Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/common/memcmplen.h
3153 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file memcmplen.h
6
/// \brief Optimized comparison of two buffers
7
//
8
// Author: Lasse Collin
9
//
10
///////////////////////////////////////////////////////////////////////////////
11
12
#ifndef LZMA_MEMCMPLEN_H
13
#define LZMA_MEMCMPLEN_H
14
15
#include "common.h"
16
17
#ifdef HAVE_IMMINTRIN_H
18
# include <immintrin.h>
19
#endif
20
21
// Only include <intrin.h> if it is needed. The header is only needed
22
// on Windows when using an MSVC compatible compiler. The Intel compiler
23
// can use the intrinsics without the header file.
24
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
25
&& defined(_MSC_VER) \
26
&& (defined(_M_X64) \
27
|| defined(_M_ARM64) || defined(_M_ARM64EC)) \
28
&& !defined(__INTEL_COMPILER)
29
# include <intrin.h>
30
#endif
31
32
33
/// Find out how many equal bytes the two buffers have.
34
///
35
/// \param buf1 First buffer
36
/// \param buf2 Second buffer
37
/// \param len How many bytes have already been compared and will
38
/// be assumed to match
39
/// \param limit How many bytes to compare at most, including the
40
/// already-compared bytes. This must be significantly
41
/// smaller than UINT32_MAX to avoid integer overflows.
42
/// Up to LZMA_MEMCMPLEN_EXTRA bytes may be read past
43
/// the specified limit from both buf1 and buf2.
44
///
45
/// \return Number of equal bytes in the buffers is returned.
46
/// This is always at least len and at most limit.
47
///
48
/// \note LZMA_MEMCMPLEN_EXTRA defines how many extra bytes may be read.
49
/// It's rounded up to 2^n. This extra amount needs to be
50
/// allocated in the buffers being used. It needs to be
51
/// initialized too to keep Valgrind quiet.
52
static lzma_always_inline uint32_t
53
lzma_memcmplen(const uint8_t *buf1, const uint8_t *buf2,
54
uint32_t len, uint32_t limit)
55
{
56
assert(len <= limit);
57
assert(limit <= UINT32_MAX / 2);
58
59
#if defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
60
&& (((TUKLIB_GNUC_REQ(3, 4) || defined(__clang__)) \
61
&& (defined(__x86_64__) \
62
|| defined(__aarch64__))) \
63
|| (defined(__INTEL_COMPILER) && defined(__x86_64__)) \
64
|| (defined(__INTEL_COMPILER) && defined(_M_X64)) \
65
|| (defined(_MSC_VER) && (defined(_M_X64) \
66
|| defined(_M_ARM64) || defined(_M_ARM64EC))))
67
// This is only for x86-64 and ARM64 for now. This might be fine on
68
// other 64-bit processors too. On big endian one should use xor
69
// instead of subtraction and switch to __builtin_clzll().
70
//
71
// Reasons to use subtraction instead of xor:
72
//
73
// - On some x86-64 processors (Intel Sandy Bridge to Tiger Lake),
74
// sub+jz and sub+jnz can be fused but xor+jz or xor+jnz cannot.
75
// Thus using subtraction has potential to be a tiny amount faster
76
// since the code checks if the quotient is non-zero.
77
//
78
// - Some processors (Intel Pentium 4) used to have more ALU
79
// resources for add/sub instructions than and/or/xor.
80
//
81
// The processor info is based on Agner Fog's microarchitecture.pdf
82
// version 2023-05-26. https://www.agner.org/optimize/
83
#define LZMA_MEMCMPLEN_EXTRA 8
84
while (len < limit) {
85
const uint64_t x = read64ne(buf1 + len) - read64ne(buf2 + len);
86
if (x != 0) {
87
// MSVC or Intel C compiler on Windows
88
# if defined(_MSC_VER) || defined(__INTEL_COMPILER)
89
unsigned long tmp;
90
_BitScanForward64(&tmp, x);
91
len += (uint32_t)tmp >> 3;
92
// GCC, Clang, or Intel C compiler
93
# else
94
len += (uint32_t)__builtin_ctzll(x) >> 3;
95
# endif
96
return my_min(len, limit);
97
}
98
99
len += 8;
100
}
101
102
return limit;
103
104
#elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) \
105
&& defined(HAVE__MM_MOVEMASK_EPI8) \
106
&& (defined(__SSE2__) \
107
|| (defined(_MSC_VER) && defined(_M_IX86_FP) \
108
&& _M_IX86_FP >= 2))
109
// NOTE: This will use 128-bit unaligned access which
110
// TUKLIB_FAST_UNALIGNED_ACCESS wasn't meant to permit,
111
// but it's convenient here since this is x86-only.
112
//
113
// SSE2 version for 32-bit and 64-bit x86. On x86-64 the above
114
// version is sometimes significantly faster and sometimes
115
// slightly slower than this SSE2 version, so this SSE2
116
// version isn't used on x86-64.
117
# define LZMA_MEMCMPLEN_EXTRA 16
118
while (len < limit) {
119
const uint32_t x = 0xFFFF ^ (uint32_t)_mm_movemask_epi8(
120
_mm_cmpeq_epi8(
121
_mm_loadu_si128((const __m128i *)(buf1 + len)),
122
_mm_loadu_si128((const __m128i *)(buf2 + len))));
123
124
if (x != 0) {
125
len += ctz32(x);
126
return my_min(len, limit);
127
}
128
129
len += 16;
130
}
131
132
return limit;
133
134
#elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && !defined(WORDS_BIGENDIAN)
135
// Generic 32-bit little endian method
136
# define LZMA_MEMCMPLEN_EXTRA 4
137
while (len < limit) {
138
uint32_t x = read32ne(buf1 + len) - read32ne(buf2 + len);
139
if (x != 0) {
140
if ((x & 0xFFFF) == 0) {
141
len += 2;
142
x >>= 16;
143
}
144
145
if ((x & 0xFF) == 0)
146
++len;
147
148
return my_min(len, limit);
149
}
150
151
len += 4;
152
}
153
154
return limit;
155
156
#elif defined(TUKLIB_FAST_UNALIGNED_ACCESS) && defined(WORDS_BIGENDIAN)
157
// Generic 32-bit big endian method
158
# define LZMA_MEMCMPLEN_EXTRA 4
159
while (len < limit) {
160
uint32_t x = read32ne(buf1 + len) ^ read32ne(buf2 + len);
161
if (x != 0) {
162
if ((x & 0xFFFF0000) == 0) {
163
len += 2;
164
x <<= 16;
165
}
166
167
if ((x & 0xFF000000) == 0)
168
++len;
169
170
return my_min(len, limit);
171
}
172
173
len += 4;
174
}
175
176
return limit;
177
178
#else
179
// Simple portable version that doesn't use unaligned access.
180
# define LZMA_MEMCMPLEN_EXTRA 0
181
while (len < limit && buf1[len] == buf2[len])
182
++len;
183
184
return len;
185
#endif
186
}
187
188
#endif
189
190