Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/common/index.c
3153 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file index.c
6
/// \brief Handling of .xz Indexes and some other Stream information
7
//
8
// Author: Lasse Collin
9
//
10
///////////////////////////////////////////////////////////////////////////////
11
12
#include "common.h"
13
#include "index.h"
14
#include "stream_flags_common.h"
15
16
17
/// \brief How many Records to allocate at once
18
///
19
/// This should be big enough to avoid making lots of tiny allocations
20
/// but small enough to avoid too much unused memory at once.
21
#define INDEX_GROUP_SIZE 512
22
23
24
/// \brief How many Records can be allocated at once at maximum
25
#define PREALLOC_MAX ((SIZE_MAX - sizeof(index_group)) / sizeof(index_record))
26
27
28
/// \brief Base structure for index_stream and index_group structures
29
typedef struct index_tree_node_s index_tree_node;
30
struct index_tree_node_s {
31
/// Uncompressed start offset of this Stream (relative to the
32
/// beginning of the file) or Block (relative to the beginning
33
/// of the Stream)
34
lzma_vli uncompressed_base;
35
36
/// Compressed start offset of this Stream or Block
37
lzma_vli compressed_base;
38
39
index_tree_node *parent;
40
index_tree_node *left;
41
index_tree_node *right;
42
};
43
44
45
/// \brief AVL tree to hold index_stream or index_group structures
46
typedef struct {
47
/// Root node
48
index_tree_node *root;
49
50
/// Leftmost node. Since the tree will be filled sequentially,
51
/// this won't change after the first node has been added to
52
/// the tree.
53
index_tree_node *leftmost;
54
55
/// The rightmost node in the tree. Since the tree is filled
56
/// sequentially, this is always the node where to add the new data.
57
index_tree_node *rightmost;
58
59
/// Number of nodes in the tree
60
uint32_t count;
61
62
} index_tree;
63
64
65
typedef struct {
66
lzma_vli uncompressed_sum;
67
lzma_vli unpadded_sum;
68
} index_record;
69
70
71
typedef struct {
72
/// Every Record group is part of index_stream.groups tree.
73
index_tree_node node;
74
75
/// Number of Blocks in this Stream before this group.
76
lzma_vli number_base;
77
78
/// Number of Records that can be put in records[].
79
size_t allocated;
80
81
/// Index of the last Record in use.
82
size_t last;
83
84
/// The sizes in this array are stored as cumulative sums relative
85
/// to the beginning of the Stream. This makes it possible to
86
/// use binary search in lzma_index_locate().
87
///
88
/// Note that the cumulative summing is done specially for
89
/// unpadded_sum: The previous value is rounded up to the next
90
/// multiple of four before adding the Unpadded Size of the new
91
/// Block. The total encoded size of the Blocks in the Stream
92
/// is records[last].unpadded_sum in the last Record group of
93
/// the Stream.
94
///
95
/// For example, if the Unpadded Sizes are 39, 57, and 81, the
96
/// stored values are 39, 97 (40 + 57), and 181 (100 + 181).
97
/// The total encoded size of these Blocks is 184.
98
///
99
/// This is a flexible array, because it makes easy to optimize
100
/// memory usage in case someone concatenates many Streams that
101
/// have only one or few Blocks.
102
index_record records[];
103
104
} index_group;
105
106
107
typedef struct {
108
/// Every index_stream is a node in the tree of Streams.
109
index_tree_node node;
110
111
/// Number of this Stream (first one is 1)
112
uint32_t number;
113
114
/// Total number of Blocks before this Stream
115
lzma_vli block_number_base;
116
117
/// Record groups of this Stream are stored in a tree.
118
/// It's a T-tree with AVL-tree balancing. There are
119
/// INDEX_GROUP_SIZE Records per node by default.
120
/// This keeps the number of memory allocations reasonable
121
/// and finding a Record is fast.
122
index_tree groups;
123
124
/// Number of Records in this Stream
125
lzma_vli record_count;
126
127
/// Size of the List of Records field in this Stream. This is used
128
/// together with record_count to calculate the size of the Index
129
/// field and thus the total size of the Stream.
130
lzma_vli index_list_size;
131
132
/// Stream Flags of this Stream. This is meaningful only if
133
/// the Stream Flags have been told us with lzma_index_stream_flags().
134
/// Initially stream_flags.version is set to UINT32_MAX to indicate
135
/// that the Stream Flags are unknown.
136
lzma_stream_flags stream_flags;
137
138
/// Amount of Stream Padding after this Stream. This defaults to
139
/// zero and can be set with lzma_index_stream_padding().
140
lzma_vli stream_padding;
141
142
} index_stream;
143
144
145
struct lzma_index_s {
146
/// AVL-tree containing the Stream(s). Often there is just one
147
/// Stream, but using a tree keeps lookups fast even when there
148
/// are many concatenated Streams.
149
index_tree streams;
150
151
/// Uncompressed size of all the Blocks in the Stream(s)
152
lzma_vli uncompressed_size;
153
154
/// Total size of all the Blocks in the Stream(s)
155
lzma_vli total_size;
156
157
/// Total number of Records in all Streams in this lzma_index
158
lzma_vli record_count;
159
160
/// Size of the List of Records field if all the Streams in this
161
/// lzma_index were packed into a single Stream (makes it simpler to
162
/// take many .xz files and combine them into a single Stream).
163
///
164
/// This value together with record_count is needed to calculate
165
/// Backward Size that is stored into Stream Footer.
166
lzma_vli index_list_size;
167
168
/// How many Records to allocate at once in lzma_index_append().
169
/// This defaults to INDEX_GROUP_SIZE but can be overridden with
170
/// lzma_index_prealloc().
171
size_t prealloc;
172
173
/// Bitmask indicating what integrity check types have been used
174
/// as set by lzma_index_stream_flags(). The bit of the last Stream
175
/// is not included here, since it is possible to change it by
176
/// calling lzma_index_stream_flags() again.
177
uint32_t checks;
178
};
179
180
181
static void
182
index_tree_init(index_tree *tree)
183
{
184
tree->root = NULL;
185
tree->leftmost = NULL;
186
tree->rightmost = NULL;
187
tree->count = 0;
188
return;
189
}
190
191
192
/// Helper for index_tree_end()
193
static void
194
index_tree_node_end(index_tree_node *node, const lzma_allocator *allocator,
195
void (*free_func)(void *node, const lzma_allocator *allocator))
196
{
197
// The tree won't ever be very huge, so recursion should be fine.
198
// 20 levels in the tree is likely quite a lot already in practice.
199
if (node->left != NULL)
200
index_tree_node_end(node->left, allocator, free_func);
201
202
if (node->right != NULL)
203
index_tree_node_end(node->right, allocator, free_func);
204
205
free_func(node, allocator);
206
return;
207
}
208
209
210
/// Free the memory allocated for a tree. Each node is freed using the
211
/// given free_func which is either &lzma_free or &index_stream_end.
212
/// The latter is used to free the Record groups from each index_stream
213
/// before freeing the index_stream itself.
214
static void
215
index_tree_end(index_tree *tree, const lzma_allocator *allocator,
216
void (*free_func)(void *node, const lzma_allocator *allocator))
217
{
218
assert(free_func != NULL);
219
220
if (tree->root != NULL)
221
index_tree_node_end(tree->root, allocator, free_func);
222
223
return;
224
}
225
226
227
/// Add a new node to the tree. node->uncompressed_base and
228
/// node->compressed_base must have been set by the caller already.
229
static void
230
index_tree_append(index_tree *tree, index_tree_node *node)
231
{
232
node->parent = tree->rightmost;
233
node->left = NULL;
234
node->right = NULL;
235
236
++tree->count;
237
238
// Handle the special case of adding the first node.
239
if (tree->root == NULL) {
240
tree->root = node;
241
tree->leftmost = node;
242
tree->rightmost = node;
243
return;
244
}
245
246
// The tree is always filled sequentially.
247
assert(tree->rightmost->uncompressed_base <= node->uncompressed_base);
248
assert(tree->rightmost->compressed_base < node->compressed_base);
249
250
// Add the new node after the rightmost node. It's the correct
251
// place due to the reason above.
252
tree->rightmost->right = node;
253
tree->rightmost = node;
254
255
// Balance the AVL-tree if needed. We don't need to keep the balance
256
// factors in nodes, because we always fill the tree sequentially,
257
// and thus know the state of the tree just by looking at the node
258
// count. From the node count we can calculate how many steps to go
259
// up in the tree to find the rotation root.
260
uint32_t up = tree->count ^ (UINT32_C(1) << bsr32(tree->count));
261
if (up != 0) {
262
// Locate the root node for the rotation.
263
up = ctz32(tree->count) + 2;
264
do {
265
node = node->parent;
266
#ifdef __clang_analyzer__
267
assert(node);
268
#endif
269
} while (--up > 0);
270
271
// Rotate left using node as the rotation root.
272
index_tree_node *pivot = node->right;
273
274
if (node->parent == NULL) {
275
tree->root = pivot;
276
} else {
277
assert(node->parent->right == node);
278
node->parent->right = pivot;
279
}
280
281
pivot->parent = node->parent;
282
283
node->right = pivot->left;
284
if (node->right != NULL)
285
node->right->parent = node;
286
287
pivot->left = node;
288
node->parent = pivot;
289
}
290
291
return;
292
}
293
294
295
/// Get the next node in the tree. Return NULL if there are no more nodes.
296
static void *
297
index_tree_next(const index_tree_node *node)
298
{
299
if (node->right != NULL) {
300
node = node->right;
301
while (node->left != NULL)
302
node = node->left;
303
304
return (void *)(node);
305
}
306
307
while (node->parent != NULL && node->parent->right == node)
308
node = node->parent;
309
310
return (void *)(node->parent);
311
}
312
313
314
/// Locate a node that contains the given uncompressed offset. It is
315
/// caller's job to check that target is not bigger than the uncompressed
316
/// size of the tree (the last node would be returned in that case still).
317
static void *
318
index_tree_locate(const index_tree *tree, lzma_vli target)
319
{
320
const index_tree_node *result = NULL;
321
const index_tree_node *node = tree->root;
322
323
assert(tree->leftmost == NULL
324
|| tree->leftmost->uncompressed_base == 0);
325
326
// Consecutive nodes may have the same uncompressed_base.
327
// We must pick the rightmost one.
328
while (node != NULL) {
329
if (node->uncompressed_base > target) {
330
node = node->left;
331
} else {
332
result = node;
333
node = node->right;
334
}
335
}
336
337
return (void *)(result);
338
}
339
340
341
/// Allocate and initialize a new Stream using the given base offsets.
342
static index_stream *
343
index_stream_init(lzma_vli compressed_base, lzma_vli uncompressed_base,
344
uint32_t stream_number, lzma_vli block_number_base,
345
const lzma_allocator *allocator)
346
{
347
index_stream *s = lzma_alloc(sizeof(index_stream), allocator);
348
if (s == NULL)
349
return NULL;
350
351
s->node.uncompressed_base = uncompressed_base;
352
s->node.compressed_base = compressed_base;
353
s->node.parent = NULL;
354
s->node.left = NULL;
355
s->node.right = NULL;
356
357
s->number = stream_number;
358
s->block_number_base = block_number_base;
359
360
index_tree_init(&s->groups);
361
362
s->record_count = 0;
363
s->index_list_size = 0;
364
s->stream_flags.version = UINT32_MAX;
365
s->stream_padding = 0;
366
367
return s;
368
}
369
370
371
/// Free the memory allocated for a Stream and its Record groups.
372
static void
373
index_stream_end(void *node, const lzma_allocator *allocator)
374
{
375
index_stream *s = node;
376
index_tree_end(&s->groups, allocator, &lzma_free);
377
lzma_free(s, allocator);
378
return;
379
}
380
381
382
static lzma_index *
383
index_init_plain(const lzma_allocator *allocator)
384
{
385
lzma_index *i = lzma_alloc(sizeof(lzma_index), allocator);
386
if (i != NULL) {
387
index_tree_init(&i->streams);
388
i->uncompressed_size = 0;
389
i->total_size = 0;
390
i->record_count = 0;
391
i->index_list_size = 0;
392
i->prealloc = INDEX_GROUP_SIZE;
393
i->checks = 0;
394
}
395
396
return i;
397
}
398
399
400
extern LZMA_API(lzma_index *)
401
lzma_index_init(const lzma_allocator *allocator)
402
{
403
lzma_index *i = index_init_plain(allocator);
404
if (i == NULL)
405
return NULL;
406
407
index_stream *s = index_stream_init(0, 0, 1, 0, allocator);
408
if (s == NULL) {
409
lzma_free(i, allocator);
410
return NULL;
411
}
412
413
index_tree_append(&i->streams, &s->node);
414
415
return i;
416
}
417
418
419
extern LZMA_API(void)
420
lzma_index_end(lzma_index *i, const lzma_allocator *allocator)
421
{
422
// NOTE: If you modify this function, check also the bottom
423
// of lzma_index_cat().
424
if (i != NULL) {
425
index_tree_end(&i->streams, allocator, &index_stream_end);
426
lzma_free(i, allocator);
427
}
428
429
return;
430
}
431
432
433
extern void
434
lzma_index_prealloc(lzma_index *i, lzma_vli records)
435
{
436
if (records > PREALLOC_MAX)
437
records = PREALLOC_MAX;
438
439
i->prealloc = (size_t)(records);
440
return;
441
}
442
443
444
extern LZMA_API(uint64_t)
445
lzma_index_memusage(lzma_vli streams, lzma_vli blocks)
446
{
447
// This calculates an upper bound that is only a little bit
448
// bigger than the exact maximum memory usage with the given
449
// parameters.
450
451
// Typical malloc() overhead is 2 * sizeof(void *) but we take
452
// a little bit extra just in case. Using LZMA_MEMUSAGE_BASE
453
// instead would give too inaccurate estimate.
454
const size_t alloc_overhead = 4 * sizeof(void *);
455
456
// Amount of memory needed for each Stream base structures.
457
// We assume that every Stream has at least one Block and
458
// thus at least one group.
459
const size_t stream_base = sizeof(index_stream)
460
+ sizeof(index_group) + 2 * alloc_overhead;
461
462
// Amount of memory needed per group.
463
const size_t group_base = sizeof(index_group)
464
+ INDEX_GROUP_SIZE * sizeof(index_record)
465
+ alloc_overhead;
466
467
// Number of groups. There may actually be more, but that overhead
468
// has been taken into account in stream_base already.
469
const lzma_vli groups
470
= (blocks + INDEX_GROUP_SIZE - 1) / INDEX_GROUP_SIZE;
471
472
// Memory used by index_stream and index_group structures.
473
const uint64_t streams_mem = streams * stream_base;
474
const uint64_t groups_mem = groups * group_base;
475
476
// Memory used by the base structure.
477
const uint64_t index_base = sizeof(lzma_index) + alloc_overhead;
478
479
// Validate the arguments and catch integer overflows.
480
// Maximum number of Streams is "only" UINT32_MAX, because
481
// that limit is used by the tree containing the Streams.
482
const uint64_t limit = UINT64_MAX - index_base;
483
if (streams == 0 || streams > UINT32_MAX || blocks > LZMA_VLI_MAX
484
|| streams > limit / stream_base
485
|| groups > limit / group_base
486
|| limit - streams_mem < groups_mem)
487
return UINT64_MAX;
488
489
return index_base + streams_mem + groups_mem;
490
}
491
492
493
extern LZMA_API(uint64_t)
494
lzma_index_memused(const lzma_index *i)
495
{
496
return lzma_index_memusage(i->streams.count, i->record_count);
497
}
498
499
500
extern LZMA_API(lzma_vli)
501
lzma_index_block_count(const lzma_index *i)
502
{
503
return i->record_count;
504
}
505
506
507
extern LZMA_API(lzma_vli)
508
lzma_index_stream_count(const lzma_index *i)
509
{
510
return i->streams.count;
511
}
512
513
514
extern LZMA_API(lzma_vli)
515
lzma_index_size(const lzma_index *i)
516
{
517
return index_size(i->record_count, i->index_list_size);
518
}
519
520
521
extern LZMA_API(lzma_vli)
522
lzma_index_total_size(const lzma_index *i)
523
{
524
return i->total_size;
525
}
526
527
528
extern LZMA_API(lzma_vli)
529
lzma_index_stream_size(const lzma_index *i)
530
{
531
// Stream Header + Blocks + Index + Stream Footer
532
return LZMA_STREAM_HEADER_SIZE + i->total_size
533
+ index_size(i->record_count, i->index_list_size)
534
+ LZMA_STREAM_HEADER_SIZE;
535
}
536
537
538
static lzma_vli
539
index_file_size(lzma_vli compressed_base, lzma_vli unpadded_sum,
540
lzma_vli record_count, lzma_vli index_list_size,
541
lzma_vli stream_padding)
542
{
543
// Earlier Streams and Stream Paddings + Stream Header
544
// + Blocks + Index + Stream Footer + Stream Padding
545
//
546
// This might go over LZMA_VLI_MAX due to too big unpadded_sum
547
// when this function is used in lzma_index_append().
548
lzma_vli file_size = compressed_base + 2 * LZMA_STREAM_HEADER_SIZE
549
+ stream_padding + vli_ceil4(unpadded_sum);
550
if (file_size > LZMA_VLI_MAX)
551
return LZMA_VLI_UNKNOWN;
552
553
// The same applies here.
554
file_size += index_size(record_count, index_list_size);
555
if (file_size > LZMA_VLI_MAX)
556
return LZMA_VLI_UNKNOWN;
557
558
return file_size;
559
}
560
561
562
extern LZMA_API(lzma_vli)
563
lzma_index_file_size(const lzma_index *i)
564
{
565
const index_stream *s = (const index_stream *)(i->streams.rightmost);
566
const index_group *g = (const index_group *)(s->groups.rightmost);
567
return index_file_size(s->node.compressed_base,
568
g == NULL ? 0 : g->records[g->last].unpadded_sum,
569
s->record_count, s->index_list_size,
570
s->stream_padding);
571
}
572
573
574
extern LZMA_API(lzma_vli)
575
lzma_index_uncompressed_size(const lzma_index *i)
576
{
577
return i->uncompressed_size;
578
}
579
580
581
extern LZMA_API(uint32_t)
582
lzma_index_checks(const lzma_index *i)
583
{
584
uint32_t checks = i->checks;
585
586
// Get the type of the Check of the last Stream too.
587
const index_stream *s = (const index_stream *)(i->streams.rightmost);
588
if (s->stream_flags.version != UINT32_MAX)
589
checks |= UINT32_C(1) << s->stream_flags.check;
590
591
return checks;
592
}
593
594
595
extern uint32_t
596
lzma_index_padding_size(const lzma_index *i)
597
{
598
return (LZMA_VLI_C(4) - index_size_unpadded(
599
i->record_count, i->index_list_size)) & 3;
600
}
601
602
603
extern LZMA_API(lzma_ret)
604
lzma_index_stream_flags(lzma_index *i, const lzma_stream_flags *stream_flags)
605
{
606
if (i == NULL || stream_flags == NULL)
607
return LZMA_PROG_ERROR;
608
609
// Validate the Stream Flags.
610
return_if_error(lzma_stream_flags_compare(
611
stream_flags, stream_flags));
612
613
index_stream *s = (index_stream *)(i->streams.rightmost);
614
s->stream_flags = *stream_flags;
615
616
return LZMA_OK;
617
}
618
619
620
extern LZMA_API(lzma_ret)
621
lzma_index_stream_padding(lzma_index *i, lzma_vli stream_padding)
622
{
623
if (i == NULL || stream_padding > LZMA_VLI_MAX
624
|| (stream_padding & 3) != 0)
625
return LZMA_PROG_ERROR;
626
627
index_stream *s = (index_stream *)(i->streams.rightmost);
628
629
// Check that the new value won't make the file grow too big.
630
const lzma_vli old_stream_padding = s->stream_padding;
631
s->stream_padding = 0;
632
if (lzma_index_file_size(i) + stream_padding > LZMA_VLI_MAX) {
633
s->stream_padding = old_stream_padding;
634
return LZMA_DATA_ERROR;
635
}
636
637
s->stream_padding = stream_padding;
638
return LZMA_OK;
639
}
640
641
642
extern LZMA_API(lzma_ret)
643
lzma_index_append(lzma_index *i, const lzma_allocator *allocator,
644
lzma_vli unpadded_size, lzma_vli uncompressed_size)
645
{
646
// Validate.
647
if (i == NULL || unpadded_size < UNPADDED_SIZE_MIN
648
|| unpadded_size > UNPADDED_SIZE_MAX
649
|| uncompressed_size > LZMA_VLI_MAX)
650
return LZMA_PROG_ERROR;
651
652
index_stream *s = (index_stream *)(i->streams.rightmost);
653
index_group *g = (index_group *)(s->groups.rightmost);
654
655
const lzma_vli compressed_base = g == NULL ? 0
656
: vli_ceil4(g->records[g->last].unpadded_sum);
657
const lzma_vli uncompressed_base = g == NULL ? 0
658
: g->records[g->last].uncompressed_sum;
659
const uint32_t index_list_size_add = lzma_vli_size(unpadded_size)
660
+ lzma_vli_size(uncompressed_size);
661
662
// Check that uncompressed size will not overflow.
663
if (uncompressed_base + uncompressed_size > LZMA_VLI_MAX)
664
return LZMA_DATA_ERROR;
665
666
// Check that the new unpadded sum will not overflow. This is
667
// checked again in index_file_size(), but the unpadded sum is
668
// passed to vli_ceil4() which expects a valid lzma_vli value.
669
if (compressed_base + unpadded_size > UNPADDED_SIZE_MAX)
670
return LZMA_DATA_ERROR;
671
672
// Check that the file size will stay within limits.
673
if (index_file_size(s->node.compressed_base,
674
compressed_base + unpadded_size, s->record_count + 1,
675
s->index_list_size + index_list_size_add,
676
s->stream_padding) == LZMA_VLI_UNKNOWN)
677
return LZMA_DATA_ERROR;
678
679
// The size of the Index field must not exceed the maximum value
680
// that can be stored in the Backward Size field.
681
if (index_size(i->record_count + 1,
682
i->index_list_size + index_list_size_add)
683
> LZMA_BACKWARD_SIZE_MAX)
684
return LZMA_DATA_ERROR;
685
686
if (g != NULL && g->last + 1 < g->allocated) {
687
// There is space in the last group at least for one Record.
688
++g->last;
689
} else {
690
// We need to allocate a new group.
691
g = lzma_alloc(sizeof(index_group)
692
+ i->prealloc * sizeof(index_record),
693
allocator);
694
if (g == NULL)
695
return LZMA_MEM_ERROR;
696
697
g->last = 0;
698
g->allocated = i->prealloc;
699
700
// Reset prealloc so that if the application happens to
701
// add new Records, the allocation size will be sane.
702
i->prealloc = INDEX_GROUP_SIZE;
703
704
// Set the start offsets of this group.
705
g->node.uncompressed_base = uncompressed_base;
706
g->node.compressed_base = compressed_base;
707
g->number_base = s->record_count + 1;
708
709
// Add the new group to the Stream.
710
index_tree_append(&s->groups, &g->node);
711
}
712
713
// Add the new Record to the group.
714
g->records[g->last].uncompressed_sum
715
= uncompressed_base + uncompressed_size;
716
g->records[g->last].unpadded_sum
717
= compressed_base + unpadded_size;
718
719
// Update the totals.
720
++s->record_count;
721
s->index_list_size += index_list_size_add;
722
723
i->total_size += vli_ceil4(unpadded_size);
724
i->uncompressed_size += uncompressed_size;
725
++i->record_count;
726
i->index_list_size += index_list_size_add;
727
728
return LZMA_OK;
729
}
730
731
732
/// Structure to pass info to index_cat_helper()
733
typedef struct {
734
/// Uncompressed size of the destination
735
lzma_vli uncompressed_size;
736
737
/// Compressed file size of the destination
738
lzma_vli file_size;
739
740
/// Same as above but for Block numbers
741
lzma_vli block_number_add;
742
743
/// Number of Streams that were in the destination index before we
744
/// started appending new Streams from the source index. This is
745
/// used to fix the Stream numbering.
746
uint32_t stream_number_add;
747
748
/// Destination index' Stream tree
749
index_tree *streams;
750
751
} index_cat_info;
752
753
754
/// Add the Stream nodes from the source index to dest using recursion.
755
/// Simplest iterative traversal of the source tree wouldn't work, because
756
/// we update the pointers in nodes when moving them to the destination tree.
757
static void
758
index_cat_helper(const index_cat_info *info, index_stream *this)
759
{
760
index_stream *left = (index_stream *)(this->node.left);
761
index_stream *right = (index_stream *)(this->node.right);
762
763
if (left != NULL)
764
index_cat_helper(info, left);
765
766
this->node.uncompressed_base += info->uncompressed_size;
767
this->node.compressed_base += info->file_size;
768
this->number += info->stream_number_add;
769
this->block_number_base += info->block_number_add;
770
index_tree_append(info->streams, &this->node);
771
772
if (right != NULL)
773
index_cat_helper(info, right);
774
775
return;
776
}
777
778
779
extern LZMA_API(lzma_ret)
780
lzma_index_cat(lzma_index *restrict dest, lzma_index *restrict src,
781
const lzma_allocator *allocator)
782
{
783
if (dest == NULL || src == NULL)
784
return LZMA_PROG_ERROR;
785
786
const lzma_vli dest_file_size = lzma_index_file_size(dest);
787
788
// Check that we don't exceed the file size limits.
789
if (dest_file_size + lzma_index_file_size(src) > LZMA_VLI_MAX
790
|| dest->uncompressed_size + src->uncompressed_size
791
> LZMA_VLI_MAX)
792
return LZMA_DATA_ERROR;
793
794
// Check that the encoded size of the combined lzma_indexes stays
795
// within limits. In theory, this should be done only if we know
796
// that the user plans to actually combine the Streams and thus
797
// construct a single Index (probably rare). However, exceeding
798
// this limit is quite theoretical, so we do this check always
799
// to simplify things elsewhere.
800
{
801
const lzma_vli dest_size = index_size_unpadded(
802
dest->record_count, dest->index_list_size);
803
const lzma_vli src_size = index_size_unpadded(
804
src->record_count, src->index_list_size);
805
if (vli_ceil4(dest_size + src_size) > LZMA_BACKWARD_SIZE_MAX)
806
return LZMA_DATA_ERROR;
807
}
808
809
// Optimize the last group to minimize memory usage. Allocation has
810
// to be done before modifying dest or src.
811
{
812
index_stream *s = (index_stream *)(dest->streams.rightmost);
813
index_group *g = (index_group *)(s->groups.rightmost);
814
if (g != NULL && g->last + 1 < g->allocated) {
815
assert(g->node.left == NULL);
816
assert(g->node.right == NULL);
817
818
index_group *newg = lzma_alloc(sizeof(index_group)
819
+ (g->last + 1)
820
* sizeof(index_record),
821
allocator);
822
if (newg == NULL)
823
return LZMA_MEM_ERROR;
824
825
newg->node = g->node;
826
newg->allocated = g->last + 1;
827
newg->last = g->last;
828
newg->number_base = g->number_base;
829
830
memcpy(newg->records, g->records, newg->allocated
831
* sizeof(index_record));
832
833
if (g->node.parent != NULL) {
834
assert(g->node.parent->right == &g->node);
835
g->node.parent->right = &newg->node;
836
}
837
838
if (s->groups.leftmost == &g->node) {
839
assert(s->groups.root == &g->node);
840
s->groups.leftmost = &newg->node;
841
s->groups.root = &newg->node;
842
}
843
844
assert(s->groups.rightmost == &g->node);
845
s->groups.rightmost = &newg->node;
846
847
lzma_free(g, allocator);
848
849
// NOTE: newg isn't leaked here because
850
// newg == (void *)&newg->node.
851
}
852
}
853
854
// dest->checks includes the check types of all except the last Stream
855
// in dest. Set the bit for the check type of the last Stream now so
856
// that it won't get lost when Stream(s) from src are appended to dest.
857
dest->checks = lzma_index_checks(dest);
858
859
// Add all the Streams from src to dest. Update the base offsets
860
// of each Stream from src.
861
const index_cat_info info = {
862
.uncompressed_size = dest->uncompressed_size,
863
.file_size = dest_file_size,
864
.stream_number_add = dest->streams.count,
865
.block_number_add = dest->record_count,
866
.streams = &dest->streams,
867
};
868
index_cat_helper(&info, (index_stream *)(src->streams.root));
869
870
// Update info about all the combined Streams.
871
dest->uncompressed_size += src->uncompressed_size;
872
dest->total_size += src->total_size;
873
dest->record_count += src->record_count;
874
dest->index_list_size += src->index_list_size;
875
dest->checks |= src->checks;
876
877
// There's nothing else left in src than the base structure.
878
lzma_free(src, allocator);
879
880
return LZMA_OK;
881
}
882
883
884
/// Duplicate an index_stream.
885
static index_stream *
886
index_dup_stream(const index_stream *src, const lzma_allocator *allocator)
887
{
888
// Catch a somewhat theoretical integer overflow.
889
if (src->record_count > PREALLOC_MAX)
890
return NULL;
891
892
// Allocate and initialize a new Stream.
893
index_stream *dest = index_stream_init(src->node.compressed_base,
894
src->node.uncompressed_base, src->number,
895
src->block_number_base, allocator);
896
if (dest == NULL)
897
return NULL;
898
899
// Copy the overall information.
900
dest->record_count = src->record_count;
901
dest->index_list_size = src->index_list_size;
902
dest->stream_flags = src->stream_flags;
903
dest->stream_padding = src->stream_padding;
904
905
// Return if there are no groups to duplicate.
906
if (src->groups.leftmost == NULL)
907
return dest;
908
909
// Allocate memory for the Records. We put all the Records into
910
// a single group. It's simplest and also tends to make
911
// lzma_index_locate() a little bit faster with very big Indexes.
912
index_group *destg = lzma_alloc(sizeof(index_group)
913
+ src->record_count * sizeof(index_record),
914
allocator);
915
if (destg == NULL) {
916
index_stream_end(dest, allocator);
917
return NULL;
918
}
919
920
// Initialize destg.
921
destg->node.uncompressed_base = 0;
922
destg->node.compressed_base = 0;
923
destg->number_base = 1;
924
destg->allocated = src->record_count;
925
destg->last = src->record_count - 1;
926
927
// Go through all the groups in src and copy the Records into destg.
928
const index_group *srcg = (const index_group *)(src->groups.leftmost);
929
size_t i = 0;
930
do {
931
memcpy(destg->records + i, srcg->records,
932
(srcg->last + 1) * sizeof(index_record));
933
i += srcg->last + 1;
934
srcg = index_tree_next(&srcg->node);
935
} while (srcg != NULL);
936
937
assert(i == destg->allocated);
938
939
// Add the group to the new Stream.
940
index_tree_append(&dest->groups, &destg->node);
941
942
return dest;
943
}
944
945
946
extern LZMA_API(lzma_index *)
947
lzma_index_dup(const lzma_index *src, const lzma_allocator *allocator)
948
{
949
// Allocate the base structure (no initial Stream).
950
lzma_index *dest = index_init_plain(allocator);
951
if (dest == NULL)
952
return NULL;
953
954
// Copy the totals.
955
dest->uncompressed_size = src->uncompressed_size;
956
dest->total_size = src->total_size;
957
dest->record_count = src->record_count;
958
dest->index_list_size = src->index_list_size;
959
960
// Copy the Streams and the groups in them.
961
const index_stream *srcstream
962
= (const index_stream *)(src->streams.leftmost);
963
do {
964
index_stream *deststream = index_dup_stream(
965
srcstream, allocator);
966
if (deststream == NULL) {
967
lzma_index_end(dest, allocator);
968
return NULL;
969
}
970
971
index_tree_append(&dest->streams, &deststream->node);
972
973
srcstream = index_tree_next(&srcstream->node);
974
} while (srcstream != NULL);
975
976
return dest;
977
}
978
979
980
/// Indexing for lzma_index_iter.internal[]
981
enum {
982
ITER_INDEX,
983
ITER_STREAM,
984
ITER_GROUP,
985
ITER_RECORD,
986
ITER_METHOD,
987
};
988
989
990
/// Values for lzma_index_iter.internal[ITER_METHOD].s
991
enum {
992
ITER_METHOD_NORMAL,
993
ITER_METHOD_NEXT,
994
ITER_METHOD_LEFTMOST,
995
};
996
997
998
static void
999
iter_set_info(lzma_index_iter *iter)
1000
{
1001
const lzma_index *i = iter->internal[ITER_INDEX].p;
1002
const index_stream *stream = iter->internal[ITER_STREAM].p;
1003
const index_group *group = iter->internal[ITER_GROUP].p;
1004
const size_t record = iter->internal[ITER_RECORD].s;
1005
1006
// lzma_index_iter.internal must not contain a pointer to the last
1007
// group in the index, because that may be reallocated by
1008
// lzma_index_cat().
1009
if (group == NULL) {
1010
// There are no groups.
1011
assert(stream->groups.root == NULL);
1012
iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1013
1014
} else if (i->streams.rightmost != &stream->node
1015
|| stream->groups.rightmost != &group->node) {
1016
// The group is not not the last group in the index.
1017
iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1018
1019
} else if (stream->groups.leftmost != &group->node) {
1020
// The group isn't the only group in the Stream, thus we
1021
// know that it must have a parent group i.e. it's not
1022
// the root node.
1023
assert(stream->groups.root != &group->node);
1024
assert(group->node.parent->right == &group->node);
1025
iter->internal[ITER_METHOD].s = ITER_METHOD_NEXT;
1026
iter->internal[ITER_GROUP].p = group->node.parent;
1027
1028
} else {
1029
// The Stream has only one group.
1030
assert(stream->groups.root == &group->node);
1031
assert(group->node.parent == NULL);
1032
iter->internal[ITER_METHOD].s = ITER_METHOD_LEFTMOST;
1033
iter->internal[ITER_GROUP].p = NULL;
1034
}
1035
1036
// NOTE: lzma_index_iter.stream.number is lzma_vli but we use uint32_t
1037
// internally.
1038
iter->stream.number = stream->number;
1039
iter->stream.block_count = stream->record_count;
1040
iter->stream.compressed_offset = stream->node.compressed_base;
1041
iter->stream.uncompressed_offset = stream->node.uncompressed_base;
1042
1043
// iter->stream.flags will be NULL if the Stream Flags haven't been
1044
// set with lzma_index_stream_flags().
1045
iter->stream.flags = stream->stream_flags.version == UINT32_MAX
1046
? NULL : &stream->stream_flags;
1047
iter->stream.padding = stream->stream_padding;
1048
1049
if (stream->groups.rightmost == NULL) {
1050
// Stream has no Blocks.
1051
iter->stream.compressed_size = index_size(0, 0)
1052
+ 2 * LZMA_STREAM_HEADER_SIZE;
1053
iter->stream.uncompressed_size = 0;
1054
} else {
1055
const index_group *g = (const index_group *)(
1056
stream->groups.rightmost);
1057
1058
// Stream Header + Stream Footer + Index + Blocks
1059
iter->stream.compressed_size = 2 * LZMA_STREAM_HEADER_SIZE
1060
+ index_size(stream->record_count,
1061
stream->index_list_size)
1062
+ vli_ceil4(g->records[g->last].unpadded_sum);
1063
iter->stream.uncompressed_size
1064
= g->records[g->last].uncompressed_sum;
1065
}
1066
1067
if (group != NULL) {
1068
iter->block.number_in_stream = group->number_base + record;
1069
iter->block.number_in_file = iter->block.number_in_stream
1070
+ stream->block_number_base;
1071
1072
iter->block.compressed_stream_offset
1073
= record == 0 ? group->node.compressed_base
1074
: vli_ceil4(group->records[
1075
record - 1].unpadded_sum);
1076
iter->block.uncompressed_stream_offset
1077
= record == 0 ? group->node.uncompressed_base
1078
: group->records[record - 1].uncompressed_sum;
1079
1080
iter->block.uncompressed_size
1081
= group->records[record].uncompressed_sum
1082
- iter->block.uncompressed_stream_offset;
1083
iter->block.unpadded_size
1084
= group->records[record].unpadded_sum
1085
- iter->block.compressed_stream_offset;
1086
iter->block.total_size = vli_ceil4(iter->block.unpadded_size);
1087
1088
iter->block.compressed_stream_offset
1089
+= LZMA_STREAM_HEADER_SIZE;
1090
1091
iter->block.compressed_file_offset
1092
= iter->block.compressed_stream_offset
1093
+ iter->stream.compressed_offset;
1094
iter->block.uncompressed_file_offset
1095
= iter->block.uncompressed_stream_offset
1096
+ iter->stream.uncompressed_offset;
1097
}
1098
1099
return;
1100
}
1101
1102
1103
extern LZMA_API(void)
1104
lzma_index_iter_init(lzma_index_iter *iter, const lzma_index *i)
1105
{
1106
iter->internal[ITER_INDEX].p = i;
1107
lzma_index_iter_rewind(iter);
1108
return;
1109
}
1110
1111
1112
extern LZMA_API(void)
1113
lzma_index_iter_rewind(lzma_index_iter *iter)
1114
{
1115
iter->internal[ITER_STREAM].p = NULL;
1116
iter->internal[ITER_GROUP].p = NULL;
1117
iter->internal[ITER_RECORD].s = 0;
1118
iter->internal[ITER_METHOD].s = ITER_METHOD_NORMAL;
1119
return;
1120
}
1121
1122
1123
extern LZMA_API(lzma_bool)
1124
lzma_index_iter_next(lzma_index_iter *iter, lzma_index_iter_mode mode)
1125
{
1126
// Catch unsupported mode values.
1127
if ((unsigned int)(mode) > LZMA_INDEX_ITER_NONEMPTY_BLOCK)
1128
return true;
1129
1130
const lzma_index *i = iter->internal[ITER_INDEX].p;
1131
const index_stream *stream = iter->internal[ITER_STREAM].p;
1132
const index_group *group = NULL;
1133
size_t record = iter->internal[ITER_RECORD].s;
1134
1135
// If we are being asked for the next Stream, leave group to NULL
1136
// so that the rest of the this function thinks that this Stream
1137
// has no groups and will thus go to the next Stream.
1138
if (mode != LZMA_INDEX_ITER_STREAM) {
1139
// Get the pointer to the current group. See iter_set_inf()
1140
// for explanation.
1141
switch (iter->internal[ITER_METHOD].s) {
1142
case ITER_METHOD_NORMAL:
1143
group = iter->internal[ITER_GROUP].p;
1144
break;
1145
1146
case ITER_METHOD_NEXT:
1147
group = index_tree_next(iter->internal[ITER_GROUP].p);
1148
break;
1149
1150
case ITER_METHOD_LEFTMOST:
1151
group = (const index_group *)(
1152
stream->groups.leftmost);
1153
break;
1154
}
1155
}
1156
1157
again:
1158
if (stream == NULL) {
1159
// We at the beginning of the lzma_index.
1160
// Locate the first Stream.
1161
stream = (const index_stream *)(i->streams.leftmost);
1162
if (mode >= LZMA_INDEX_ITER_BLOCK) {
1163
// Since we are being asked to return information
1164
// about the first a Block, skip Streams that have
1165
// no Blocks.
1166
while (stream->groups.leftmost == NULL) {
1167
stream = index_tree_next(&stream->node);
1168
if (stream == NULL)
1169
return true;
1170
}
1171
}
1172
1173
// Start from the first Record in the Stream.
1174
group = (const index_group *)(stream->groups.leftmost);
1175
record = 0;
1176
1177
} else if (group != NULL && record < group->last) {
1178
// The next Record is in the same group.
1179
++record;
1180
1181
} else {
1182
// This group has no more Records or this Stream has
1183
// no Blocks at all.
1184
record = 0;
1185
1186
// If group is not NULL, this Stream has at least one Block
1187
// and thus at least one group. Find the next group.
1188
if (group != NULL)
1189
group = index_tree_next(&group->node);
1190
1191
if (group == NULL) {
1192
// This Stream has no more Records. Find the next
1193
// Stream. If we are being asked to return information
1194
// about a Block, we skip empty Streams.
1195
do {
1196
stream = index_tree_next(&stream->node);
1197
if (stream == NULL)
1198
return true;
1199
} while (mode >= LZMA_INDEX_ITER_BLOCK
1200
&& stream->groups.leftmost == NULL);
1201
1202
group = (const index_group *)(
1203
stream->groups.leftmost);
1204
}
1205
}
1206
1207
if (mode == LZMA_INDEX_ITER_NONEMPTY_BLOCK) {
1208
// We need to look for the next Block again if this Block
1209
// is empty.
1210
if (record == 0) {
1211
if (group->node.uncompressed_base
1212
== group->records[0].uncompressed_sum)
1213
goto again;
1214
} else if (group->records[record - 1].uncompressed_sum
1215
== group->records[record].uncompressed_sum) {
1216
goto again;
1217
}
1218
}
1219
1220
iter->internal[ITER_STREAM].p = stream;
1221
iter->internal[ITER_GROUP].p = group;
1222
iter->internal[ITER_RECORD].s = record;
1223
1224
iter_set_info(iter);
1225
1226
return false;
1227
}
1228
1229
1230
extern LZMA_API(lzma_bool)
1231
lzma_index_iter_locate(lzma_index_iter *iter, lzma_vli target)
1232
{
1233
const lzma_index *i = iter->internal[ITER_INDEX].p;
1234
1235
// If the target is past the end of the file, return immediately.
1236
if (i->uncompressed_size <= target)
1237
return true;
1238
1239
// Locate the Stream containing the target offset.
1240
const index_stream *stream = index_tree_locate(&i->streams, target);
1241
assert(stream != NULL);
1242
target -= stream->node.uncompressed_base;
1243
1244
// Locate the group containing the target offset.
1245
const index_group *group = index_tree_locate(&stream->groups, target);
1246
assert(group != NULL);
1247
1248
// Use binary search to locate the exact Record. It is the first
1249
// Record whose uncompressed_sum is greater than target.
1250
// This is because we want the rightmost Record that fulfills the
1251
// search criterion. It is possible that there are empty Blocks;
1252
// we don't want to return them.
1253
size_t left = 0;
1254
size_t right = group->last;
1255
1256
while (left < right) {
1257
const size_t pos = left + (right - left) / 2;
1258
if (group->records[pos].uncompressed_sum <= target)
1259
left = pos + 1;
1260
else
1261
right = pos;
1262
}
1263
1264
iter->internal[ITER_STREAM].p = stream;
1265
iter->internal[ITER_GROUP].p = group;
1266
iter->internal[ITER_RECORD].s = left;
1267
1268
iter_set_info(iter);
1269
1270
return false;
1271
}
1272
1273