Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/check/sha256.c
3153 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file sha256.c
6
/// \brief SHA-256
7
//
8
// The C code is based on the public domain SHA-256 code found from
9
// Crypto++ Library 5.5.1 released in 2007: https://www.cryptopp.com/
10
// A few minor tweaks have been made in liblzma.
11
//
12
// Authors: Wei Dai
13
// Lasse Collin
14
//
15
///////////////////////////////////////////////////////////////////////////////
16
17
#include "check.h"
18
19
// Rotate a uint32_t. GCC can optimize this to a rotate instruction
20
// at least on x86.
21
static inline uint32_t
22
rotr_32(uint32_t num, unsigned amount)
23
{
24
return (num >> amount) | (num << (32 - amount));
25
}
26
27
#define blk0(i) (W[i] = conv32be(data[i]))
28
#define blk2(i) (W[i & 15] += s1(W[(i - 2) & 15]) + W[(i - 7) & 15] \
29
+ s0(W[(i - 15) & 15]))
30
31
#define Ch(x, y, z) (z ^ (x & (y ^ z)))
32
#define Maj(x, y, z) ((x & (y ^ z)) + (y & z))
33
34
#define a(i) T[(0 - i) & 7]
35
#define b(i) T[(1 - i) & 7]
36
#define c(i) T[(2 - i) & 7]
37
#define d(i) T[(3 - i) & 7]
38
#define e(i) T[(4 - i) & 7]
39
#define f(i) T[(5 - i) & 7]
40
#define g(i) T[(6 - i) & 7]
41
#define h(i) T[(7 - i) & 7]
42
43
#define R(i, j, blk) \
44
h(i) += S1(e(i)) + Ch(e(i), f(i), g(i)) + SHA256_K[i + j] + blk; \
45
d(i) += h(i); \
46
h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
47
#define R0(i) R(i, 0, blk0(i))
48
#define R2(i) R(i, j, blk2(i))
49
50
#define S0(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 9), 11), 2)
51
#define S1(x) rotr_32(x ^ rotr_32(x ^ rotr_32(x, 14), 5), 6)
52
#define s0(x) (rotr_32(x ^ rotr_32(x, 11), 7) ^ (x >> 3))
53
#define s1(x) (rotr_32(x ^ rotr_32(x, 2), 17) ^ (x >> 10))
54
55
56
static const uint32_t SHA256_K[64] = {
57
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
58
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
59
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
60
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
61
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
62
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
63
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
64
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
65
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
66
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
67
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
68
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
69
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
70
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
71
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
72
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
73
};
74
75
76
static void
77
transform(uint32_t state[8], const uint32_t data[16])
78
{
79
uint32_t W[16];
80
uint32_t T[8];
81
82
// Copy state[] to working vars.
83
memcpy(T, state, sizeof(T));
84
85
// The first 16 operations unrolled
86
R0( 0); R0( 1); R0( 2); R0( 3);
87
R0( 4); R0( 5); R0( 6); R0( 7);
88
R0( 8); R0( 9); R0(10); R0(11);
89
R0(12); R0(13); R0(14); R0(15);
90
91
// The remaining 48 operations partially unrolled
92
for (unsigned int j = 16; j < 64; j += 16) {
93
R2( 0); R2( 1); R2( 2); R2( 3);
94
R2( 4); R2( 5); R2( 6); R2( 7);
95
R2( 8); R2( 9); R2(10); R2(11);
96
R2(12); R2(13); R2(14); R2(15);
97
}
98
99
// Add the working vars back into state[].
100
state[0] += a(0);
101
state[1] += b(0);
102
state[2] += c(0);
103
state[3] += d(0);
104
state[4] += e(0);
105
state[5] += f(0);
106
state[6] += g(0);
107
state[7] += h(0);
108
}
109
110
111
static void
112
process(lzma_check_state *check)
113
{
114
transform(check->state.sha256.state, check->buffer.u32);
115
return;
116
}
117
118
119
extern void
120
lzma_sha256_init(lzma_check_state *check)
121
{
122
static const uint32_t s[8] = {
123
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
124
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19,
125
};
126
127
memcpy(check->state.sha256.state, s, sizeof(s));
128
check->state.sha256.size = 0;
129
130
return;
131
}
132
133
134
extern void
135
lzma_sha256_update(const uint8_t *buf, size_t size, lzma_check_state *check)
136
{
137
// Copy the input data into a properly aligned temporary buffer.
138
// This way we can be called with arbitrarily sized buffers
139
// (no need to be multiple of 64 bytes), and the code works also
140
// on architectures that don't allow unaligned memory access.
141
while (size > 0) {
142
const size_t copy_start = check->state.sha256.size & 0x3F;
143
size_t copy_size = 64 - copy_start;
144
if (copy_size > size)
145
copy_size = size;
146
147
memcpy(check->buffer.u8 + copy_start, buf, copy_size);
148
149
buf += copy_size;
150
size -= copy_size;
151
check->state.sha256.size += copy_size;
152
153
if ((check->state.sha256.size & 0x3F) == 0)
154
process(check);
155
}
156
157
return;
158
}
159
160
161
extern void
162
lzma_sha256_finish(lzma_check_state *check)
163
{
164
// Add padding as described in RFC 3174 (it describes SHA-1 but
165
// the same padding style is used for SHA-256 too).
166
size_t pos = check->state.sha256.size & 0x3F;
167
check->buffer.u8[pos++] = 0x80;
168
169
while (pos != 64 - 8) {
170
if (pos == 64) {
171
process(check);
172
pos = 0;
173
}
174
175
check->buffer.u8[pos++] = 0x00;
176
}
177
178
// Convert the message size from bytes to bits.
179
check->state.sha256.size *= 8;
180
181
check->buffer.u64[(64 - 8) / 8] = conv64be(check->state.sha256.size);
182
183
process(check);
184
185
for (size_t i = 0; i < 8; ++i)
186
check->buffer.u32[i] = conv32be(check->state.sha256.state[i]);
187
188
return;
189
}
190
191