\]
2843
2844
\vfill
2845
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2846
\vspace{3cm}
2847
2848
\end{slide}
2849
2850
%%%
2851
2852
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2853
2854
\vspace{-.3cm}
2855
\[
2856
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; (tz) \raisebox{.3cm}{\teeM} (tz) \raisebox{.3cm}{\perpM} t \raisebox{.3cm}{\crossM} = \HM(t,z)^2 \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}
2857
\]
2858
2859
\[
2860
\text{where} \qquad \HM = \frac{t}{(1-\HM)^2} \Big( z + \frac{\HM}{1-\HM} \Big)
2861
\]
2862
2863
\vspace{1cm}
2864
Lagrange inversion again:
2865
\begin{align*}
2866
[t^nz^k] \; \HM^2
2867
& = \frac{2}{n} \; [s^{n-2} z^k] \; \frac{1}{(1-s)^{2n}} \Big( z + \frac{s}{1-s} \Big)^n
2868
= \frac{2}{n} \binom{n}{k} \; [s^{n-2}] \; \frac{s^{n-k}}{(1-s)^{3n-k}} \\
2869
& = \frac{2}{n} \binom{n}{k} \; [s^{k-2}] \; \frac{1}{(1-s)^{3n-k}}
2870
= \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2}
2871
\end{align*}
2872
2873
\vfill
2874
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2875
\vspace{3cm}
2876
2877
\end{slide}
2878
2879
%%%
2880
2881
\begin{slide}{Fang -- Fusy -- Nadeau bijection}
2882
2883
\vspace{-.3cm}
2884
\[
2885
\sum_{\text{meandres}} {(\; \teeM + \; \perpM + \; \crossM-1)} \; (tz) \raisebox{.3cm}{\teeM} (tz) \raisebox{.3cm}{\perpM} t \raisebox{.3cm}{\crossM} = \HM(t,z)^2 \phantom{\sum_{\substack{\text{x} \\ \text{y}}}}
2886
\]
2887
2888
\[
2889
\text{where} \qquad \HM = \frac{t}{(1-\HM)^2} \Big( z + \frac{\HM}{1-\HM} \Big)
2890
\]
2891
2892
\vspace{1cm}
2893
Lagrange inversion again:
2894
\begin{align*}
2895
[t^nz^k] \; \HM^2
2896
& = \frac{2}{n} \; [s^{n-2} z^k] \; \frac{1}{(1-s)^{2n}} \Big( z + \frac{s}{1-s} \Big)^n
2897
= \frac{2}{n} \binom{n}{k} \; [s^{n-2}] \; \frac{s^{n-k}}{(1-s)^{3n-k}} \\
2898
& = \frac{2}{n} \binom{n}{k} \; [s^{k-2}] \; \frac{1}{(1-s)^{3n-k}}
2899
= \frac{2}{n} \binom{n}{k} \binom{3n-3}{k-2}
2900
\end{align*}
2901
2902
\vspace{1cm}
2903
Hence
2904
\[
2905
[t^n z^k] \; A(t,z) = \frac{1}{n+1} \; [t^{n+1} z^{k+2}] \; \HM^2 = \frac{2}{n(n+1)} \binom{n+1}{k+2} \binom{3n}{k}
2906
\]
2907
2908
\vfill
2909
\hfill\papier{Fang -- Fusy -- Nadeau '23$^+$}
2910
\vspace{3cm}
2911
2912
\end{slide}
2913
2914
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2915
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2916
2917
\partie{Diagonal of the permutahedron}
2918
2919
\centerline{
2920
\includegraphics[scale=1.2]{diagonalPermutahedron1}
2921
\qquad
2922
\includegraphics[scale=.5]{diagonalPermutahedronGuillaume}
2923
}
2924
2925
\vspace{-2cm}
2926
\hfill
2927
{\small \textcopyright\,G.\,Laplante-Anfossi}
2928
2929
\vspace{.5cm}
2930
\begin{center}
2931
with \\
2932
Bérénice DELCROIX-OGER (Univ.\,Montpellier) \\
2933
Matthieu JOSUAT-VERGÈS (CNRS \& Univ.\,Paris Cité) \\
2934
Guillaume LAPLANTE-ANFOSSI (Univ.\,Melbourne) \\
2935
Kurt STOECKL (Univ.\,Melbourne)
2936
\end{center}
2937
2938
%%%%%%%%%%
2939
2940
\begin{slide}{Diagonal of the permutahedron}
2941
2942
$\Delta_{\Perm(n)} = $ diagonal of $(n-1)$-dimensional permutahedron
2943
2944
\vspace{.2cm}
2945
\centerline{\includegraphics[scale=1.3]{diagonalPermutahedron3}}
2946
2947
\vspace{-.2cm}
2948
\theo{THM}{
2949
$k$-faces of~$\Delta_{\Perm(n)}$ $\quad \longleftrightarrow$ \begin{tabular}[t]{c} $(\mu,\nu)$ ordered partitions of~$[n]$ such that \\ $\forall (I,J) \in D(n), \; \exists k \in [n], \; \# \mu_{[k]} \cap I > \# \mu_{[k]} \cap J$ \\ $\qquad\qquad\quad\; \text{ or } \exists \ell \in [n], \; \# \mu_{[\ell]} \cap I < \# \mu_{[\ell]} \cap J$ \end{tabular}
2950
2951
\vspace{-1cm}
2952
\papier{Laplante-Anfossi '22}
2953
2954
\vspace{.5cm}
2955
where $D(n) \eqdef \{ (I,J) \ | \ I,J\subseteq [n], \, \#I = \#J, \, I \cap J = \varnothing, \min(I \cup J) \in I \}$
2956
2957
}
2958
2959
\end{slide}
2960
2961
%%%
2962
2963
\begin{slide}{Diagonal of the permutahedron}
2964
2965
$\Delta_{\Perm(n)} = $ diagonal of $(n-1)$-dimensional permutahedron
2966
2967
\vspace{.13cm}
2968
\centerline{\includegraphics[scale=1.3]{diagonalPermutahedron4}}
2969
2970
\vspace{1cm}
2971
\theo{PROP}{
2972
$\BA[2][n] = $ two generically translated copies of the braid arrangement
2973
\[
2974
f_k \big( \, \Delta_{\Perm(n)} \, \big) = f_{n-k-1} \big( \, \BA[2][n] \, \big)
2975
\]
2976
2977
\vspace{-.6cm}
2978
\hfill\papier{Laplante-Anfossi '22}
2979
2980
}
2981
2982
\end{slide}
2983
2984
%%%%%%%%%%
2985
2986
\begin{slide}{Flat poset \& Zaslavsky's theorem}
2987
2988
\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\
2989
\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$
2990
2991
\vspace{.5cm}
2992
\centerline{\includegraphics[scale=1.5]{intersectionPoset}}
2993
2994
\end{slide}
2995
2996
%%%
2997
2998
\begin{slide}{Flat poset \& Zaslavsky's theorem}
2999
3000
\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\
3001
\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$
3002
3003
\vspace{.5cm}
3004
\centerline{\includegraphics[scale=1.5]{intersectionPoset}}
3005
3006
\theo{EXM}{
3007
\begin{tabular}[t]{@{}c@{\quad\;\;}c}
3008
flat poset of braid arrangement~$\BA[][n]$
3009
&
3010
$\set{\b{x} \in \R^n}{\! \begin{array}{l} x_i = x_j \text{ for all } i,j \text{ in} \\ \text{the same part of } \pi \end{array} \! }$
3011
\\
3012
\rotatebox[origin=c]{90}{$\longleftrightarrow$}
3013
&
3014
\rotatebox[origin=c]{90}{$\longmapsto$}
3015
\\[.3cm]
3016
refinement poset on partitions of~$[n]$
3017
&
3018
$\pi$
3019
\end{tabular}
3020
\qquad
3021
3022
}
3023
3024
\end{slide}
3025
3026
%%%
3027
3028
\begin{slide}{Flat poset \& Zaslavsky's theorem}
3029
3030
\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\
3031
\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$
3032
3033
\vspace{.5cm}
3034
\centerline{\includegraphics[scale=1.5]{intersectionPoset}}
3035
3036
\vspace{.5cm}
3037
\emph{M\"obius function} $\mu$ of a poset: $\mu(x,x) = 1$ and $\sum_{x \le y \le z} \mu(x,y) = 0$ for all~$x < z$
3038
3039
\end{slide}
3040
3041
%%%
3042
3043
\begin{slide}{Flat poset \& Zaslavsky's theorem}
3044
3045
\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\
3046
\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$
3047
3048
\vspace{.5cm}
3049
\centerline{
3050
\begin{overpic}[scale=1.5]{intersectionPoset}
3051
\put(453, -15){$1$}
3052
\put(310, 60){$-1$}
3053
\put(377, 60){$-1$}
3054
\put(444, 60){$-1$}
3055
\put(511, 60){$-1$}
3056
\put(578, 60){$-1$}
3057
\put(322, 195){$2$}
3058
\put(408, 195){$1$}
3059
\put(496, 195){$1$}
3060
\put(583, 195){$2$}
3061
\end{overpic}
3062
}
3063
3064
\vspace{.5cm}
3065
\emph{M\"obius function} $\mu$ of a poset: $\mu(x,x) = 1$ and $\sum_{x \le y \le z} \mu(x,y) = 0$ for all~$x < z$
3066
3067
\end{slide}
3068
3069
%%%
3070
3071
\begin{slide}{Flat poset \& Zaslavsky's theorem}
3072
3073
\emph{flat poset}~$\b{Fl}(\c{A})$ of an hyperplane arrangement~$\c{A} =$ \\
3074
\hspace*{2cm}reverse inclusion poset on nonempty intersections of hyperplanes of~$\c{A}$
3075
3076
\vspace{.5cm}
3077
\centerline{
3078
\begin{overpic}[scale=1.5]{intersectionPoset}
3079
\put(453, -15){$1$}
3080
\put(310, 60){$-1$}
3081
\put(377, 60){$-1$}
3082
\put(444, 60){$-1$}
3083
\put(511, 60){$-1$}
3084
\put(578, 60){$-1$}
3085
\put(322, 195){$2$}
3086
\put(408, 195){$1$}
3087
\put(496, 195){$1$}
3088
\put(583, 195){$2$}
3089
\end{overpic}
3090
}
3091
3092
\vspace{.5cm}
3093
\emph{M\"obius function} $\mu$ of a poset: $\mu(x,x) = 1$ and $\sum_{x \le y \le z} \mu(x,y) = 0$ for all~$x < z$
3094
3095
\vspace{.5cm}
3096
\emph{M\"obius polynomial}
3097
$\displaystyle \b{\mu}_{\c{A}}(x,y) = \sum_{F \le G} \mu(F,G) \, x^{\dim(F)} \, y^{\dim(G)}$
3098
3099
\theo{THM}{
3100
$\b{f}_{\!\!\c{A}}(x) = \b{\mu}_{\c{A}}(-x,-1)$
3101
\qquad\text{and}\qquad
3102
$\b{b}_\c{A}(x) = \b{\mu}_{\c{A}}(-x,1)$
3103
\hfill\papier{Zaslavsky '75}
3104
}
3105
3106
\end{slide}
3107
3108
%%%%%%%%%%
3109
3110
\begin{slide}{$\ell$-braid arrangement \& partition forests}
3111
3112
\hspace{15cm}
3113
\includegraphics[scale=1.5]{lBraidArrangement3}
3114
3115
\vspace{-11.5cm}
3116
$\BA =$
3117
\begin{tabular}[t]{@{}l}
3118
union of $\ell$ \emph{generically} translated \\
3119
copies of the braid arrangement
3120
\end{tabular}
3121
3122
\end{slide}
3123
3124
%%%%%%%%%%
3125
3126
\begin{slide}{$\ell$-braid arrangement \& partition forests}
3127
3128
\hspace{15cm}
3129
\includegraphics[scale=1.5]{lBraidArrangement3}
3130
3131
\vspace{-11.5cm}
3132
$\BA =$
3133
\begin{tabular}[t]{@{}l}
3134
union of $\ell$ \emph{generically} translated \\
3135
copies of the braid arrangement
3136
\end{tabular}
3137
3138
\vspace{.5cm}
3139
$(\ell,n)$ \emph{partition forest} $=$ \\
3140
\hspace*{1cm}
3141
\begin{tabular}[t]{@{}l}
3142
$\ell$-tuple of partitions of~$[n]$ whose \\
3143
intersection hypergraph is a forest
3144
\end{tabular}
3145
3146
\includegraphics[scale=1.65]{partitionForest1}
3147
3148
\vfill
3149
\theo{PROP}{
3150
Intersection poset of~$\BA$ $\quad\longleftrightarrow\quad$ refinement poset on $(\ell,n)$ partition forests
3151
}
3152
\vspace{3cm}
3153
3154
\end{slide}
3155
3156
%%%%%%%%%%
3157
3158
\begin{slide}{$\ell$-braid arrangement \& partition forests}
3159
3160
\hspace{15cm}
3161
\includegraphics[scale=1.5]{lBraidArrangement3}
3162
3163
\vspace{-11.5cm}
3164
$\BA =$
3165
\begin{tabular}[t]{@{}l}
3166
union of $\ell$ \emph{generically} translated \\
3167
copies of the braid arrangement
3168
\end{tabular}
3169
3170
\vspace{.5cm}
3171
$(\ell,n)$ \emph{partition forest} $=$ \\
3172
\hspace*{1cm}
3173
\begin{tabular}[t]{@{}l}
3174
$\ell$-tuple of partitions of~$[n]$ whose \\
3175
intersection hypergraph is a forest
3176
\end{tabular}
3177
3178
\includegraphics[scale=1.65]{partitionForest2}
3179
3180
\vfill
3181
\theo{PROP}{
3182
Intersection poset of~$\BA$ $\quad\longleftrightarrow\quad$ refinement poset on $(\ell,n)$ partition forests
3183
}
3184
\vspace{3cm}
3185
3186
\end{slide}
3187
3188
%%%%%%%%%%
3189
3190
\begin{slide}{M\"obius polynomial}
3191
3192
$\P_p = $ refinement poset on partitions of~$[p]$ \\
3193
$\PF = $ refinement poset on $(\ell,n)$ partition forests
3194
3195
\theo{FACT 1}{
3196
The M\"obius function of~$\P_p$ is
3197
$
3198
\displaystyle
3199
\mu(\hat 0, \hat 1) = (-1)^{p-1} (p-1)!
3200
$
3201
}
3202
3203
\theo{FACT 2}{
3204
In~$\P_p$,
3205
\qquad\quad
3206
$
3207
\displaystyle
3208
[F,G] \simeq \prod_{p \in G} \P_{\# F[p]}
3209
$
3210
\qquad\quad
3211
where~$F[p] =$ restriction of~$F$ to~$p$
3212
}
3213
3214
\theo{FACT 2}{
3215
$
3216
\displaystyle
3217
[\b{F}, \b{G}] \simeq \prod_{i \in [\ell]} [F_i, G_i]
3218
$
3219
\qquad
3220
for~$\b{F} = (F_1, \dots, F_\ell)$ and~$\b{G} = (G_1, \dots, G_\ell)$ in~$\PF$
3221
}
3222
3223
\theo{FACT 4}{
3224
M\"obius is multiplicative
3225
\qquad
3226
\(
3227
\mu_{P \times Q} \big( (p,q), (p,q) \big) = \mu_P(p,p) \cdot \mu_Q(q,q)
3228
\)
3229
3230
}
3231
3232
%\theo{THM}{
3233
%\hspace*{5.5cm}
3234
%$
3235
%\displaystyle
3236
%f_{n-k-1}(\BA) = \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} \prod_{p \in G_i} (\# F_i[p]-1)!
3237
%$
3238
%\\
3239
%where~$\b{F} \le \b{G}$ are intervals of~$\PF$ such that~$\sum_{i \in [\ell]} \#F_i = \ell n - k$
3240
%
3241
%\vspace{.2cm}
3242
%\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3243
%\vspace{-.2cm}
3244
%
3245
%}
3246
3247
\end{slide}
3248
3249
%%%
3250
3251
\begin{slide}{M\"obius polynomial}
3252
3253
$\P_p = $ refinement poset on partitions of~$[p]$ \\
3254
$\PF = $ refinement poset on $(\ell,n)$ partition forests
3255
3256
\theo{FACT 1}{
3257
The M\"obius function of~$\P_p$ is
3258
$
3259
\displaystyle
3260
\mu(\hat 0, \hat 1) = (-1)^{p-1} (p-1)!
3261
$
3262
}
3263
3264
\theo{FACT 2}{
3265
In~$\P_p$,
3266
\qquad\quad
3267
$
3268
\displaystyle
3269
[F,G] \simeq \prod_{p \in G} \P_{\# F[p]}
3270
$
3271
\qquad\quad
3272
where~$F[p] =$ restriction of~$F$ to~$p$
3273
}
3274
3275
\theo{FACT 2}{
3276
$
3277
\displaystyle
3278
[\b{F}, \b{G}] \simeq \prod_{i \in [\ell]} [F_i, G_i]
3279
$
3280
\qquad
3281
for~$\b{F} = (F_1, \dots, F_\ell)$ and~$\b{G} = (G_1, \dots, G_\ell)$ in~$\PF$
3282
}
3283
3284
\theo{FACT 4}{
3285
M\"obius is multiplicative
3286
\qquad
3287
\(
3288
\mu_{P \times Q} \big( (p,q), (p,q) \big) = \mu_P(p,p) \cdot \mu_Q(q,q)
3289
\)
3290
3291
}
3292
3293
\theo{THM}{
3294
$
3295
\qquad
3296
\displaystyle
3297
\b{\mu}_{\BA} = x^{n-1-\ell n} y^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\#F_i} y^{\#G_i} \prod_{p \in G_i} (-1)^{\#F_i[p]-1} (\# F_i[p]-1)!
3298
$
3299
3300
\vspace{.5cm}
3301
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3302
\vspace{-.2cm}
3303
3304
}
3305
3306
\end{slide}
3307
3308
%%%%%%%%%%
3309
3310
\begin{slide}{face polynomial}
3311
3312
\theo{THM}{
3313
\hspace*{4.5cm}
3314
$
3315
\displaystyle
3316
\b{f}_{\!\BA}(x) = x^{n-1-\ell n}\sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\#F_i} \prod_{p \in G_i} (\# F_i[p]-1)!
3317
$
3318
3319
\vspace{.5cm}
3320
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3321
\vspace{-.2cm}
3322
3323
}
3324
3325
\vfill
3326
\centerline{
3327
\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c}
3328
\includegraphics[scale=1]{lBraidArrangement1}
3329
&
3330
\includegraphics[scale=1]{lBraidArrangement2}
3331
&
3332
\includegraphics[scale=1]{lBraidArrangement3}
3333
\\
3334
\begin{tabular}[t]{c|cccc|c}
3335
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3336
\hline
3337
$1$ & $1$ &&&& $1$ \\
3338
$2$ & $2$ & $1$ &&& $3$ \\
3339
$3$ & $6$ & $6$ & $1$ && $13$ \\
3340
$4$ & $24$ & $36$ & $14$ & $1$ & $75$ \\
3341
\end{tabular}
3342
&
3343
\begin{tabular}[t]{c|cccc|c}
3344
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3345
\hline
3346
$1$ & $1$ &&&& $1$ \\
3347
$2$ & $3$ & $2$ &&& $5$ \\
3348
$3$ & $17$ & $24$ & $8$ && $49$ \\
3349
$4$ & $149$ & $324$ & $226$ & $50$ & $749$
3350
\end{tabular}
3351
&
3352
\begin{tabular}[t]{c|cccc|c}
3353
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3354
\hline
3355
$1$ & $1$ &&&& $1$ \\
3356
$2$ & $4$ & $3$ &&& $7$ \\
3357
$3$ & $34$ & $54$ & $21$ && $109$ \\
3358
$4$ & $472$ & $1152$ & $924$ & $243$ & $2791$
3359
\end{tabular}
3360
% &
3361
% \begin{tabular}[t]{c|cccc|c}
3362
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3363
% \hline
3364
% $1$ & $1$ &&&& $1$ \\
3365
% $2$ & $5$ & $4$ &&& $9$ \\
3366
% $3$ & $57$ & $96$ & $40$ && $193$ \\
3367
% $4$ & $1089$ & $2808$ & $2396$ & $676$ & $6969$
3368
% \end{tabular}
3369
\\
3370
\hspace{8.5cm} & \hspace{8.5cm} & \hspace{9.5cm}
3371
\\[-.8cm]
3372
$\ell = 1$ & $\ell = 2$ & $\ell = 3$ % & $\ell = 4$
3373
\end{tabular}
3374
}
3375
\vspace*{2.5cm}
3376
3377
\end{slide}
3378
3379
%%%%%%%%%%
3380
3381
\begin{slide}{bounded face polynomial}
3382
3383
\theo{THM}{
3384
\hspace*{3.5cm}
3385
$
3386
\displaystyle
3387
\b{b}_{\BA}(x) = (-1)^\ell x^{n-1-\ell n} \sum_{\b{F} \le \b{G}} \prod_{i \in [\ell]} x^{\#F_i} \prod_{p \in G_i} -(\# F_i[p]-1)!
3388
$
3389
3390
\vspace{.4cm}
3391
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3392
\vspace{-.2cm}
3393
3394
}
3395
3396
\vfill
3397
\centerline{
3398
\begin{tabular}{c@{\hspace{.7cm}}c@{\hspace{.7cm}}c}
3399
\includegraphics[scale=.9]{lBraidArrangement1}
3400
&
3401
\includegraphics[scale=.9]{lBraidArrangement2}
3402
&
3403
\includegraphics[scale=.9]{lBraidArrangement3}
3404
\\
3405
\begin{tabular}[t]{c|cccc|c}
3406
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3407
\hline
3408
$1$ & $1$ &&&& $1$ \\
3409
$2$ & $0$ & $1$ &&& $1$ \\
3410
$3$ & $0$ & $0$ & $1$ && $1$ \\
3411
$4$ & $0$ & $0$ & $0$ & $1$ & $1$
3412
\end{tabular}
3413
&
3414
\begin{tabular}[t]{c|cccc|c}
3415
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3416
\hline
3417
$1$ & $1$ &&&& $1$ \\
3418
$2$ & $1$ & $2$ &&& $3$ \\
3419
$3$ & $5$ & $12$ & $8$ && $25$ \\
3420
$4$ & $43$ & $132$ & $138$ & $50$ & $363$
3421
\end{tabular}
3422
&
3423
\begin{tabular}[t]{c|cccc|c}
3424
$n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3425
\hline
3426
$1$ & $1$ &&&& $1$ \\
3427
$2$ & $2$ & $3$ &&& $5$ \\
3428
$3$ & $16$ & $36$ & $21$ && $73$ \\
3429
$4$ & $224$ & $684$ & $702$ & $243$ & $1853$
3430
\end{tabular}
3431
% &
3432
% \begin{tabular}[t]{c|cccc|c}
3433
% $n \backslash k$ & $0$ & $1$ & $2$ & $3$ & $\Sigma$ \\
3434
% \hline
3435
% $1$ & $1$ &&&& $1$ \\
3436
% $2$ & $3$ & $4$ &&& $7$ \\
3437
% $3$ & $33$ & $72$ & $40$ && $145$ \\
3438
% $4$ & $639$ & $1944$ & $1980$ & $676$ & $5239$
3439
% \end{tabular}
3440
\\
3441
\hspace{8.5cm} & \hspace{8.5cm} & \hspace{9.5cm}
3442
\\[-.8cm]
3443
$\ell = 1$ & $\ell = 2$ & $\ell = 3$ % & $\ell = 4$
3444
\end{tabular}
3445
}
3446
\vspace*{2.5cm}
3447
3448
\end{slide}
3449
3450
%%%%%%%%%%
3451
3452
\begin{slide}{Vertices}
3453
3454
\theo{THM}{
3455
\(
3456
f_0(\BA[\ell][n]) = \#\{\text{$(\ell,n)$\,partition\,trees}\} = \ell \big( n (\ell-1) + 1 \big)^{n-2}
3457
\)
3458
3459
\vspace{.1cm}
3460
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3461
\vspace{-.2cm}
3462
3463
}
3464
3465
%\vspace{.7cm}
3466
%\centerline{\includegraphics[scale=1.8]{partitionTree}}
3467
3468
\vspace{1cm}
3469
\centerline{
3470
\hspace{6cm}
3471
\begin{tabular}{c|ccccccl}
3472
$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\
3473
\cline{1-7}
3474
$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $\leftarrow$ $1$ \\
3475
$2$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ & $\leftarrow$ $\ell$ \\
3476
$3$ & {\color{red} $1$} & {\color{green} $8$} & {\color{blue} $21$} & {\color{orange} $40$} & $65$ & $96$ & $\leftarrow$ $\ell(3\ell-2)$ [OEIS, A000567] \\
3477
$4$ & $1$ & $50$ & $243$ & $676$ & $1445$ & $2646$ \\[.3cm]
3478
\multicolumn{2}{r}{$1$\;\rotatebox[origin=c]{-90}{$\Lsh$}} & \multicolumn{6}{l}{\;\;\rotatebox[origin=c]{90}{$\Rsh$} \;$2(n+1)^{n-2}$ [OEIS, A007334]}
3479
\end{tabular}
3480
}
3481
3482
\vfill
3483
\centerline{
3484
\includegraphics[scale=.9]{lBraidArrangement1}
3485
\includegraphics[scale=.9]{lBraidArrangement2}
3486
\includegraphics[scale=.9]{lBraidArrangement3}
3487
\includegraphics[scale=.9]{lBraidArrangement4}
3488
}
3489
\vspace*{2.5cm}
3490
3491
\end{slide}
3492
3493
%%%
3494
3495
\begin{slide}{Vertices}
3496
3497
\theo{THM}{
3498
\(
3499
f_0(\BA[2][n]) = \#\{\text{$(2,n)$\,partition\,trees}\} = \#\text{spanning\,trees\,of\,} K_{n+1} \text{\,with\,} 01 % = 2 (n+1)^{n-2}
3500
\)
3501
3502
\vspace{.1cm}
3503
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3504
\vspace{-.2cm}
3505
3506
}
3507
3508
\vspace{.7cm}
3509
$1$, $2$, $8$, $50$, $432$, $4802$, $65536$, $1062882$, $20000000$, $428717762$, \dots
3510
\hfill [OEIS, A007334]
3511
3512
\vspace{.7cm}
3513
\centerline{\includegraphics[scale=1.8]{partitionTree}}
3514
\vspace*{-1cm}
3515
3516
%\vspace{.7cm}
3517
%\begin{gather*}
3518
%n \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \\
3519
%= \#\set{(e,T)}{e \in T \text{ spanning tree of } K_{n+1}} \\
3520
%= \textstyle \binom{n+1}{2} \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \text{\,with\,} 01
3521
%\end{gather*}
3522
3523
\end{slide}
3524
3525
%%%
3526
3527
\begin{slide}{Vertices}
3528
3529
\theo{THM}{
3530
\(
3531
f_0(\BA[2][n]) = \#\{\text{$(2,n)$\,partition\,trees}\} = \#\text{spanning\,trees\,of\,} K_{n+1} \cdot \frac{2}{n+1} = 2 (n+1)^{n-2}
3532
\)
3533
3534
\vspace{.1cm}
3535
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3536
\vspace{-.2cm}
3537
3538
}
3539
3540
\vspace{.7cm}
3541
$1$, $2$, $8$, $50$, $432$, $4802$, $65536$, $1062882$, $20000000$, $428717762$, \dots
3542
\hfill [OEIS, A007334]
3543
3544
\vspace{.7cm}
3545
\centerline{\includegraphics[scale=1.8]{partitionTree}}
3546
\vspace*{-1cm}
3547
3548
%\vspace{.7cm}
3549
%\begin{gather*}
3550
%n \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \\
3551
%= \#\set{(e,T)}{e \in T \text{ spanning tree of } K_{n+1}} \\
3552
%= \textstyle \binom{n+1}{2} \cdot \#\text{spanning\,trees\,of\,} K_{n+1} \text{\,with\,} 01
3553
%\end{gather*}
3554
3555
\end{slide}
3556
3557
%%%%%%%%%%
3558
3559
\begin{slide}{Regions}
3560
3561
\theo{THM}{
3562
\(
3563
\displaystyle
3564
f_{n-1}(\BA) = n! \, [z^n] \exp \Bigg( \sum_{m \ge 1} \frac{F_{\ell,m} \, z^m}{m} \Bigg)
3565
\)
3566
\hfill
3567
where
3568
$\displaystyle F_{\ell,m} = \frac{1}{(\ell-1)m+1} \binom{\ell m}{m}$
3569
3570
\vspace{.4cm}
3571
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3572
\vspace{-.2cm}
3573
3574
}
3575
3576
\vfill
3577
\centerline{
3578
\hspace{6cm}
3579
\begin{tabular}{c|ccccccl}
3580
$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\
3581
\cline{1-7}
3582
$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $\leftarrow$ $1$ \\
3583
$2$ & $2$ & $3$ & $4$ & $5$ & $6$ & $7$ & $\leftarrow$ $\ell+1$ \\
3584
$3$ & {\color{red} $6$} & {\color{green} $17$} & {\color{blue} $34$} & {\color{orange} $57$} & $86$ & $121$ & $\leftarrow$ $3\ell^2+2\ell+1$ [OEIS, A056109]\\
3585
$4$ & $24$ & $149$ & $472$ & $1089$ & $2096$ & $3589$ \\[.3cm]
3586
\multicolumn{2}{r}{$n!$\;\rotatebox[origin=c]{-90}{$\Lsh$}\;} & \multicolumn{6}{l}{\;\;\rotatebox[origin=c]{90}{$\Rsh$} [OEIS, A213507]}
3587
\end{tabular}
3588
}
3589
3590
\vspace{.2cm}
3591
\centerline{
3592
\includegraphics[scale=.9]{lBraidArrangement1}
3593
\includegraphics[scale=.9]{lBraidArrangement2}
3594
\includegraphics[scale=.9]{lBraidArrangement3}
3595
\includegraphics[scale=.9]{lBraidArrangement4}
3596
}
3597
\vspace*{2.5cm}
3598
3599
\end{slide}
3600
3601
%%%%%%%%%%
3602
3603
\begin{slide}{Bounded regions}
3604
3605
\theo{THM}{
3606
\(
3607
\displaystyle
3608
b_{n-1}(\BA) = (n-1)! \, [z^{n-1}] \exp \bigg( (\ell-1) \sum_{m \ge 1} F_{\ell,m} \, z^m \bigg) \phantom{\Bigg(}
3609
\)
3610
3611
\vspace{.4cm}
3612
\hfill\papier{Delcroix-Oger -- Josuat-Vergès -- Laplante-Anfossi -- P. -- Stoeckl '23$^+$}
3613
\vspace{-.2cm}
3614
3615
}
3616
3617
\vfill
3618
\centerline{
3619
\hspace{6cm}
3620
\begin{tabular}{c|ccccccl}
3621
$n \backslash \ell$ & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\
3622
\cline{1-7}
3623
$1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $1$ & $\leftarrow$ $1$ \\
3624
$2$ & $0$ & $1$ & $2$ & $3$ & $4$ & $5$ & $\leftarrow$ $\ell-1$ \\
3625
$3$ & {\color{red} $0$} & {\color{green} $5$} & {\color{blue} $16$} & {\color{orange} $33$} & $56$ & $85$ & $\leftarrow$ $3\ell^2-4\ell+1$ [OEIS, A045944] \\
3626
$4$ & $0$ & $43$ & $224$ & $639$ & $1384$ & $2555$ & \qquad $= 3(\ell-1)^2+2(\ell-1)$ \\[.3cm]
3627
\multicolumn{2}{r}{$0$\;\rotatebox[origin=c]{-90}{$\Lsh$}} & \multicolumn{6}{l}{\;\;\rotatebox[origin=c]{90}{$\Rsh$} [OEIS, A251568]}
3628
\end{tabular}
3629
}
3630
3631
\vspace{.2cm}
3632
\centerline{
3633
\includegraphics[scale=.9]{lBraidArrangement1}
3634
\includegraphics[scale=.9]{lBraidArrangement2}
3635
\includegraphics[scale=.9]{lBraidArrangement3}
3636
\includegraphics[scale=.9]{lBraidArrangement4}
3637
}
3638
\vspace*{2.5cm}
3639
3640
\end{slide}
3641
3642
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3643
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3644
3645
\newpage
3646
\phantomsection\label{thanks}
3647
3648
\vspace*{3cm}
3649
\centerline{
3650
\includegraphics[scale=1.4]{diagonalPermutahedron2
3651
}
3652
\includegraphics[scale=2.5]{thanks}
3653
\includegraphics[scale=1.4]{diagonalAssociahedron2}
3654
}
3655
3656
\end{document}
3657
3658