Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/lz/lz_decoder.c
3156 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file lz_decoder.c
6
/// \brief LZ out window
7
///
8
// Authors: Igor Pavlov
9
// Lasse Collin
10
//
11
///////////////////////////////////////////////////////////////////////////////
12
13
// liblzma supports multiple LZ77-based filters. The LZ part is shared
14
// between these filters. The LZ code takes care of dictionary handling
15
// and passing the data between filters in the chain. The filter-specific
16
// part decodes from the input buffer to the dictionary.
17
18
19
#include "lz_decoder.h"
20
21
22
typedef struct {
23
/// Dictionary (history buffer)
24
lzma_dict dict;
25
26
/// The actual LZ-based decoder e.g. LZMA
27
lzma_lz_decoder lz;
28
29
/// Next filter in the chain, if any. Note that LZMA and LZMA2 are
30
/// only allowed as the last filter, but the long-range filter in
31
/// future can be in the middle of the chain.
32
lzma_next_coder next;
33
34
/// True if the next filter in the chain has returned LZMA_STREAM_END.
35
bool next_finished;
36
37
/// True if the LZ decoder (e.g. LZMA) has detected end of payload
38
/// marker. This may become true before next_finished becomes true.
39
bool this_finished;
40
41
/// Temporary buffer needed when the LZ-based filter is not the last
42
/// filter in the chain. The output of the next filter is first
43
/// decoded into buffer[], which is then used as input for the actual
44
/// LZ-based decoder.
45
struct {
46
size_t pos;
47
size_t size;
48
uint8_t buffer[LZMA_BUFFER_SIZE];
49
} temp;
50
} lzma_coder;
51
52
53
static void
54
lz_decoder_reset(lzma_coder *coder)
55
{
56
coder->dict.pos = 2 * LZ_DICT_REPEAT_MAX;
57
coder->dict.full = 0;
58
coder->dict.buf[2 * LZ_DICT_REPEAT_MAX - 1] = '\0';
59
coder->dict.has_wrapped = false;
60
coder->dict.need_reset = false;
61
return;
62
}
63
64
65
static lzma_ret
66
decode_buffer(lzma_coder *coder,
67
const uint8_t *restrict in, size_t *restrict in_pos,
68
size_t in_size, uint8_t *restrict out,
69
size_t *restrict out_pos, size_t out_size)
70
{
71
while (true) {
72
// Wrap the dictionary if needed.
73
if (coder->dict.pos == coder->dict.size) {
74
// See the comment of #define LZ_DICT_REPEAT_MAX.
75
coder->dict.pos = LZ_DICT_REPEAT_MAX;
76
coder->dict.has_wrapped = true;
77
memcpy(coder->dict.buf, coder->dict.buf
78
+ coder->dict.size
79
- LZ_DICT_REPEAT_MAX,
80
LZ_DICT_REPEAT_MAX);
81
}
82
83
// Store the current dictionary position. It is needed to know
84
// where to start copying to the out[] buffer.
85
const size_t dict_start = coder->dict.pos;
86
87
// Calculate how much we allow coder->lz.code() to decode.
88
// It must not decode past the end of the dictionary
89
// buffer, and we don't want it to decode more than is
90
// actually needed to fill the out[] buffer.
91
coder->dict.limit = coder->dict.pos
92
+ my_min(out_size - *out_pos,
93
coder->dict.size - coder->dict.pos);
94
95
// Call the coder->lz.code() to do the actual decoding.
96
const lzma_ret ret = coder->lz.code(
97
coder->lz.coder, &coder->dict,
98
in, in_pos, in_size);
99
100
// Copy the decoded data from the dictionary to the out[]
101
// buffer. Do it conditionally because out can be NULL
102
// (in which case copy_size is always 0). Calling memcpy()
103
// with a null-pointer is undefined even if the third
104
// argument is 0.
105
const size_t copy_size = coder->dict.pos - dict_start;
106
assert(copy_size <= out_size - *out_pos);
107
108
if (copy_size > 0)
109
memcpy(out + *out_pos, coder->dict.buf + dict_start,
110
copy_size);
111
112
*out_pos += copy_size;
113
114
// Reset the dictionary if so requested by coder->lz.code().
115
if (coder->dict.need_reset) {
116
lz_decoder_reset(coder);
117
118
// Since we reset dictionary, we don't check if
119
// dictionary became full.
120
if (ret != LZMA_OK || *out_pos == out_size)
121
return ret;
122
} else {
123
// Return if everything got decoded or an error
124
// occurred, or if there's no more data to decode.
125
//
126
// Note that detecting if there's something to decode
127
// is done by looking if dictionary become full
128
// instead of looking if *in_pos == in_size. This
129
// is because it is possible that all the input was
130
// consumed already but some data is pending to be
131
// written to the dictionary.
132
if (ret != LZMA_OK || *out_pos == out_size
133
|| coder->dict.pos < coder->dict.size)
134
return ret;
135
}
136
}
137
}
138
139
140
static lzma_ret
141
lz_decode(void *coder_ptr, const lzma_allocator *allocator,
142
const uint8_t *restrict in, size_t *restrict in_pos,
143
size_t in_size, uint8_t *restrict out,
144
size_t *restrict out_pos, size_t out_size,
145
lzma_action action)
146
{
147
lzma_coder *coder = coder_ptr;
148
149
if (coder->next.code == NULL)
150
return decode_buffer(coder, in, in_pos, in_size,
151
out, out_pos, out_size);
152
153
// We aren't the last coder in the chain, we need to decode
154
// our input to a temporary buffer.
155
while (*out_pos < out_size) {
156
// Fill the temporary buffer if it is empty.
157
if (!coder->next_finished
158
&& coder->temp.pos == coder->temp.size) {
159
coder->temp.pos = 0;
160
coder->temp.size = 0;
161
162
const lzma_ret ret = coder->next.code(
163
coder->next.coder,
164
allocator, in, in_pos, in_size,
165
coder->temp.buffer, &coder->temp.size,
166
LZMA_BUFFER_SIZE, action);
167
168
if (ret == LZMA_STREAM_END)
169
coder->next_finished = true;
170
else if (ret != LZMA_OK || coder->temp.size == 0)
171
return ret;
172
}
173
174
if (coder->this_finished) {
175
if (coder->temp.size != 0)
176
return LZMA_DATA_ERROR;
177
178
if (coder->next_finished)
179
return LZMA_STREAM_END;
180
181
return LZMA_OK;
182
}
183
184
const lzma_ret ret = decode_buffer(coder, coder->temp.buffer,
185
&coder->temp.pos, coder->temp.size,
186
out, out_pos, out_size);
187
188
if (ret == LZMA_STREAM_END)
189
coder->this_finished = true;
190
else if (ret != LZMA_OK)
191
return ret;
192
else if (coder->next_finished && *out_pos < out_size)
193
return LZMA_DATA_ERROR;
194
}
195
196
return LZMA_OK;
197
}
198
199
200
static void
201
lz_decoder_end(void *coder_ptr, const lzma_allocator *allocator)
202
{
203
lzma_coder *coder = coder_ptr;
204
205
lzma_next_end(&coder->next, allocator);
206
lzma_free(coder->dict.buf, allocator);
207
208
if (coder->lz.end != NULL)
209
coder->lz.end(coder->lz.coder, allocator);
210
else
211
lzma_free(coder->lz.coder, allocator);
212
213
lzma_free(coder, allocator);
214
return;
215
}
216
217
218
extern lzma_ret
219
lzma_lz_decoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
220
const lzma_filter_info *filters,
221
lzma_ret (*lz_init)(lzma_lz_decoder *lz,
222
const lzma_allocator *allocator,
223
lzma_vli id, const void *options,
224
lzma_lz_options *lz_options))
225
{
226
// Allocate the base structure if it isn't already allocated.
227
lzma_coder *coder = next->coder;
228
if (coder == NULL) {
229
coder = lzma_alloc(sizeof(lzma_coder), allocator);
230
if (coder == NULL)
231
return LZMA_MEM_ERROR;
232
233
next->coder = coder;
234
next->code = &lz_decode;
235
next->end = &lz_decoder_end;
236
237
coder->dict.buf = NULL;
238
coder->dict.size = 0;
239
coder->lz = LZMA_LZ_DECODER_INIT;
240
coder->next = LZMA_NEXT_CODER_INIT;
241
}
242
243
// Allocate and initialize the LZ-based decoder. It will also give
244
// us the dictionary size.
245
lzma_lz_options lz_options;
246
return_if_error(lz_init(&coder->lz, allocator,
247
filters[0].id, filters[0].options, &lz_options));
248
249
// If the dictionary size is very small, increase it to 4096 bytes.
250
// This is to prevent constant wrapping of the dictionary, which
251
// would slow things down. The downside is that since we don't check
252
// separately for the real dictionary size, we may happily accept
253
// corrupt files.
254
if (lz_options.dict_size < 4096)
255
lz_options.dict_size = 4096;
256
257
// Make dictionary size a multiple of 16. Some LZ-based decoders like
258
// LZMA use the lowest bits lzma_dict.pos to know the alignment of the
259
// data. Aligned buffer is also good when memcpying from the
260
// dictionary to the output buffer, since applications are
261
// recommended to give aligned buffers to liblzma.
262
//
263
// Reserve 2 * LZ_DICT_REPEAT_MAX bytes of extra space which is
264
// needed for alloc_size.
265
//
266
// Avoid integer overflow.
267
if (lz_options.dict_size > SIZE_MAX - 15 - 2 * LZ_DICT_REPEAT_MAX)
268
return LZMA_MEM_ERROR;
269
270
lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15));
271
272
// Reserve extra space as explained in the comment
273
// of #define LZ_DICT_REPEAT_MAX.
274
const size_t alloc_size
275
= lz_options.dict_size + 2 * LZ_DICT_REPEAT_MAX;
276
277
// Allocate and initialize the dictionary.
278
if (coder->dict.size != alloc_size) {
279
lzma_free(coder->dict.buf, allocator);
280
coder->dict.buf = lzma_alloc(alloc_size, allocator);
281
if (coder->dict.buf == NULL)
282
return LZMA_MEM_ERROR;
283
284
// NOTE: Yes, alloc_size, not lz_options.dict_size. The way
285
// coder->dict.full is updated will take care that we will
286
// still reject distances larger than lz_options.dict_size.
287
coder->dict.size = alloc_size;
288
}
289
290
lz_decoder_reset(next->coder);
291
292
// Use the preset dictionary if it was given to us.
293
if (lz_options.preset_dict != NULL
294
&& lz_options.preset_dict_size > 0) {
295
// If the preset dictionary is bigger than the actual
296
// dictionary, copy only the tail.
297
const size_t copy_size = my_min(lz_options.preset_dict_size,
298
lz_options.dict_size);
299
const size_t offset = lz_options.preset_dict_size - copy_size;
300
memcpy(coder->dict.buf + coder->dict.pos,
301
lz_options.preset_dict + offset,
302
copy_size);
303
304
// dict.pos isn't zero after lz_decoder_reset().
305
coder->dict.pos += copy_size;
306
coder->dict.full = copy_size;
307
}
308
309
// Miscellaneous initializations
310
coder->next_finished = false;
311
coder->this_finished = false;
312
coder->temp.pos = 0;
313
coder->temp.size = 0;
314
315
// Initialize the next filter in the chain, if any.
316
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
317
}
318
319
320
extern uint64_t
321
lzma_lz_decoder_memusage(size_t dictionary_size)
322
{
323
return sizeof(lzma_coder) + (uint64_t)(dictionary_size);
324
}
325
326